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1. In lecture it was proved that if both
∑∞

j=0 aj and
∑∞

k=0 bk are absolutely

convergent then
∑∞

l=0 cl is convergent where cl =
∑l

j=0 ajbl−j, and that

∞
∑

l=0

cl =





∞
∑

j=0

aj





(

∞
∑

k=0

bk

)

.

Prove that
∑∞

l=0 cl converges absolutely.
Hint: The most straightforward way to prove this is to use the theorem
that every bounded increasing sequence of real numbers is convergent.
Solution: Saying that

∑∞
l=0 cl converges absolutely is the same as saying

that
∑∞

l=0 |cl| converges. This is a series with non-negative summands,
so the partial sums are an increasing sequence. Using the theorem
referred to in the hint, all we need to prove is that the partial sums are
bounded. But

n
∑

l=0

|cl| =
n
∑

l=0

∣

∣

∣

∣

∣

∣

l
∑

j=0

ajbl−j

∣

∣

∣

∣

∣

∣

≤
n
∑

l=0

l
∑

j=0

|aj ||bl−j|

=
∑

j+k≤n

|aj||bk|

by the triangle inequality. If j and k satisfy j + k ≤ n then j ≤ n and
k ≤ n. Adding further non-negative terms can only increase the sum,
so

n
∑

l=0

|cl| ≤
n
∑

j=0

|aj |
n
∑

k=0

|bk|.
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Since
∑∞

j=0 aj and
∑∞

k=0 bk are absolutely convergent, the partial sums
for

∑∞
j=0 |aj| and

∑∞
k=0 |bk| are convergent and hence bounded. In other

words, there are A and B such that

n
∑

j=0

|aj | ≤ A

and
n
∑

k=0

|bk| ≤ B

for all n. Then
n
∑

l=0

|cl| ≤ AB

for all n, so we are done.

2. There is a power series
∑∞

k=0 bkz
k such that

(exp(z) − 1)
∞
∑

n=0

bkz
k = z.

Find bk for k = 0, 1, . . . , 7.
Solution: We have an equation of the form

∞
∑

j=0

aj(z − w)j
∞
∑

k=0

bk(z − w)k =
∞
∑

l=0

cl(z − w)l

where w = 0,

aj =
{

0 if j = 0,
1/j! otherwise,

and

cl =
{

1 if l = 1,
0 otherwise.

By the theorem on multiplication of power series,

cl =
l
∑

j=0

ajbl−j

for all l. For l = 0 this gives only the useless equation 0 = 0. For l = 1
we get

b0 = 1.

For l > 1 we get

0 =
l
∑

j=0

ajbl−j = bl−1 +
l
∑

j=2

bl−j/j!.
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and hence

bl−1 = −
l
∑

j=2

bl−j/j!.

Applying this equation for j = 2, 3 . . . 8 gives

b1 = −1/2, b2 = 1/12, b4 = −1/720, b6 = 1/30240.

The remaining coefficients, b3, b5 and b7, are all zero.

3. Prove that for real y,

exp(iy) = cos(y) + i sin(y)

and that for real x and y,

exp(x + iy) = exp(x) cos(y) + i exp(x) sin(y).

Solution: The second equation follows immediately from the first and
the addition formula for the exponential function. To prove the first
equation we start from the definitions of the exponential and of infinite
series.

exp(iy) =
∞
∑

j=0

(iy)j

j!
= lim

n→∞

n
∑

j=0

(iy)j

j!

Now (iy)n = inyn and an easy induction shows that

in =

{

(−1)k if n = 2k,
(−1)ki if n = 2k + 1.

Thus

exp(iy) = lim
n→∞





∑

2k≤n

(−1)k y2k

(2k)!
+ i

∑

2k+1≤n

(−1)k y2k+1

(2k + 1)!



 .

We know that if ζn = ξn + iηn, with ξn and ηn real then ζ converges if
and only if ξ and η do, in which case

lim
n→∞

ζn = lim
n→∞

ξn + i lim
n→∞

ηn.

Applying this to

ξn =
∑

2k≤n

(−1)k y2k

(2k)!
, ηn =

∑

2k+1≤n

(−1)k y2k+1

(2k + 1)!
, ζn = ξn + iηn
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gives

exp(iy) =
∞
∑

k=0

(−1)k y2k

(2k)!
+ i

∞
∑

k=0

(−1)k y2k+1

(2k + 1)!
= cos(y) + i sin(y).

This proof is a bit long, but it avoids any worries about rearranging
the order of summation. Such a rearrangement is justified in this case
because the exponential series converges absolutely.

4. Prove the algebraic identity used in lecture

(s − w)n − (z − w)n = n(s − z)(z − w)n−1

+(s − z)2

n−2
∑

k=0

(n − k − 1)(s − w)k(z − w)n−k−2.

Hint: Start with the special case w = 0. Use induction, possibly more
than once.
Solution: As the hint suggests, we start from the special case w = 0,
that is

sn − zn = n(s − z)zn−1 + (s − z)2

n−2
∑

k=0

(n − k − 1)skzn−k−2.

There are several ways to prove this, some easier than others, but all
use induction at some stage. The easiest is probably to start with the
simpler equation

sn − zn = (s − z)
n−1
∑

j=0

sjzn−j−1.

This is certainly true for n = 0, in which case the sum on the left is
empty. If it’s true for some n then

sn+1 − zn+1 = sn(s − z) + (sn − zn)z

= (s − z)sn + (s − z)





n−1
∑

j=0

sjzn−j−1



 z

= (s − z)sn + (s − z)





n−1
∑

j=0

sjzn−j





= (s − z)



sn +
n−1
∑

j=0

sjzn−j





= (s − z)
n
∑

j=0

sjzn−j .
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Thus

sn+1 − zn+1 = (s − z)
n
∑

j=0

sjzn−j ,

the equation we started from, with n+1 in place of n. The equation is
thus true by induction for all n. It’s still not what we wanted to prove,
however. Next, sj = (sj − zj) + zj , so

sn − zn = (s − z)
n−1
∑

j=0

sjzn−j−1

= (s − z)
n−1
∑

j=0

(sj − zj)zn−j−1 + (s − z)
n−1
∑

j=0

zjzn−j−1.

The second sum on the right is has n terms, each equal to zn−1, so

sn − zn = n(s − z)zn−1 + (s − z)
n−1
∑

j=0

(sj − zj)zn−j−1.

We already know that

sj − zj = (s − z)
j−1
∑

k=0

skzj−k−1,

so

sn − zn = n(s − z)zn−1 + (s − z)2

n−1
∑

j=0

j−1
∑

k=0

skzn−k−2.

We then reverse the order of summation. The possible values of j and
k are given by the inequalities 0 ≤ k < j < n, so k ranges from 0 to
n − 2 and j from k + 1 to n − 1,

sn − zn = n(s − z)zn−1 + (s − z)2

n−2
∑

k=0

n−1
∑

j=k+1

skzn−k−2.

The inner sum has n − k − 1 identical terms, so we are left with

sn − zn = n(s − z)zn−1 + (s − z)2

n−2
∑

k=0

(n − k − 1)skzn−k−2.

This holds for all complex s and z. We may therefore substitute for s
and z any complex expressions. In particular, we may substitute s−w
and z − w. Doing so gives the equation we were seeking to prove.


