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1. Evaluate
∫ π

−π

A cos θ + B sin θ + C

a cos θ + b sin θ + c
dθ

by contour integration, where a2 + b2 < c2.
Solution: First note that c 6= 0, so c < 0 or c > 0. There is no need to
consider c < 0, since the integral is obviously unchanged by switching
the signs of A, B, C, a, b and c.

In lecture we computed

∫ π

−π

1

a cos θ + b sin θ + c
dθ =

2π√
c2 − a2 − b2

by integrating 2i
(a−ib)z2+2cz+(a+ib)

over the path

γ(θ) = eiθ − π ≤ θ ≤ π.

The most straightforward approach would be to solve the present prob-
lem by the same method, i.e. to choose f so that the desired integral
is

∫

f(z) dz:

f(z) = − i

z

(A − iB)z2 + 2Cz + (A − iB)

(a − ib)z2 + 2cz + (a + ib)
.

This will work, but it is unnecessarily complicated. In addition to
having six parameters to deal with, the integrand f has three poles, of
which two within the unit circle.
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It is possible to simplify the argument somewhat by forgetting arbitrary
A, B and C for the moment and concentrating on the special case
A = 1, B = i and C = 0. For this we need the integrand

f(z) =
−2iz

(a − ib)z2 + 2cz + (a + ib)
.

With this choice of f and γ,

γ′(θ) = ieiθ = i(cos θ + i sin θ)

and

f(γ(θ)) =
−2ieiθ

(a − ib)e2iθ + 2ceiθ + (a + ib)

=
−2i

(a − ib)eiθ + 2c + (a + ib)e−iθ

=
−2i

a(eiθ + e−iθ) + 2c + b(−ieiθ + ie−iθ)

=
−i

a cos θ + b sin θ + c
so

f(γ(θ))γ′(θ) =
cos θ + i sin θ

a cos θ + b sin θ + c

and
∫

γ
f(z) dz =

∫ π

−π

cos θ + i sin θ

a cos θ + b sin θ + c
dθ.

Of course, f was chosen specifically to make this true. By the Cauchy
Residue Theorem,

∫

γ
f(z) dz = 2πi Res

z=w
f(z)

where w is the pole of f inside the unit circle. The path gamma has
winding number 0 about the other pole, so that pole has no contribution
to the sum. As shown in lecture,

w =
−c +

√
c2 − a2 − b2

a − ib

and

Res
z=w

2

(a − ib)z2 + 2cz + (a + ib)
= − 1√

c2 − a2 − b2
.

From the multiplication theorem for simple poles,

Res
z=w

f(z) =
iw√

c2 − a2 − b2
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and hence

∫ π

−π

cos θ + i sin θ

a cos θ + b sin θ + c
dθ =

2πw√
c2 − a2 − b2

.

A little algebra shows that

w = − a + ib

c +
√

c2 − a2 − b2

so

∫ π

−π

cos θ + i sin θ

a cos θ + b sin θ + c
dθ = − 2π(a + ib)√

c2 − a2 − b2(c +
√

c2 − a2 − b2)
.

The real part of the integral is the integral of the real part, and similarly
for the imaginary part, so

∫ π

−π

cos θ

a cos θ + b sin θ + c
dθ = − 2πa√

c2 − a2 − b2(c +
√

c2 − a2 − b2)

and

∫ π

−π

sin θ

a cos θ + b sin θ + c
dθ = − 2πb√

c2 − a2 − b2(c +
√

c2 − a2 − b2)
.

We already saw that

∫ π

−π

1

a cos θ + b sin θ + c
dθ =

2π√
c2 − a2 − b2

By linearity,

∫ π

−π

A cos θ + B sin θ + C

a cos θ + b sin θ + c
dθ = 2π

−Aa − Bb + C(c +
√

c2 − a2 − b2)√
c2 − a2 − b2(c +

√
c2 − a2 − b2)

.

Another way to write this is

∫ π

−π

A cos θ + B sin θ + C

a cos θ + b sin θ + c
dθ = 2π

Cc − Aa − Bb + Cc
√

1 − a2/c2 − b2/c2

c2 − a2 − b2 + c2
√

1 − a2/c2 − b2/c2)
.

This form has the advantage that it works for c < 0 as well, since it
is unchanged on switching the signs of A, B, C, a, b and c. A useful
check on this result is the fact that we get the correct answer, 2π, when
A = a, B = b and C = c.
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2. Evaluate
∞
∑

−∞

1

1 + n2

by contour integration.
Hint: Consider the integral of the function

f(z) = π cot(πz)(1 + z2)−1.

on a square centred at 0 with side length an odd integer.
Solution: Since π cot(πz) has simple poles of residue 1 at the integers,
f has simple poles at n with residue (n2 +1)−1, by the division formula
for residues. The other two poles are at the zeroes of z2 +1, i.e. at ±i.
By the limit formula,

Res
z=±i

(z2 + 1)−1 = lim
z→±i

(z −±i)(z2 + 1)−1 = ∓i2.

