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Φ+ and composition
For functions we have (g ◦ f )∗ = f ∗ ◦ g∗. What about correspondences? Do we have
(G ◦ F )+ = F+ ◦ G+?
x ∈ F+(U) means F (x) ⊂ U, which means that for all y, if y ∈ F (x) then y ∈ U.
In logical notation,

∀y : y ∈ F (x) → y ∈ U.

Similarly, y ∈ G+(V ) is, in logical notation,

∀z : z ∈ G(y) → z ∈ V .

Taking U = G+(V ) we find that x ∈ F+(G+(V )) means

∀y : y ∈ F (x) → y ∈ G+(V ),

or, in view of what we said earlier about G+(V ),

∀y : y ∈ F (x) → (∀z : z ∈ G(y) → z ∈ V ) .



Φ+ and composition, continued

Replacing U with V and F with G ◦ F in our first equivalence we get that
x ∈ (G ◦ F )+(V ) is equivalent to

∀z : z ∈ (G ◦ F )(x) → z ∈ V .

The definition of composition of correspondences was that z ∈ (G ◦ F )(x) means

∃y : y ∈ F (x) ∧ z ∈ G(y)

Substituting, x ∈ (G ◦ F )+(V ) is equivalent to

∀z : (∃y : y ∈ F (x) ∧ z ∈ G(y)) → z ∈ V

Is this equivalent to

∀y : y ∈ F (x) → (∀z : z ∈ G(y) → z ∈ V )?



Φ+ and composition, conclusion

We’ve seen that x ∈ F+(G+(V ) means

∀y : p(x, y) → (∀z : q(y, z) → r(z)) ,

while x ∈ (G ◦ F )+(V ) is equivalent to

∀z : (∃y : p(x, y) ∧ q(y, z)) → r(z),

where
p(x, y) = y ∈ F (x), q(y, z) = z ∈ G(y), r(z) = z ∈ V .

Are these two statements equivalent?
Yes, no matter what statements are represented by p(x, y), q(y, z), and r(z).
This is an exercise in first order logic. I’ll do it on the next slide.
It follows that (G ◦ F )+ = F+ ◦ G+.
From this it follows that the composition of upper hemicontinuous correspondences is
upper hemicontinuous.



First order logic

The following statements are all equivalent

∀z : (∃y : p(x, y) ∧ q(y, z)) → r(z)
∀z : ¬ (∃y : p(x, y) ∧ q(y, z)) ∨ r(z)
∀z : ∀y : ¬ (p(x, y) ∧ q(y, z)) ∨ r(z)
∀z : ∀y : ¬p(x, y) ∨ ¬q(y, z) ∨ r(z)
∀z : ∀y : ¬p(x, y) ∨ q(y, z) → r(z)
∀z : ∀y : p(x, y) → q(y, z) → r(z)
∀y : ∀z : p(x, y) → q(y, z) → r(z)
∀y : p(x, y) → (∀z : q(y, z) → r(z))



Φ− and composition

We can do the same thing with Φ−. It turns out that x /∈ F−(G−(V ) means

∀y : p(x, y) → (∀z : q(y, z) → r(z)) ,

while x /∈ (G ◦ F )+(V ) is equivalent to

∀z : (∃y : p(x, y) ∧ q(y, z)) → r(z),

where
p(x, y) = y /∈ F (x), q(y, z) = z /∈ G(y), r(z) = z /∈ V .

From the same bit of first order logic it follows that (G ◦ F )− = F− ◦G− and thus that
the composition of lower hemicontinuous correspondences is lower hemicontinuous.



Graphs of functions

Lemma 2.7 Let X and Y be subsets of Rn and Rm respectively, and let ϕ : X → Y
be a function from X to Y . Suppose that ϕ : X → Y is continuous. Then the graph
Graph(ϕ) of the function ϕ is closed in X × Y .
There are multiple ways to prove this. For example, Graph(ϕ) = ψ∗({0}), where
ψ(x, y) = y − ϕ(x).
ψ is continuous and {0} is closed. The preimage of a closed set under a continuous
function is closed.
Alternatively, suppose (x, y) belongs to the complement of Graph(ϕ) in X × Y , i.e
that y 6= ϕ(x).
Y is Hausdorff, so there are disjoint open neighbourhoods U and V of ϕ(x) and y in Y .
Then ϕ∗(U)× V is an open neighourhood of (x, y) which is contained in the
complement of Graph(ϕ) in X × Y .
Since every point in the complement of the graph has such an open neighbourhood the
complement is open, which means the graph is closed.
X and Y don’t need to be subsets of Rn and Rm; Y just needs to be Hausdorff.



Graphs of functions, continued
Corollary 2.13 Let X and Y be subsets of Rn and Rm respectively, and let
ϕ : X → Y be a function from X to Y . Suppose that the graph Graph(ϕ) of the
function ϕ is closed in X × Y . Suppose also that Y is a compact subset of Rm. Then
the function ϕ : X → Y is continuous.
In the notes this is a corollary to Propositions 2.11 and 2.12 on correspondences but
we can proved it directly.
Suppose V is an open subset of Y and x ∈ ϕ∗(V ), so ϕ(x) ∈ V .
Let K be the complement of V in Y and let O be the complement of Graph(ϕ) in
X × Y . Then O is open and K is closed. In fact K is compact, since it is a closed
subset of a compact set.
For each y ∈ K we have (x, y) ∈ O since y 6= ϕ(x). Now O is open so there are open
neighbourhoods U and W of x and y in X and Y such that U × W ⊂ O.
Each y ∈ K belongs to some such W so they form an open cover of K .
K is compact so we can find a finite subcover. In other words, there are
neighbourhoods U1, . . . ,Ul of x in X and open sets W1, . . . ,Wl in Y such that for all j
we have Uj × Wj ⊂ O. Let U =

⋂l
j=1 Uj and W =

⋃l
j=1 Wj .



