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1. It was shown in lecture that continuous functions on closed intervals
are always uniformly continuous. On open intervals, including infinite
intervals, this may not be true.

(a) Show that f(x) = x2 is not uniformly continuous on R.

(b) Show that g(x) = sin(x) is uniformly continuous on R.

Solution: To show that f is not uniformly continuous, we need to show
that there is a positive ǫ such that for all positive δ there are s and t
for which |s − t| < δ and |f(s) − f(t)| ≥ ǫ. It is easy to see that if
ǫ = 1, s = δ−1 + 1

3
δ and t = δ−1 − 1

3
δ then

|s − t| = 2δ/3 < δ

and
|f(s) − f(t)| = 4/3 ≥ 1.

To show that g is uniformly continuous, we need to show that for all
positive ǫ there is a positive δ such that for all s and t, if |s − t| < ǫ
then |g(s)− g(t)|. The mean value theorem for derivatives gives a u in
between s and t for which

g(s) − g(t) = (s − t)g′(u)

and hence
|g(s) − g(t)| = |s − t||g′(u)|.
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But g′(u) = cos(u), so
|g′(u)| ≤ 1

and
|g(s) − g(t)| ≤ |s − t|.

Taking δ = ǫ, |s − t| < δ then implies |g(s) − g(t)| < ǫ.

2. Compute, from the definition, the winding number of the path

γn,w(t) = exp(2πint) + w 0 ≤ t ≤ 1

about w, where n is an integer.
Solution: We need to find a path γ̃n,w such that

exp(γ̃n,w(t)) = γn,w(t) − w

for all t ∈ [0, 1], in other words, we need

exp(γ̃n,w(t)) = exp(2πint).

The obvious choice is
γ̃n,w(t) = 2πint.

The winding number is then

γ̃n,w(1) − γ̃n,w(0)

2πi
= n.

3. Compute the contour integral

∫
γn,w

dz

z − w

from the definition, where the path γn,w is the path defined in the
preceding problem.
Solution: By definition

∫
γn,w

dz

z − w
=

∫
1

0

γ′

n,w(t)

γn,w(t) − w
dt =

∫
1

0

2πin dt = 2πin.

4. Show that for any closed path γ and point w not on γ,

∫
γ

dz

z − w
= 2πin(γ, w).
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Solution: We choose, using the Path Lifting Theorem, a path γ̃w such
that

exp(γ̃w(t)) = γ(t) − w

for all t ∈ [a, b]. Differentiating using the chain rule,

exp′(γ̃w(t))γ̃′

w(t) = γ′(t).

or, since exp′ = exp,

exp(γ̃w(t))γ̃′

w(t) = γ′(t).

from which
γ′(t) = (γ(t) − w)γ̃′

w(t).

By definition, ∫
γ

dz

z − w
=

∫ b

a

γ′(t)

γ(t) − w
dt.

Substituting, using the Fundamental Theorem of the Calculus, and
then the definition of the winding number,

∫
γ

dz

z − w
=

∫ b

a
γ̃′(t) dt = γ̃(b) − γ̃(a) = 2πin(γ, w).


