MA 2325 Assignment 6 Due 16 December 2009

Id: 2325-0910-6.m4,v 1.2 2009/12/28 13:18:03 john Exp john

1. Evaluate

$$\int_{-\pi}^{\pi} \frac{A\cos\theta + B\sin\theta + C}{a\cos\theta + b\sin\theta + c} d\theta$$

by contour integration, where $a^2 + b^2 < c^2$.

Solution: First note that $c \neq 0$, so c < 0 or c > 0. There is no need to consider c < 0, since the integral is obviously unchanged by switching the signs of A, B, C, a, b and c.

In lecture we computed

$$\int_{-\pi}^{\pi} \frac{1}{a\cos\theta + b\sin\theta + c} d\theta = \frac{2\pi}{\sqrt{c^2 - a^2 - b^2}}$$

by integrating $\frac{2i}{(a-ib)z^2+2cz+(a+ib)}$ over the path

$$\gamma(\theta) = e^{i\theta} \qquad -\pi \le \theta \le \pi.$$

The most straightforward approach would be to solve the present problem by the same method, *i.e.* to choose f so that the desired integral is $\int f(z) dz$:

$$f(z) = -\frac{i}{z} \frac{(A - iB)z^2 + 2Cz + (A - iB)}{(a - ib)z^2 + 2cz + (a + ib)}.$$

This will work, but it is unnecessarily complicated. In addition to having six parameters to deal with, the integrand f has three poles, of which two within the unit circle.

2

It is possible to simplify the argument somewhat by forgetting arbitrary A, B and C for the moment and concentrating on the special case A=1, B=i and C=0. For this we need the integrand

$$f(z) = \frac{-2iz}{(a-ib)z^2 + 2cz + (a+ib)}.$$

With this choice of f and γ ,

$$\gamma'(\theta) = ie^{i\theta} = i(\cos\theta + i\sin\theta)$$

and

$$f(\gamma(\theta)) = \frac{-2ie^{i\theta}}{(a-ib)e^{2i\theta} + 2ce^{i\theta} + (a+ib)}$$

$$= \frac{-2i}{(a-ib)e^{i\theta} + 2c + (a+ib)e^{-i\theta}}$$

$$= \frac{-2i}{a(e^{i\theta} + e^{-i\theta}) + 2c + b(-ie^{i\theta} + ie^{-i\theta})}$$

$$= \frac{-i}{a\cos\theta + b\sin\theta + c}$$

SO

$$f(\gamma(\theta))\gamma'(\theta) = \frac{\cos\theta + i\sin\theta}{a\cos\theta + b\sin\theta + c}$$

and

$$\int_{\gamma} f(z) dz = \int_{-\pi}^{\pi} \frac{\cos \theta + i \sin \theta}{a \cos \theta + b \sin \theta + c} d\theta.$$

Of course, f was chosen specifically to make this true. By the Cauchy Residue Theorem,

$$\int_{\gamma} f(z) dz = 2\pi i \operatorname{Res}_{z=w} f(z)$$

where w is the pole of f inside the unit circle. The path gamma has winding number 0 about the other pole, so that pole has no contribution to the sum. As shown in lecture,

$$w = \frac{-c + \sqrt{c^2 - a^2 - b^2}}{a - ib}$$

and

$$\operatorname{Res}_{z=w} \frac{2}{(a-ib)z^2 + 2cz + (a+ib)} = -\frac{1}{\sqrt{c^2 - a^2 - b^2}}.$$

From the multiplication theorem for simple poles,

Res
$$f(z) = \frac{iw}{\sqrt{c^2 - a^2 - b^2}}$$

3

and hence

$$\int_{-\pi}^{\pi} \frac{\cos \theta + i \sin \theta}{a \cos \theta + b \sin \theta + c} d\theta = \frac{2\pi w}{\sqrt{c^2 - a^2 - b^2}}.$$

A little algebra shows that

$$w = -\frac{a + ib}{c + \sqrt{c^2 - a^2 - b^2}}$$

SO

$$\int_{-\pi}^{\pi} \frac{\cos \theta + i \sin \theta}{a \cos \theta + b \sin \theta + c} d\theta = -\frac{2\pi (a + ib)}{\sqrt{c^2 - a^2 - b^2}(c + \sqrt{c^2 - a^2 - b^2})}.$$

The real part of the integral is the integral of the real part, and similarly for the imaginary part, so

$$\int_{-\pi}^{\pi} \frac{\cos \theta}{a \cos \theta + b \sin \theta + c} d\theta = -\frac{2\pi a}{\sqrt{c^2 - a^2 - b^2} (c + \sqrt{c^2 - a^2 - b^2})}$$

and

$$\int_{-\pi}^{\pi} \frac{\sin \theta}{a \cos \theta + b \sin \theta + c} d\theta = -\frac{2\pi b}{\sqrt{c^2 - a^2 - b^2}(c + \sqrt{c^2 - a^2 - b^2})}.$$

