
1. (20 points) For each of the following, either give an example or a brief
explanation of why it is impossible. (4 points each)

(a) A power series which converges everywhere, but whose sum is not
a bounded function.
Solution: Many examples. One is

∑

∞

n=0 zn/n!.

(b) A closed path γ in C − {0} which is not contractible.
Solution: Many examples. One is γ(t) = exp(it), −π ≤ t ≤ π.

(c) A function f , analytic on C except for poles at the points z = n,
n ∈ Z.
Solution: Many examples. One is f(z) = cot(πz)

(d) A function f on C which is continuous but not differentiable.
Solution: Many examples. One is f(z) = |z|.

(e) An open set U and a function f , holomorphic in U , such that
there is no function F , defined in U , with F ′ = f throughout U .
Solution: Many examples. One is U = C − {0}, f(z) = 1/z.

2. (20 points)

(a) (5 points) State Liouville’s Theorem.
Solution: Any bounded analytic function on C is constant.

(b) (15 points) Suppose that f is analytic in C and satisfies f(z+m+
in) = f(z) for all m, n ∈ Z. Prove the f is constant.
Solution: Every z ∈ C is of the form x+ iy+m+ in for some inte-
gers m and n and some real numbers 0 ≤ x, y ≤ 1. By hypothesis
then f(z) = f(x + iy), so

|f(z)| ≤ max
(x,y)∈R

|f(x + iy)|

where R is the unit square 0 ≤ x, y ≤ 1. This maximum ex-
ists because |f(x + iy)| is a continuous function of x and y, and
continuous real valued functions on a product of intervals have
a maximum (and minimum, but we don’t care). So f must be
constant by Liouville’s theorem.

3. (20 points) Suppose that

f(z) =
∞
∑

j=0

ajz
j
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for all z ∈ C.

(a) (2 points) Find the power series expansion for f ′.
Solution:

f ′(z) =
∞
∑

n=0

(n + 1)an+1z
n.

(b) (2 points) Where does it converge?
Solution: Everywhere.

(c) (2 points) Find the power series expansion for f 2.
Solution: By the rule for multiplication of power series

f(z)2 =
∞
∑

n=0





n
∑

j=0

ajan−j



 zn.

(d) (2 points) Where does it converge?
Solution: Everywhere.

(e) (12 points) Suppose that

f ′(x)2 + f(x)2 = 1, f(0) = 0, f ′(0) = 1.

Find a0, a1, a2, a3, a4 and a5

Solution:

f(z)2 = a2
0 + 2a0a1z + (2a0a2 + a2

1)z
2 + (2a0a3 + 2a1a2)z

3

+ (2a0a4 + 2a1a3 + a2
2)z

4 + · · · ,

f ′(z) = a1 + 2a2z + 3a3z
2 + 4a4z

3 + 5a5z
4 + · · ·

and

f ′(z)2 = a2
1 + 4a1a2z + (6a1a3 + 4a2

2)z
2 + (8a1a4 + 12a2a3)z

3

+ (10a1a5 + 16a2a4 + 9a2
3)z

4 + · · · .

So
a2

0 + a2
1 = 1,

2a0a1 + 4a1a2 = 0,

2a0a2 + a2
1 + 6a1a3 + 4a2

2 = 0,

2a0a3 + 2a1a2 + 8a1a4 + 12a2a3 = 0,
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and
2a0a4 + 2a1a3 + a2

2 + 10a1a5 + 16a2a4 + 9a2
3 = 0.

By assumption, a0 = f(0) = 0 and a1 = f ′(0) = 1. Solving the
equations above for the next few coefficients,

a2 = 0, a3 = −1/6, a4 = 0, a5 = 1/120.

4. (20 points)

(a) (4 points) Write
∫ π

−π

dθ

a + cos θ

for a > 1 as ∫

γ
f(z) dz

where f is a rational function and γ(t) = eit for −π ≤ t ≤ π.
Solution:

f(z) =
−i

(1
2
z2 + az + 1

2
)
.

