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1 Multi-indices

A multi-index α is just an m-tuple of non-negative integers (α1, . . . , αm) for
some positive integer m. The degree of α is defined to be

|α| =
m∑
i=1

αi.

The number of multi-indices of degree at most k is (m+k)!
m!k!

. Addition of multi-
indices is defined componentwise. In other words

α + β = γ

means
α1 + β1 = γ1, . . . , αm + βm = γm.

Multi-indices are useful for labeling repeated derivatives. We write(
∂

∂x

)α
or

∂|α|

∂xα

for (
∂

∂x1

)α1

· · ·
(

∂

∂xm

)αm

.
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If u is smooth then (
∂

∂x

)α (
∂

∂x

)β
=

(
∂

∂x

)α+β

.

We define î to be the multi-index whose i’th entry is 1 and all others are 0.
In other words, the one with

(
∂

∂x

)î
=

∂

∂xi
.

2 Prolongation of Functions

For the general theory we will use

Rm,n,k = Rm+n
(m+k)!
m!k!

for the space of k’th order jets of functions from Rm to Rn and xi, uj,α for
coordinates on Rm,n,k, where 1 ≤ i ≤ m, 1 ≤ j ≤ n and |α| ≤ k. If u:Rm to

Rn is smooth then pr(k) u is the function from Rm to Rn
(m+k)!
m!k! whose graph

is the subset of Rm,n,k where

uj,α =
∂|α|uj
∂xα

(x1, . . . , xm)

for all 1 ≤ j ≤ n and |α| ≤ k. Similar remarks apply to functions which are
defined only on open subsets of Rm. In what follows I’ll ignore that and just
treat the case of functions defined everywhere.

In concrete examples this leads to too many subscripts, so we use an al-
ternate notation, where the independent variables x1, . . . , xm and u1, . . . , un
each have single letter names without subscripts. The choice of those letters
depends on the applications. For example, for three dimensional incompress-
ible fluid flow the conventional choice is t, x, y, z for the independent variables,
representing time and space coordinates, and p, u, v, w for the pressure and
the components of velocity. In examples we also don’t use multi-indices but
rather list the corresponding variables in lexicographic order. So R4,4,2 would
have, with coordinates as in the example, coordinates t, x, y, z, p, u, v, w
and a further 36, including pt, uxy, vtz, etc. A simpler example would be
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m = 1, n = 1, k = 3, with independent variable x and dependent variable y.
The coordinates of the five dimensional space R1,1,3 would then be labeled
x, y, yx, yxx and yxxx. The prolongation pr(3) f of a function f would then
have graph

{(x, y, yx, yxx, yxxx) ∈ Rm,n,k: y = f(x), yx = f ′(x), yxx = f ′′(x), yxxx = f ′′′(x)}.

3 Total Derivatives

In addition to partial derivatives of a smooth function on Rm,n,k with re-
spect to the various coordinates on that space we have m total derivative
operators Di, which take such a function and produce smooth functions
on Rm,n,k+1. In terms of partial derivatives, these are defined by

Di =
∂

∂xi
+

n∑
j=1

∑
|α|≤k

uj,α+î

∂

∂uj,α
.

We use multi-index notation for repeated total differentiation,

Dα = Dα1
1 . . . Dαm

m ,

and we use variable names in place of indices in examples. The point of the
total derivative operator is that

(Dif)(x, pr(k+1) u(x)) =
d

dxi
f(x, pr(k) u(x)),

by the chain rule.
As an example, consider m = 1, n = 1, k = 1, with independent variable

x and dependent variable u. The coordinates on R1,1,1 are then x, u and ux.
Consider the function

f(x, u, ux) =
xux√
1 + u2

x

.

Its partial derivatives are
∂f

∂x
=

ux√
1 + u2

x

,

∂f

∂u
= 0
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and
∂f

∂ux
=

x

(1 + ux)3/2

so

(Dxf)(x, u, ux) =
ux√

1 + u2
x

+ uxx
x

(1 + ux)3/2
=
xuxx + u3

x + ux
(1 + ux)3/2

.

Applied to prolongations, this expresses the fact that

d

dx

xu′(x)√
1 + u′(x)2

=
xu′′(x) + u′(x)3 + u′(x)

(1 + u′(x)2)3/2

for any smooth function u.

