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Recap of closed Leontieff model

Dramatis personae
- a production matrix A, with aij ≥ 0 being the amount of good i consumed in the
production of good j
- bundles of goods, represented by column vectors with non-negative entries
- sets of prices, also represented by column vectors with non-negative entries
The story so far:
- We considered an equilibrium production problem, with given surpluses.
- We considered a profit maximisation problem, with given prices.
Which industries are profit maximising depends on the prices.



Another problem

Let q � 0 be a market basket of goods.
For any set of prices p > 0 we can calculate the total value of the bundle, p · q.
We can also calculate the fraction of this value represented by the i ’t good:

si =
piqi
p · q .

These satisfy the conditions
∑n

i=1 si = 1, s1 ≥ 0, . . . , sn ≥ 0.
To produce these goods costs p · r, where r = Aq.
The fraction of the cost used by making good i is

ti =
qi
∑n

j=1 ajipj

p · r .

These satisfy the conditions
∑n

i=1 ti = 1, t1 ≥ 0, . . . , tn ≥ 0.
The t’s depend continuously on the p’s, and hence on the s’s.
We have a continuous function from a simplex to itself. Does it have a fixed point?



Fixed points

Suppose the function on the previous slide has a fixed point, i.e. there is a p such that
ti = si for all i .
Then

piqi
p · q = si = ti =

qi
∑n

j=1 ajipj

p · r ,

∑n
j=1 ajipj

pi
= λ,

where λ = p·r
p·q is independent of i .∑n

j=1 ajipj = λpi in vector form is just AT p = λp, the eigenvector equation.
It didn’t really matter which q we chose, as long as all entries are positive.
Note that if AT p = λp then p · r = p · Aq = AT p · q = λp · q so

p · (q − r)
p · r =

1 − λ

λ

is independent of q, i.e. at prices prices p the rate of return is the same for all
investments.



Topology

Question: Is it true that every continuous function from the simplex
∑n

i=1 si = 1,
s1 ≥ 0 . . . , sn ≥ 0 to itself has a fixed point?
The Brouwer fixed point theorem any continuous function from a compact convex
subset of Euclidean space to itself has a fixed point. Unfortunately its proof is hard.
We can do the case n = 2 without Brouwer. The set is a line segment, so it’s enough
to prove that any continuous function from a closed interval to itself has a fixed point.
Suppose f : [a, b] → [a, b] is continuous. Let g(x) = x − f (x). Then g(a) ≤ 0 and
g(b) ≥ 0 so by the intermediate value theorem there is an x ∈ [a, b] with g(x) = 0.
The intermediate value theorem has a constructive proof. We can find the fixed point
by the method of bisection.
The Brouwer fixed point theorem has no constructive proof. In higher dimensions there
is no algorithm for finding the fixed point.
Brouwer spent most of his career trying, and mostly failing, to convince people not to
believe his theorem.



Back to economics

Let’s assume the Brouwer fixed point theorem for now. We’ll prove it later.
Then for any production matrix A > O there is a price vector p > 0 such that at prices
p production of all goods are equally profitable.
If we strengthen the hypotheses, e.g. to A � O then we can show that this vector is
unique up to multiplication by a positive scalar.
Taking transposes, there’s also a special bundle of goods. I’ll leave its economic
interpretation as an exercise.



David Wilkins’ notes

We’ll mostly be following David Wilkins’ notes, a copy of which you can find on the
module webpage.
Chapter I is a review of multivariable calculus, almost all of which you will have seen.
You’re responsible for reading that on your own, but I’ll highlight the following three
theorems:
Theorem 1.2 (Multidimensional Bolzano-Weierstrass Theorem) Every bounded
sequence of points in a Euclidean space has a convergent subsequence.
Theorem 1.17 (The Multidimensional Extreme Value Theorem) Let X be a
non-empty closed bounded set in Rm, and let f : X → R be a continuous real-valued
function defined on X. Then there exist points u and v of X such that
f (u) ≤ f (x) ≤ f (v) for all x ∈ X.
Theorem 1.21 (The Multidimensional Heine-Borel Theorem) A subset of
n-dimensional Euclidean space Rn is compact if and only if it is both closed and
bounded.



Functions
Question: What is a function?
According the official Leaving Cert maths curriculum document the concept of a
function involves a set of inputs, a set of possible outputs and a rule that assigns one
output to each input.
This is not how mathematicians use the word function.
Different rules can define the same function, e.g. add to itself or multiply by two.
Also, there exist functions for which there is no rule defining them.
Question: What is a function, for a mathematician?
A relation between two sets X and Y is a subset of the Cartesian product X × Y .
A function from X to Y is a relation such that for every x ∈ X there is a unique y ∈ Y
such that (x , y) satisfies, i.e. is a member of, the relation.
There are plenty of interesting relations which are not functions. For example x ≤ y
defines a relation between R and itself.
Functions are important enough that we have a special notation for them. If f is a
function then we write f (x) for the unique y mentioned above.
For a mathematician, functions are graphs!



Example
Consider a linear function

∑n
j=0 cjsj on the standard n-dimensional simplex

∆ =

(s0, . . . , sn) ∈ Rn+1 :
n∑

j=0
sj = 1, s0 ≥ 0, . . . , sn ≥ 0

 .

Really this function is the set of pairs
(
(s0, . . . , sn),

∑n
j=0 cjsj

)
, but usually we don’t

think of it that way.
For any (c0, . . . , cn) ∈ Rn there is a unique maximum value of the corresponding linear
function on the simplex ∆. Why?
This follows from the multidimensional extreme value theorem.
So there’s a function m from Rn+1 to R such that

m((c0, . . . , cn)) = max
(s0,...,sn)∈∆

n∑
j=0

cjsj .

We saw last time that m((c0, . . . , cn)) = max{c0, . . . , cn}



Example, continued

With the same set up as on the previous slide we can set up a relation between Rn+1

and the simplex ∆ as the set of pairs (((c0, . . . , cn), (s0, . . . , sn)) for which (s0, . . . , sn)
is a maximiser of the function

∑n
j=0 cjsj , i.e. the ones such that

n∑
j=0

cjsj = m((c0, . . . , cn)).

A function from X to Y is a relation such that for every x ∈ X there is a unique y ∈ Y
such that (x , y) satisfies, i.e. is a member of, the relation. This relation is not a
function!
For each y there is at least one y such that (x , y) satisfies the relation (by the
multidimensional extreme value theorem again), but this y isn’t unique unless the c’s
are distinct.
So for talking about maximum problems we need both functions and relations.
Unfortunately people invented a third, entirely unnecessary, notion: correspondences!



Correspondences
For every set there is a power set, the set of its subsets. This is actually one of the
axioms of set theory. We denote the power set of X by P(X).
A correspondence from X to Y is a function from X to P(Y ).
For any relation f between sets X and Y we can define a correspondence F from X to
Y by saying F (x) = S where S is the set of all y ∈ Y such that the pair (x , y) satisfies
the relation f .
Conversely, for any correspondence F from X to Y we can define a relation f satisfied
by those pairs (x , y) such that y ∈ F (x).
It’s easy to see that if we go from a relation to a correspondence and then to a relation
in this way we get back the relation we started with, and similarly if go from a
correspondence to a relation and then to a correspondence.
You may have heard philosophers say entities must not be multiplied beyond necessity.
This is the sort of thing they mean.
Sometimes having two points of view on the same thing is useful, viz functions and
graphs. Is that the case for relations and correspendences? Mostly no.
Correspondences are more trouble than they’re worth.