(b) (3 points) Find the poles of f . If you didn’t do part (a) then find
the poles of the function

g(z) = (z4 − 6z2 + 1)−1

instead.
Solution: The poles of f are at

z+ = −a +
√

a2 − 1, z− = −a −
√

a2 − 1.

(c) (2 points) Find the orders of the poles of f , or of g if you didn’t
do part (a).
Solution: These are simple poles. You would have a double pole
if a = ±1, but we are told that a > 1.

(d) (4 points) Find the residues of the poles of f , or of g if you didn’t
do part (a).
Solution:

f(z) =
−2i

(z − z+)(z − z−)
,
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so

Res
z=z+

f(z) = lim
z→z+

(z−z+)f(z) = lim
z→z+

−2i

z − z−
=

−2i

z+ − z−
=

−i√
a2 − 1

.

Similarly

Res
z=z

−

f(z) =
i√

a2 − 1
.

(e) (2 points) Find the winding number of γ about the poles of f , or
of g if you didn’t do part (a).
Solution: z+z− = 1 and hence, |z+||z−| = 1 so one of the poles
is inside. Since |z−| > |z+| it must be z+ which is inside. Thus
n(γ, z+) = 1 and n(γ, z−) = 0.

(f) (5 points) Evaluate
∫ π

−π

dθ

a + cos θ
.

Solution:

∫ π

−π

dθ

a + cos θ
=

∫

γ
f(z) dz = 2πi Res

z=z+

f(z) =
2π√

a2 − 1
.

5. (20 points) Suppose w ∈ C is not an integer. Let

f(z) = π cot(πz)(z − w)−2

Let γN be a path going around the square with corners at ±(N + 1
2
)±

i(N + 1
2
) in the counterclockwise direction.

(a) (3 points) Find the poles of f .
Solution: There are poles at w, coming from the factor (z − w)2,
and at the integers, coming from the factor cot(πz).

(b) (2 points) Find their orders.
Solution: The pole at w is of order 2, while the poles at the
integers are of order 1.

(c) (3 points) Find their residues.
Solution: For the poles at the integers, which are simple, we can
use the multiplication formula for residues. π cot(πz) has a pole
of residue 1 at n, so f has a pole of residue (n − w)2 there. For
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the pole at w we compute power series, or at least the first few
terms:

cot(πz) = cot(πw) + π cot′(πw)(z − w) + · · ·
= cot(πw) − π csc2(πw)(z − w) + · · ·

so

f(z) = π cot(πw)(z − w)−2 − π2 csc2(πw)(z − w)−1 + · · · .

Resz=w f(z) is the coefficient of (z−w)−1, in other words, −π2 csc2(πw)

(d) (2 points) Find the index of γN about these poles.
Solution: The index, or winding number, about n is 1, for −N ≤
n ≤ N and zero for the other integers. The index about w is also
1, once N is large enough.

(e) (4 points) Prove that

lim
N→∞

∫

γN

f(z) dz = 0.

Solution: We only care about large N , so assume |w| ≤ N + 1
2
.

We know that π cot(πz) is bounded on [γN ], with a bound which
is independent of N . In fact this bound is coth π

2
, but the exact

value is not important, so just call it K. Then |f(z)| is bounded

by K/(N + 1
2
− |w|)2 on [γN ], and hence

∣

∣

∣

∫

γN
f(z) dz

∣

∣

∣ is bounded

by K(8N + 4)/(N + 1
2
− |w|)2. But this tends to zero as N → ∞.

(f) (6 points) Evaluate
∞
∑

n=−∞

(w − n)−2.

Solution: By Cauchy’s Theorem,
∫

γN
f(z) dz = 2πi

∑

a n(γN , a) Resz=a f(z)

= 2πi
(

∑N
n=−N(w − n)2 − π2 csc2(πw)

)

.

We’ve already seen that the limit is zero, so

lim
N→∞

N
∑

n=−N

(w − n)−2 = π2 csc2(πw)
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