By the multiplication formula,

Res
z=±i

f(z) = π cot(π ± i) Res
z=±i

(z2 + 1)−1 = −π

2
coth π

By the Cauchy Residue formula,
∫

γN

f(z) dz = 2πi
∑

Res z = wf(z)

where γN , is the square contour of side length 2N +1 referred to in the
hint and the sum is over all poles inside this square. From the residues
already computed,

∫

γN

f(z) dz = 2πi





N
∑

−N

1

n2 + 1
− π coth π





or
N

∑

−N

1

n2 + 1
= π coth π +

1

2πi

∫

γN

f(z) dz.

On [γN ],

(z2 + 1)−1 ≤ ((N +
1

2
)2 − 1)−1

and
π cot(πz) ≤ π coth(3π/2)

so

max
[γN ]

≤ pi coth(3π/2)((N +
1

2
)2 − 1)−1.
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since the contour is of length 4N + 2,

∣

∣

∣

∣

1

2πi

∫

γN

f(z) dz
∣

∣

∣

∣

≤ coth(3π/2)
2N + 1

(N + 1
2
)2 − 1

so

lim
N→∞

1

2πi

∫

γN

f(z) dz = 0

and
∞
∑

−∞

1

n2 + 1
= π coth π.

3. Show that the function

u(x, y) =
n/2
∑

j=0

(−1)j n!

(2j)!(n − 2j)!
xn−2jy2j

is harmonic. By a theorem proved in class, there is a holomorphic
function f such that u(x, y) is the real part of f(x + iy). Find f .
Solution: Repeated differentiation shows that

∂u

∂x
(x, y) =

(n−1)/2
∑

j=0

(−1)j n!

(2j)!(n − 2j − 1)!
xn−2j−1y2j,

∂2u

∂x2
(x, y) =

(n−2)/2
∑

j=0

(−1)j n!

(2j)!(n − 2j − 2)!
xn−2j−2y2j,

∂u

∂y
(x, y) =

n/2
∑

j=1

(−1)j n!

(2j − 1)!(n − 2j)!
xn−2jy2j−1

and
∂u2

∂y2
(x, y) =

n/2
∑

j=1

(−1)j n!

(2j − 2)!(n − 2j)!
xn−2jy2j−2.

We now change the index of summation, replacing j by k in the sum
for ∂2u/∂x2 and by k + 1 in the sum for ∂2u/∂y2.

∂2u

∂x2
(x, y) =

(n−2)/2
∑

k=0

(−1)k n!

(2k)!(n − 2k − 2)!
xn−2k−2y2k,

and

∂u2

∂y2
(x, y) = −

(n−2)/2
∑

k=0

(−1)k n!

(2k)!(n − 2k − 2)!
xn−2k−2y2k,
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so
∂2u

∂x2
+

∂u2

∂y2
(x, y) = 0.

It’s possible to find f by guessing. A more systematic method is to
find v from the Cauchy-Riemann equations.

∂u

∂x
=

∂v

∂y

so
∂v

∂y
=

(n−1)/2
∑

j=0

(−1)j n!

(2j)!(n − 2j − 1)!
xn−2j−1y2j.

This can be true only if

v(x, y) =
(n−1)/2

∑

j=0

(−1)j n!

(2j + 1)!(n − 2j − 1)!
xn−2j−1y2j+1 + ϕ(x).

for some function ̟ of one variable. Then

∂v

∂x
=

(n−2)/2
∑

j=0

(−1)j n!

(2j + 1)!(n − 2j − 2)!
xn−2j−2y2j+1 + ϕ′(x).

But

∂v

∂x
= −∂u

∂y
= −

n/2
∑

j=1

(−1)j n!

(2j − 1)!(n − 2j)!
xn−2jy2j−1.

Changing the index of summation as before,

∂v

∂x
= −

(n−2)/2
∑

k=0

(−1)k n!

(2k + 1)!(n − 2k − 2)!
xn−2k−2y2k+1.

Comparing the two, we see that ϕ′(x) = 0, so ϕ is constant. Thus

v(x, y) =
(n−1)/2

∑

j=0

(−1)j n!

(2j + 1)!(n − 2j − 1)!
xn−2j−1y2j+1 + ϕ.

Then

f(x + iy) = u(x, y) + iv(x, y)

=
n/2
∑

j=0

(−1)j n!

(2j)!(n − 2j)!
xn−2jy2j

+ i
(n−1)/2

∑

j=0

(−1)j n!

(2j + 1)!(n − 2j − 1)!
xn−2j−1y2j+1 + ϕ.
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This is correct, but not very enlightening. It becomes a bit clearer if
we write (−1)j as i2j ,

f(x + iy) =
n/2
∑

j=0

n!

(2j)!(n − 2j)!
xn−2j(iy)2j

(n−1)/2
∑

j=0

n!

(2j + 1)!(n − 2j − 1)!
xn−2j−1(iy)2j+1 + ϕ.

In both cases the summands are of the form

n!

k!(n − k)!
xn−k(iy)k.

In the first sum k = 2j, where 0 ≤ j ≤ n/2, so k is an even integer
between 0 and n. In the second k = 2j + 1, where 0 ≤ j ≤ (n − 1)/2,
so k is an odd integer between 0 and n. Combining, we get a sum over
all integers between 0 and n,

f(x + iy) =
n

∑

k=0

n!

k!(n − k)!
xn−k(iy)k + ϕ.

By the binomial theorem,

f(x + iy) = (x + iy)n + ϕ

or
f(z) = zn + ϕ.

Since we are just asked for a single f , we can take ϕ = 0 if we want.