4 Euler-Lagrange Equations

Total derivatives appear in the Euler-Lagrange equations, which are neces-
sary but not sufficient conditions for an integral of the form

L(u) =
∫

Ω
L(x, pr(k) u(x))

to be a minimum (or maximum) among functions whose values and deriva-
tives up to, but not including, order k are specified on ∂Ω. The equations
are ∑

|α|≤k
(−1)|α|

(
Dα ∂L

∂uj,α

)
(x, pr(2k) u(x)) = 0

for 1 ≤ j ≤ n.
This simplifies somewhat if some of m, n or k are small. If m = n = k = 1

we get simply
∂L

∂u
−Dx

∂L

∂ux
= 0.

For m = k = 1, n > 0, we get the system of n equations

∂L

∂u1

−Dx
∂L

∂u1,x

= 0, . . . ,
∂L

∂un
−Dx

∂L

∂un,x
= 0.
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For n = k = 1, m > 0, we get the single equation

∂L

∂u
−Dx1

∂L

∂ux1
· · · −Dxm

∂L

∂uxm
= 0.

For m = n = 1, k > 0 we get the single equation

∂L

∂u
−Dx

∂L

∂ux
+D2

x

∂L

∂uxx
− · · · = 0.

The series is not infinite but terminates after k + 1 terms.
As an example, consider m = n = 1, k = 2,

L(x, u, ux, uxx) = uxx + u2
x + u3.

The relevant derivatives are

∂L

∂u
= 3u2,

∂L

∂ux
= 2ux,

∂L

∂uxx
= 1,

Dx
∂L

∂ux
= 2uxx, Dx

∂L

∂uxx
= 0, D2

x

∂L

∂uxx
= 0.

Then the Euler-Lagrange equation is

∂L

∂u
−Dx

∂L

∂ux
+D2

x

∂L

∂uxx
= 3u2 − 2uxx = 0.

As the example above shows, the Euler-Lagrange equations of a k’th order
Lagrangian are of order at most 2k, but can be of lower order. The left hand
side can in fact be zero, in which case we call L a null Lagrangian. It can be
shown that this happens if and only if

DivP = L

where P = (P1, . . . , Pm) are functions on Rm,n,k−1 and the total divergence
is defined by

DivP =
m∑
i=1

DiPi.
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5 Derivation of the Euler-Lagrange Equations

Here is the sketch of a proof that the Euler-Lagrange Equations are necessary
for an extremum. Let ũ be a smooth functions on the Cartesian product of
an open interval containing 0 and Ω. Use s for the variable in the first factor
of that product and x for the second. Assume that ũ = u when s = 0. Set

δL =
d

ds
L(ũ)

∣∣∣∣∣
s=0

, δuj(x) =
d

ds
ũj(s, x)

∣∣∣∣∣
s=0

.

Differentiation under the integral sign and the chain rule give

δL =
∫

Ω

n∑
j=1

∑
|α|≤k

∂L

∂uj,α
(x, pr(k) u(x))Dαδuj(x).

Now for any multi-index α and any smooth functions u and v we have the
identity

m∑
i=1

∂

∂xi

 ∑
β+γ=α−î

(−1)|β|
|β|!|γ|!
|α|!

m∏
l=1

αl!

βl!γl!

∂|β|u

∂xβ
∂|γ|v

∂xγ


= u

∂|α|v

∂xα
− (−1)|α|v

∂|α|u

∂xα
.

By the divergence theorem then,∫
Ω

(
u
∂|α|v

∂xα
− (−1)|α|v

∂|α|u

∂xα

)

=
∫
∂Ω

m∑
i=1

 ∑
β+γ=α−î

(−1)|β|
|β|!|γ|!
|α|!

m∏
l=1

αl!

βl!γl!

∂|β|u

∂xβ
∂|γ|v

∂xγ

 νi,
where ν is the outward pointing unit normal on ∂Ω. It then follows that

δL=
n∑
j=1

∫
Ω

∑
|α|≤k

(−1)|α|
(
Dα ∂L

∂uj,α

)(
x, pr(2k) u(x)

)
δuj(x)

+
∫
∂Ω

m∑
i=1

n∑
j=1

∑
|α|≤k

∑
β+γ=α−î

(−1)|β|
|β|!|γ|!
|α|!

m∏
l=1

αl!

βl!γl!