We already saw that

$$\int_{-\pi}^{\pi} \frac{1}{a\cos\theta + b\sin\theta + c} d\theta = \frac{2\pi}{\sqrt{c^2 - a^2 - b^2}}$$

By linearity,

$$\int_{-\pi}^{\pi} \frac{A\cos\theta + B\sin\theta + C}{a\cos\theta + b\sin\theta + c} d\theta = 2\pi \frac{-Aa - Bb + C(c + \sqrt{c^2 - a^2 - b^2})}{\sqrt{c^2 - a^2 - b^2}(c + \sqrt{c^2 - a^2 - b^2})}.$$

Another way to write this is

$$\int_{-\pi}^{\pi} \frac{A\cos\theta + B\sin\theta + C}{a\cos\theta + b\sin\theta + c} d\theta = 2\pi \frac{Cc - Aa - Bb + Cc\sqrt{1 - a^2/c^2 - b^2/c^2}}{c^2 - a^2 - b^2 + c^2\sqrt{1 - a^2/c^2 - b^2/c^2}}.$$

This form has the advantage that it works for c < 0 as well, since it is unchanged on switching the signs of A, B, C, a, b and c. A useful check on this result is the fact that we get the correct answer, 2π , when A = a, B = b and C = c.

2. Evaluate

$$\sum_{-\infty}^{\infty} \frac{1}{1+n^2}$$

by contour integration.

Hint: Consider the integral of the function

$$f(z) = \pi \cot(\pi z)(1+z^2)^{-1}$$
.

on a square centred at 0 with side length an odd integer.

Solution: Since $\pi \cot(\pi z)$ has simple poles of residue 1 at the integers, f has simple poles at n with residue $(n^2+1)^{-1}$, by the division formula for residues. The other two poles are at the zeroes of z^2+1 , i.e. at $\pm i$. By the limit formula,

$$\operatorname{Res}_{z=\pm i}(z^2+1)^{-1} = \lim_{z\to\pm i}(z-\pm i)(z^2+1)^{-1} = \mp i2.$$

By the multiplication formula,

$$\operatorname{Res}_{z=\pm i} f(z) = \pi \cot(\pi \pm i) \operatorname{Res}_{z=\pm i} (z^2 + 1)^{-1} = -\frac{\pi}{2} \coth \pi$$

By the Cauchy Residue formula,

$$\int_{\gamma_N} f(z) dz = 2\pi i \sum \text{Res } z = w f(z)$$

where γ_N , is the square contour of side length 2N+1 referred to in the hint and the sum is over all poles inside this square. From the residues already computed,

$$\int_{\gamma_N} f(z) dz = 2\pi i \left(\sum_{-N}^{N} \frac{1}{n^2 + 1} - \pi \coth \pi \right)$$

or

$$\sum_{-N}^{N} \frac{1}{n^2 + 1} = \pi \coth \pi + \frac{1}{2\pi i} \int_{\gamma_N} f(z) \, dz.$$

On $[\gamma_N]$,

$$(z^2+1)^{-1} \le ((N+\frac{1}{2})^2-1)^{-1}$$

and

$$\pi \cot(\pi z) \le \pi \coth(3\pi/2)$$

SO

$$\max_{[\gamma_N]} \le pi \coth(3\pi/2)((N + \frac{1}{2})^2 - 1)^{-1}.$$

since the contour is of length 4N+2,

$$\left| \frac{1}{2\pi i} \int_{\gamma_N} f(z) \, dz \right| \le \coth(3\pi/2) \frac{2N+1}{(N+\frac{1}{2})^2 - 1}$$

SO

$$\lim_{N \to \infty} \frac{1}{2\pi i} \int_{\gamma_N} f(z) \, dz = 0$$

and

$$\sum_{-\infty}^{\infty} \frac{1}{n^2 + 1} = \pi \coth \pi.$$

3. Show that the function

$$u(x,y) = \sum_{j=0}^{n/2} (-1)^j \frac{n!}{(2j)!(n-2j)!} x^{n-2j} y^{2j}$$

is harmonic. By a theorem proved in class, there is a holomorphic function f such that u(x,y) is the real part of f(x+iy). Find f. Solution: Repeated differentiation shows that

$$\frac{\partial u}{\partial x}(x,y) = \sum_{j=0}^{(n-1)/2} (-1)^j \frac{n!}{(2j)!(n-2j-1)!} x^{n-2j-1} y^{2j},$$