Proof of Corollary 2.13, continued

Let U =
⋂l

j=1 Uj and W =
⋃l

j=1 Wj .
U is an open neighbourhood of x and K ⊂ W .
Suppose q = ϕ(p), i.e. that (p,q) ∈ Graph(ϕ), where p∈U.
Then p ∈ Uj for all j,
Now O is the complement of Graph(ϕ) so (p,q) /∈ O.
Uj × Wj ⊂ O so (p,q) /∈ Uj × Wj , but p ∈ Uj so q /∈ Wj .
Now K ⊂ W and W = ∪l

j=1Wj so q /∈ K . But K is the complement of V so q ∈ V .
In other words, ϕ(p) ∈ V , so p ∈ ϕ∗(V ).
So if p ∈ U then p ∈ ϕ∗(V ), which means U ⊂ ϕ∗(V ).
So every point x ∈ ϕ∗(V ) has a neighbourhood U contained in ϕ∗(V ) and therefore
ϕ∗(V ) is open.
This is true for all open V so ϕ is continuous. This completes the proof of Corollary
2.13.
X and Y don’t need to be subsets of Rn and Rm; Y just needs to be compact.



Graphs of correspondences

A correspondence Φ: X ⇒ Y is a function from X to P(Y ) so its graph should be the
set of points (x,Φ(y)) in X × P(Y ).
Unfortunately this is not what people mean by the term. Instead they mean

Graph(F ) = {(x, y) ∈ X × Y : y ∈ F (x)} .

As discussed previously, every correspondence from X to Y corresponds to a relation
between X and Y , i.e. to a subset of the product X × Y . The graph, as defined
above, is that relation, just as the usual graph of a function is the function.



Hemicontinuity and closed graphs
Proposition 2.11 Let X and Y be subsets of Rn and Rm respectively, and let
Φ: X ⇒ Y be a correspondence from X to Y . Suppose that Φ(x) is closed in Y for
every x ∈ X. Suppose also that Φ: X ⇒ Y is upper hemicontinuous. Then the graph
Graph(Φ) of Φ: X ⇒ Y is closed in X × Y .
The only property of Y we need is that it is regular, i.e. that any point and any closed
set not containing it can be separated by closed sets. All subsets of Euclidean space
are regular.
Suppose (x, y) belongs to the complement of Graph(Φ) in X × Y , i.e that y /∈ Φ(x).
Y is regular and Φ(x) is closed so there are disjoint open sets U and V in Y with
Φ(x) ⊂ U and y ∈ V .
Then Φ+(U)× V is an open neighourhood of (x, y).
If (p,q) ∈ Φ+(U)× V then p ∈ Φ+(U) so Φ(p) ⊂ U.
q ∈ V and U and V are disjoint so q /∈ Φ(p).
Thus Φ+(U)× V is contained in the complement of Graph(Φ) in X × Y .
Since every point in the complement of the graph has such an open neighbourhood the
complement is open, which means the graph is closed.



Hemicontinuity and closed graphs, continued

Proposition 2.12 Let X and Y be subsets of Rn and Rm respectively, and let
Φ: X ⇒ Y be a correspondence from X to Y . Suppose that the graph Graph(Φ) of
the correspondence Φ is closed in X × Y . Suppose also that Y is a compact subset of
Rm. Then the correspondence Φ: X ⇒ Y is upper hemicontinuous.
Suppose V is an open subset of Y and x ∈ Φ+(V ), so Φ(x) ⊂ V .
Let K be the complement of V in Y and let O be the complement of Graph(Φ) in
X × Y . Then O is open and K is closed, and in fact compact.
For each y ∈ K we have (x, y) ∈ O since y /∈ Φ(x). Now O is open so there are open
neighbourhoods U and W of x and y in X and Y such that U × W ⊂ O.
Each y ∈ K belongs to some such W so they form an open cover of K .
K is compact so we can find a finite subcover. In other words, there are
neighbourhoods U1, . . . ,Ul of x in X and open sets W1, . . . ,Wl in Y such that for all j
we have Uj × Wj ⊂ O. Let U =

⋂l
j=1 Uj and W =

⋃l
j=1 Wj .

U is an open neighbourhood of x and K ⊂ W .
Suppose q ∈ Φ(p), i.e. that (p,q) ∈ Graph(Φ), where p∈U. Then p ∈ Uj for all j.



Proof of Proposition 2.12, continued

O is the complement of Graph(Φ) so (p,q) /∈ O.
Uj × Wj ⊂ O so (p,q) /∈ Uj × Wj , but p ∈ Uj so q /∈ Wj .
Now K ⊂ W and W = ∪l

j=1Wj so q /∈ K . But K is the complement of V so q ∈ V .
This holds for all q ∈ Φ(p), so Φ(p) ⊂ V . In other words, p ∈ Φ+(V ).
So if p ∈ U then p ∈ Φ+(V ), which means U ⊂ Φ+(V ).
So every point x ∈ Φ+(V ) has a neighbourhood U contained in Φ+(V ) and therefore
ϕ+(V ) is open.
This holds for all open V so Φ is continuous, completing the proof of Proposition 2.12.