(
Dβ ∂L

∂uj,α

)
(Dγδuj) νi.

If ũ and its x derivatives of order less than k are independent of s on ∂Ω
then the Dγδuj are all zero there and the boundary integral is zero. Since
the δuj can otherwise be chosen arbitrarily it follows that

δL = 0
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implies ∑
|α|≤k

(−1)|α|
(
Dα ∂L

∂uj,α

)(
x, pr(2k) u(x)

)
= 0

for all 1 ≤ j ≤ n and x ∈ Ω. But δL = 0 is necessary for an extremum,
because otherwise L(ũ) would fail to have an extremum at s = 0 by the first
derivative test from single variable calculus.

6 Prolongation of Vector Fields

Suppose x̃1, . . . , x̃m and ũ1, . . . , ũn are smooth functions of s, x1, . . . , xm,
u1, . . . , un, with x̃ = x and ũ = u when s = 0. The situation considered in
the previous section can be thought of as the special case where x̃ = x and
ũ is independent of u. We will use a different notation for s derivatives at
s = 0 from what we used in that special case however, to avoid confusion:

ξi(x, u) =
dx̃i
ds

(s, x, u)

∣∣∣∣∣
s=0

, ηj(x, u) =
dũj
ds

(s, x, u)

∣∣∣∣∣
s=0

.

The vector field

V =
m∑
i=1

ξi(x, u)
∂

∂xi
+

n∑
j=1

ηj(x, u)
∂

∂uj

on Rm,n,0 = Rm+n is called the vector field associated to the parametrised
set of transformations (x, u) → (x̃, ũ). The chain rule shows that for any
smooth function f on Rm,n,0 we have

d

ds
f(x̃(s, x, u), ũ(s, x, u))

∣∣∣∣∣
s=0

= (V f)(x, u).

In particular, the left hand side is zero if and only if the right hand side is.
A case of particular interest occurs when

dx̃i
ds

= ξi(x̃(s, x, u), ũ(s, x, u)) ,
dũj
ds

= ηj(x̃(s, x, u), ũ(s, x, u))

for all s. In that case we say that the transformations (x, u) → (x̃, ũ) form
a one parameter group generated by V . Given a vector field V there may
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or may not be such a group. The equations above, thought of as a sys-
tem of differential equations, always have a unique local solution with initial
conditions

x̃i(0, x, u) = xi, ũi(0, x, u) = ui,

but this solution need not exist for all s. In case V is the generator of a one
parameter group

d

ds
f(x̃(s, x, u), ũ(s, x, u)) = 0 = (V f)(x̃(s, x, u), ũ(s, x, u))

and hence f(x̃(s, x, u), ũ(s, x, u)) is independent of s if and only if V f = 0.
Given a set G ⊂ Rm,n,0 we define

G(s) = {(X,U) ∈ Rm,n:X = x̃(s, x, u), U = ũ(s, x, u), (x, u) ∈ G}.

Then G(0) = 0. We are particularly interested in the case where G is the
graph of a smooth function u from an open subset Ω ⊂ Rm to Rn:

G = {(X,U) ∈ Rm ×Rn:U = u(X), X ∈ Ω}

For given s 6= 0 there may or may not be a function ũ from an open subset
Ω̃ ⊂ Rm to Rn such that

G = {(X,U) ∈ Rm ×Rn:U = ũ(X), X ∈ Ω̃},

but if Ω is compact then these exist for sufficiently small s. Both Ω̃ and ũ
will of course depend on s. A calculation using the implicit function theorem
and the chain rule then shows that

d

ds

(
d

dx

)α
ũj(x̃(s, x, u))

∣∣∣∣∣
s=0

is equal to[(
d

dx

)α (
ηj(x, u(x))−

m∑
i=1

ξi(x, u(x))
duj
dxi

(x)

)
+

m∑
i=1

ξi(x, u(x))
d|α|+1uj

dxα+î
(x)

]
.

We define the k’th prolongation of V by

pr(k) V =
m∑

1=1

ξi
∂

∂xi
+

n∑
j=1

∑
|α|≤k

[
Dα

(
ηj −

m∑
i=1

ξiuj,̂i

)
+

m∑
i=1

ξiuj,α+î

]
∂

∂uj,α
.
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This is a vector field on Rm,n,k. It has been constructed in such a way that
if g is a function on Rm,n,k then

d

ds
g(x̃(s, x, u), pr(k) ũ(s, x̃(s, x, u)))

∣∣∣∣∣
s=0

= ((pr(k) V )g)(x, pr(k) ũ(x)).