$$\frac{\partial^2 u}{\partial x^2}(x,y) = \sum_{j=0}^{(n-2)/2} (-1)^j \frac{n!}{(2j)!(n-2j-2)!} x^{n-2j-2} y^{2j},$$

$$\frac{\partial u}{\partial y}(x,y) = \sum_{j=1}^{n/2} (-1)^j \frac{n!}{(2j-1)!(n-2j)!} x^{n-2j} y^{2j-1}$$

and

$$\frac{\partial u^2}{\partial y^2}(x,y) = \sum_{j=1}^{n/2} (-1)^j \frac{n!}{(2j-2)!(n-2j)!} x^{n-2j} y^{2j-2}.$$

We now change the index of summation, replacing j by k in the sum for $\partial^2 u/\partial x^2$ and by k+1 in the sum for $\partial^2 u/\partial y^2$.

$$\frac{\partial^2 u}{\partial x^2}(x,y) = \sum_{k=0}^{(n-2)/2} (-1)^k \frac{n!}{(2k)!(n-2k-2)!} x^{n-2k-2} y^{2k},$$

and

$$\frac{\partial u^2}{\partial y^2}(x,y) = -\sum_{k=0}^{(n-2)/2} (-1)^k \frac{n!}{(2k)!(n-2k-2)!} x^{n-2k-2} y^{2k},$$

SO

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial u^2}{\partial y^2}(x, y) = 0.$$

It's possible to find f by guessing. A more systematic method is to find v from the Cauchy-Riemann equations.

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

SO

$$\frac{\partial v}{\partial y} = \sum_{j=0}^{(n-1)/2} (-1)^j \frac{n!}{(2j)!(n-2j-1)!} x^{n-2j-1} y^{2j}.$$

This can be true only if

$$v(x,y) = \sum_{j=0}^{(n-1)/2} (-1)^j \frac{n!}{(2j+1)!(n-2j-1)!} x^{n-2j-1} y^{2j+1} + \varphi(x).$$

for some function ϖ of one variable. Then

$$\frac{\partial v}{\partial x} = \sum_{j=0}^{(n-2)/2} (-1)^j \frac{n!}{(2j+1)!(n-2j-2)!} x^{n-2j-2} y^{2j+1} + \varphi'(x).$$

But

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = -\sum_{j=1}^{n/2} (-1)^j \frac{n!}{(2j-1)!(n-2j)!} x^{n-2j} y^{2j-1}.$$

Changing the index of summation as before,

$$\frac{\partial v}{\partial x} = -\sum_{k=0}^{(n-2)/2} (-1)^k \frac{n!}{(2k+1)!(n-2k-2)!} x^{n-2k-2} y^{2k+1}.$$

Comparing the two, we see that $\varphi'(x) = 0$, so φ is constant. Thus

$$v(x,y) = \sum_{j=0}^{(n-1)/2} (-1)^j \frac{n!}{(2j+1)!(n-2j-1)!} x^{n-2j-1} y^{2j+1} + \varphi.$$

Then

$$\begin{split} f(x+iy) &= u(x,y) + iv(x,y) \\ &= \sum_{j=0}^{n/2} (-1)^j \frac{n!}{(2j)!(n-2j)!} x^{n-2j} y^{2j} \\ &+ i \sum_{j=0}^{(n-1)/2} (-1)^j \frac{n!}{(2j+1)!(n-2j-1)!} x^{n-2j-1} y^{2j+1} + \varphi. \end{split}$$

This is correct, but not very enlightening. It becomes a bit clearer if we write $(-1)^j$ as i^{2j} ,

$$f(x+iy) = \sum_{j=0}^{n/2} \frac{n!}{(2j)!(n-2j)!} x^{n-2j} (iy)^{2j}$$
$$\sum_{j=0}^{(n-1)/2} \frac{n!}{(2j+1)!(n-2j-1)!} x^{n-2j-1} (iy)^{2j+1} + \varphi.$$

In both cases the summands are of the form

$$\frac{n!}{k!(n-k)!}x^{n-k}(iy)^k.$$

In the first sum k=2j, where $0 \le j \le n/2$, so k is an even integer between 0 and n. In the second k=2j+1, where $0 \le j \le (n-1)/2$, so k is an odd integer between 0 and n. Combining, we get a sum over all integers between 0 and n,

$$f(x+iy) = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} x^{n-k} (iy)^k + \varphi.$$

By the binomial theorem,

$$f(x+iy) = (x+iy)^n + \varphi$$

or

$$f(z) = z^n + \varphi.$$

Since we are just asked for a single f, we can take $\varphi = 0$ if we want.