- 1. (a) $a_n = (-1)n$.
 - (b) $f(z) = \sin(z)$.
 - (c) $f(z) = \sin(z), g(z) = \cos(z).$
 - (d) $U = \mathbf{C} \{0\}.$
 - (e) $w = 0, U = \mathbf{C}, \gamma(t) = e^{it}$.
 - (f) Drawn in lecture.
 - (g) $U = \mathbf{C} \{0\}, f(z) = 1/z.$
 - (h) Impossible, since zeroes of holomorphic functions are isolated.
 - (i) w = 0, $f(z) = 1/z^2$.
 - (j) w = 0, $f(z) = \exp(1/z)$.
- 2. (a) $c_l = \sum_{j=0}^l a_j b_{l-j}$.
 - (b) The radius of convergence of the product is at least as large as the minimum of the radii of convergence of the multiplicands.
 - (c)

$$f(z) = \sqrt{1 - 2xz + z^2} = \sum_{j=0}^{\infty} a_j z^j.$$

Take $b_j = a_j$. Then

$$\sum_{l=0}^{\infty} c_l z^l = 1 - 2xz + z^2,$$

so

$$c_0 = 1$$
 $c_1 = -2x$ $c_2 = 1$

and all other c's are zero.

$$a_0 = f(0) = 1.$$

The other a's are obtained from the formula $c_l = \sum_{j=0}^l a_j b_{l-j} = sum_{j=0}^l a_j a_{l-j}$. For l=1

$$a_0 a_1 + a_1 a_0 = c_1 = -2x$$

or

$$2a_1 = -2x$$

so $a_1 = -x$. Then

$$a_0 a_2 + a_1 a_1 + a_2 a_0 = c_2 = 1$$

or

$$2a_2 + x^2 = 1$$

$$a_2 = \frac{1}{2}(1 - x^2).$$

Then

$$a_0a_3 + a_1a_2 + a_2a_1 + a_3a_0 = c_3 = 0$$

or

$$2a_3 - 2x\frac{1}{2}(1 - x^2) = 0$$

so

$$a_3 = \frac{1}{2}(x - x^3).$$

We could continue indefinitely, but are only asked for the a's up through a_3 .

- 3. (a) There aren't any.
 - (b) $w = 0, f(z) = \exp(z).$
 - (c) Set $g(z) = (f(z) w)^{-1}$. If there is a z such that f(z) = w then the sequence $z_n = z$ satisfies $\lim_{n \to \infty} f(z_n) = f(z) = w$ and we are done. Otherwise g is non-constand and holomorphic in \mathbf{C} , hence unbounded. Since g is unbounded there is, for each non-negative integer n, a z_n such that |g(z)| > n, i.e. $f(z_n) w| < 1/n$. But then $\lim_{n \to \infty} f(z_n) = w$.
- 4. (a) This is a special case of the problem in the next part.
 - (b) Let

$$f(z) = \frac{\exp(2\pi i \xi z)}{1 + z + z^2}.$$

We integrate over a rectangular path γ with vertices at -R, R, $R \pm iR$ and $-R \pm iR$, visited in that order. The sign in \pm is the sign of ξ . If $\xi = 0$ then wither sign will work. With this choice, $|\exp(2\pi i \xi z)| \le 1$ on the whole path. By the Cauchy integral formula

$$\int_{\gamma} f(z) dz = 2\pi i n(\gamma, w) \operatorname{Res}_{z=w} f(z)$$

where w is the pole of f inside the rectangle, $w = -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$. From the picture $n(\gamma, w) = \pm 1$. By the multiplication formula,

$$\operatorname{Res}_{z=w} f(z) = \exp(2\pi i \xi w) \operatorname{Res}_{z=w} \frac{1}{1+z+z^2},$$

By the limit formula,

$$\operatorname{Res}_{z=w} \frac{1}{\operatorname{Res}_{z=w}} = \frac{1}{\pm i\sqrt{3}}$$

so

$$\begin{split} \int_{\gamma} f(z) \, dz &= 2\pi i n(\gamma, w) \mathop{\mathrm{Res}}_{z=w} f(z) \\ &= \frac{2\pi}{\sqrt{3}} \exp\left(\pi i \xi (-1 \pm i \sqrt{3})\right) \\ &= \frac{2\pi}{\sqrt{3}} \exp(-\pi \sqrt{3} |\xi|) \exp(-\pi i \xi). \end{split}$$

Now

$$\int_{\gamma} f(z) dz = \int_{-R}^{R} f(x) dx + \int_{\tilde{\gamma}} f(z) dz$$

where $\tilde{\gamma}$ is the portion of γ which goes from R to -R via $R \pm iR$ and $-R \pm iR$. As $R \to \infty$,

$$\lim_{R \to \infty} \int_{-R}^{R} f(x) \, dx = \int_{-\infty}^{\infty} f(x) \, dx$$

while

$$|\int_{\tilde{\gamma}} f(z) \, dz| \le 4R \max_{[\tilde{\gamma}]} |f| \le \frac{4R}{R^2 - R - 1}$$

SO

$$\lim_{R \to \infty} \int_{\tilde{\gamma}} f(z) \, dz = 0.$$

Therefore

$$\int_{-\infty}^{\infty} \frac{\exp(2\pi i \xi x)}{1 + x + x^2} dx = \frac{2\pi}{\sqrt{3}} \exp(-\pi \sqrt{3}|\xi|) \exp(-\pi i \xi).$$