Once again, the general formula simplifies if some of m, n, and k are
equal to 1. If m = n = 1 then

pr(k) V = ξ
∂

∂x
+ η

∂

∂u
+

k∑
l=1

[
Dlη −

l∑
h=1

l!

h!(l − h)!
DhξDk−h+1u

]
∂

∂uxx···x
,

where uxx···x is a u with l subscripts x. If m = k = 1 then

pr(k) V = ξ
∂

∂x
+ η1

∂

∂u1

+ · · ·+ ηn
∂

∂un

+ [Dxη1 − (Dxξ)u1,x)]
∂

∂u1,x

+ · · ·+ [Dxηn − (Dxξ)un,x)]
∂

∂un,x
.

If n = k = 1 then

pr(k) V = ξ1
∂

∂x1

+ · · ·+ ξm
∂

∂xm
+ η

∂

∂u

+ [Dx1η − (Dx1ξ1)ux1 − · · · − (Dx1ξm)uxm ]
∂

∂ux1

+ · · ·+ [Dxmη − (Dxmξ1)ux1 − · · · − (Dxmξm)uxm ]
∂

∂uxm
.

Translations in the independent variables give a particularly simple ex-
ample. For a translation in the l’th variable,

x̃i =
{
xi + s if i = l,
xi if i 6= l,

ũj = uj

and the associated vector field is just

V =
∂

∂xl
.

Its k’th prolongation is the same

pr(k) V =
∂

∂xl
.
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For a more interesting example, consider m = 3, n = 1, k = 1, with
independent variables t, x and y and dependent variable u. The generator
of the rotation group

t̃ = t, x̃ = x cos θ − y sin θ, ỹ = x sin θ + y cos θ, ũ = u

is
V = ξt = 0, ξx = −y, ξy = x, η = 0.

Its first prolongation is

pr(1) V = V − uy
∂

∂ux
+ ux

∂

∂uy
.

The first prolongation applied to

g(t, x, y, u, ut, ux, uy) =
1

2

(
u2
t − u2

x − u2
y

)
gives zero, showing that g is rotationally invariant.

Finally note that if V is tangential to G then

ηj −
m∑
i=1

ξiuj,̂i = 0

for 1 ≤ j ≤ n and hence

pr(k) V =
m∑
i=1

ξi

 ∂

∂xi
+

n∑
j=1

∑
|α|≤k

uj,α+î

∂

∂uj,α

 =
m∑
i=1

ξiDi.

7 Invariant Integrals

What is

δL =
d

ds
L(ũ)

∣∣∣∣∣
s=0

=
d

ds

(∫
Ω̃
L(x̃, pr(k) ũ(x̃))dx̃

)∣∣∣∣∣
s=0

?

We can make a change of variable, picking up a Jacobian factor:

L̃ =
∫

Ω̃
L(x̃, pr(k) ũ(x̃)) det(J)dx,
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where

Jil(s, x, u) =
dx̃i
dxl

(s, x, u).

Now
d

ds
det J(s, x, u) = tr

(
J(s, x, u)−1 d

ds
J(s, x, u)

)
But

d

ds
Jil(s, x, u) =

d2x̃i
ds dxl

(s, x, u) =
d2x̃i
dxl ds

(s, x, u),

which is equal to dξi/dxl when s = 0 and J(s, x, u) is the identity matrix
when s = 0, so

d

ds
det J(s, x, u)

∣∣∣∣∣
s=0

m∑
i=1

dξi
dxi

(x, u)(Div V )(x, u).

If we use this, the prolongation formula for derivatives of functions on Rm,n,k

and the product rule for differentiation, we see that

dL̃
ds

∣∣∣∣∣
s=0

=
∫

Ω

((
pr(k) V + Div V

)
L
)

(x. pr(k) u(x)).

This is zero for all choices of Ω if and only if the integrand is zero, so we
say the a Lagrangian L is invariant under a vector field V , or under the one
parameter group that it generates, if(

pr(k) V + Div V
)
L = 0.

As an example, we can check that Div V = 0 for both the translation and
rotation groups in the preceding section, so the Lagrangian

L(t, x, y, u, ut, ux, uy) =
1

2

(
u2
t − u2

x − u2
y

)
is invariant under those groups. A more interesting example is provided by
the Lagrangian

L(x, u, ux) =
√

1 + u2
x

on R1,1,1 and the rotation group

x̃ = x cos θ − u sin θ, ũ = x sin θ + u cos θ
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with generator

V = −u ∂
∂x

+ x
∂u
,

whose first prolongation is

pr(1) V = −u ∂
∂x

+ x
∂u
+

(1 + u2
x)

∂

∂ux
.

Then
(pr(1) V )L = ux

√
1 + u2

x

and1

Div V = −ux,
so (

pr(k) V + Div V
)
L = 0

even though neither (pr(1) V )L nor (Div V )L is zero separately. The integral∫
L(x, u(x), u′(x)) dx =

∫ √
1 + u′(x)2 dx

is therefore rotationally invariant. This isn’t surprising, because it gives the
arc length of the graph of u.

Finally we make an observation which will be useful in the last section.
If V is tangential to the graph of u then, as we’ve already seen,

pr(k) V =
m∑
i=1

ξiDi,

so

pr(k) V L =
m∑
i=1

ξiDiL,

(Div V )L =

(
m∑
i=1

Diξi

)
L

and (
pr(k) V + Div V

)
L =

m∑
i=1

Di(ξiL) = Div(Lξ).

1Why is the divergence of the generator of the rotation group non-zero here when it
was zero in the preceding example? The two situations are not comparable because the
rotations here mix the dependent and independents variables while the ones there affect
only the independent variables.
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8 Conservation Laws

A conserved current of order l is an m-tuple P1, . . . , Pm of functions on
Rm,n,l such that

DivP = 0

when applied to any solution of the Euler-Lagrange equations. The equation
DivP = 0 is called a conservation law. We also call the one paramater group
generated by V a variational symmetry group for the Lagrangian L.

Consider, for example m = 2, n = 1, k = 1 and the Dirichlet Lagrangian

L(x, y, u, ux, uy) =
1

2

(
u2
x + u2

y

)
.

The 2-tuple

Px =
1

2

(
u2
x − u2

y

)
, Py = uxuy

is a conserved current because

DivP = DxPx +DyPy = (uxuxx − uyuxy) + (uyuxy + uxuyy) = (uxx + uyy)ux

is zero whenever uxx + uyy = 0. Similarly,

Px =
1

2
x
(
u2
x − u2

y

)
+ yuxuy, Py = xuxuy −

1

2
y
(
u2
x − u2

y

)
is a conserved current, because

DxPx =
1

2

(
u2
x − u2

y

)
+ x(uxuxx − uyuxy) + y(uyuxx + uxuxy)

and

DyPy = −1

2

(
u2
x − u2

y

)
+ x(uxuyy + uyuxy)− y(uxuxy − uyuyy)

and
DivP = DxPx +DyPy = (uxx + uyy)(xux + yuy).
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9 Noether’s Theorem

There is a close connection between variational symmetries and conserved
currents, which was discovered by Emmy Noether2. Noether’s theorem is
most often used for first order Lagrangians, although the example which
motivated her paper was of second order3 In that case we have

DivP = (pr(k) V + Div V )L−
n∑
j=1

Qj

∑
|α|≤k

(−1)|α|
(
Dα ∂L

∂uj,α

)
,

where

Qj = ηj −
m∑
l=1

ξluj,l̂.

and

Pi = ξiL+
n∑
j=1

Qj
∂L

∂uj,̂i
.

This holds for any choice of L and V . If we evaluate this at x, pr(k) u(x)
where u is a solution of the Euler-Lagrange equations for L then the sum

n∑
j=1

Qj

∑
|α|≤k

(−1)|α|Dα ∂L

∂uj,α

drops out and we have

divP (x, pr(k) u(x)) = ((pr(k) V + Div V )L)(x, pr(k) u(x)).

2Noether published her paper in 1918. At the time she was teaching at Göttingen
but had no formal position and no salary, because the university refused to hire women.
Her paper was more or less ignored until 1951. It then attracted more attention than
actual understanding. By 1986 Peter Olver counted more than 50 papers which claimed
to generalise it, while in fact only reproving special cases. No doubt there have been
many more since. Certainly that’s what the “generalisation” in the Wikipedia article on
Noether’s theorem does. The version of Noether’s theorem proved in these notes is also
only a special case, but somewhat less special than can be found in most treatments.

3Specifically the motivation of the paper was to explain the failure of energy conser-
vation in general relativity, which was then a new and unproven theory. The relevant
Lagrangian, the Hilbert action, is of second order, although its Euler-Lagrange equations,
the Einstein equations, are only of second order, rather than fourth, as one might expect.
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In other words, P is a conserved current if and only if V is a variational
symmetry. We get a similar result for k > 1, but the form of P is much more
complicated.4

A simple example is provided by time translation

t̃ = t+ s, x̃ = x, ỹ = y, ũ = u

for the three dimensional wave equation

∂2u

∂t2
− ∂2u

∂x2
− ∂2u

∂y2
− ∂2u

∂z2
= 0,

which is the Euler-Lagrange equation of

−1

2
u2
t +

1

2
u2
x +

1

2
u2
y +

1

2
u2
z.

The vector field associated to this group of transformations is

V =
∂

∂t
,

with coefficients

ξt = 1, ξx = 0, ξy = 0, ξz = 0, η = 0

and its prolongation is also ∂/∂t. Clearly

(pr(k) V + Div V )L = 0,

so this is a variational symmetry of the Lagrangian. We have

Q = η − ξtut − ξxux − ξyuy − ξzuz = −ut

and

Pt = ξtL+Q
∂L

∂ut

=−1

2
u2
t +

1

2
u2
x +

1

2
u2
y +

1

2
u2
z + (−ut)(−ut)

=
1

2
u2
t +

1

2
u2
x +

1

2
u2
y +

1

2
u2
z,

4It is perhaps not a coincidence that this paper was Noether’s only work in analysis.
She is famous primarily as an algebraist. The motivation of the result is physical and
analytic, but the bulk of the work involved in proving it is algebraic.
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Px = ξxL+Q
∂L

∂ux
= 0 + (−ut)(ux) = −utux,

Py = ξyL+Q
∂L

∂uy
= 0 + (−ut)(uy) = −utuy,

Pz = ξzL+Q
∂L

∂uz
= 0 + (−ut)(uz) = −utuz

As promised,

DtPt +DxPx +DyPy +DzPz = ututt + uxutx + uyuty + uzutz
− utuxx − uxutx
− utuyy − uyuty
− utuzz − uzutz

= ut(utt − uxx − uyy − uzz) = 0

if
utt − uxx − uyy − uzz = 0.

Physically this expresses energy conservation.

10 A Longer Example

For a more complicated example, consider the transformation

t̃ =
t

t2 − x2 − y2 − z2
, x̃ =

x

t2 − x2 − y2 − z2
,

ỹ =
y

t2 − x2 − y2 − z2
, z̃ =

z

t2 − x2 − y2 − z2
,

ũ = (t2 − x2 − y2 − z2)u.

which is called inversion. This is a discrete symmetry, without a parameter,
so at first sight Noether’s theorem doesn’t tell us anything. Let’s check
anyway that it is in fact a symmetry. First note that inversion is its own
inverse.

t =
t̃

t̃2 − x̃2 − ỹ2 − z̃2
, x =

x̃

t̃2 − x̃2 − ỹ2 − z̃2
,

y =
ỹ

t̃2 − x̃2 − ỹ2 − z̃2
, z =

z̃

t̃2 − x̃2 − ỹ2 − z̃2
,

16



u = (t̃2 − x̃2 − ỹ2 − z̃2)ũ.

Next we need to check how

Ldt dx dy dz

tranforms under inversion. The easiest way to do that is to use differentials.
We set

λ = t2 − x2 − y2 − z2, λ̃ = t̃2 − x̃2 − ỹ2 − z̃2

and observe that
λλ̃ = 1, λ−1 dλ+ λ̃−1 dλ̃ = 0.

We have
dt̃ = λ−1 dt− λ−2t dλ, dx̃ = λ−1 dx− λ−2x dλ,

dỹ = λ−1 dy − λ−2y dλ, dz̃ = λ−1 dz − λ−2z dλ,

dt̃ ∧ dx̃ ∧ dỹ ∧ dz̃ = λ−4 dt ∧ dx ∧ dy ∧ dz − λ−5t dλ ∧ dx ∧ dy ∧ dz
− λ−5x dt ∧ dλ ∧ dy ∧ dz − λ−5y dt ∧ dx ∧ dλ ∧ dz
− λ−5z dt ∧ dx ∧ dy ∧ dλ

= λ−4 dt ∧ dx ∧ dy ∧ dz − 2λ−5t2 dt ∧ dx ∧ dy ∧ dz
− 2λ−5x2 dt ∧ dx ∧ dy ∧ dz − 2λ−5y2 dt ∧ dx ∧ dy ∧ dz
− 2λ−5z2 dt ∧ dx ∧ dy ∧ dz

= − λ−4 dt ∧ dx ∧ dy ∧ dz.

dũ= u dλ+ λ du

= u dλ̃+ λ(ut dt+ ux dx+ uy dy + uz dz)

= − λ̃−2u dλ̃+ λ̃−2(ut dt̃+ ux dx̃+ uy dỹ + uz dz̃)

− λ̃−3(tut + xux + yuy + zuz)dλ̃

= λ̃−2(ut dt̃+ ux dx̃+ uy dỹ + uz dz̃)

− λ̃−3(t̃ut + x̃ux + ỹuy + z̃uz)dλ̃

= λ̃−2(ut dt̃+ ux dx̃+ uy dỹ + uz dz̃)

− 2λ̃−2(tut + xux + yuy + zuz + u)(t̃ dt̃− x̃ dx̃− ỹ dỹ − z̃ dz̃)

Since ũt̃, ũx̃, ũỹ and ũz̃ are determined uniquely by

dũ = ũt̃ dt̃+ ũx̃ dx̃+ ũỹ dỹ + ũz̃ dz̃

it follows that

ũt̃ = λ̃−2(ut − 2vt̃), ũx̃ = λ̃−2(ux + 2vx̃),
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ũỹ = λ̃−2(uy + 2vỹ), ũz̃ = λ̃−2(uz + 2vz̃),

where
v = tut + xux + yuy + zuz + u

Then

L̃=−1

2
ũ2
t̃ +

1

2
ũ2
x̃ +

1

2
ũ2
ỹ +

1

2
ũ2
z̃

= λ̃−4
(
−1

2
u2
t +

1

2
u2
x +

1

2
u2
y +

1

2
u2
z

)
+ 2λ̃−4v(t̃ut + x̃ux + ỹuy + z̃uz)

−2λ̃−4v2(t̃2 − x̃2 − ỹ2 − z̃2)

= λ̃−4L+ 2λ̃−4v(t̃ut + xux + yuy + zuz − v)

= λ̃−4L− 2λ̃−3u(tut + xux + yuy + zuz + u)

Therefore

L̃ dt̃ dx̃ dỹ dz̃ =

(
L− 2

u(tut + xux + yuy + zuz + u)

t2 − x2 − y2 − z2

)
dt dx dy dz

At first sight this doesn’t look particularly invariant, but

2
u(tut + xux + yuy + zuz + u)

t2 − x2 − y2 − z2

is the total divergence of the vector field

u2

t2 − x2 − y2 − z2

(
t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
.

In other words, it is null Lagrangian and therefore makes no contribution to
the Euler-Lagrange equations. So for purposes of Noether’s theorem inversion
acts like a variational symmetry.

We still don’t have one parameter group of symmetries, just a discrete
symmetry, but this is easily remedied. We can perform and inversion, fol-
lowed by a time translation, followed by another inversion. Each transfor-
mation individually is fine so, up to null Lagrangians, the net result is a
variational symmetry. Explicitly the resulting transformation is

t̃ =
t+ s(t2 − x2 − y2 − z2)

1 + 2st+ s2(t2 − x2 − y2 − z2)
, x̃ =

x

1 + 2st+ s2(t2 − x2 − y2 − z2)
,

ỹ =
y

1 + 2st+ s2(t2 − x2 − y2 − z2)
, z̃ =

z

1 + 2st+ s2(t2 − x2 − y2 − z2)
,
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ũ =
u

1 + 2st+ s2(t2 − x2 − y2 − z2)
.

The associated vector field is

ξt = −t2 − x2 − y2 − z2, ξx = −2tx, ξy = −2ty, ξz = −2tz, η = 2tu.

There is no need to compute the prolongation, since we already know this
is a variational symmetry. We just compute

Q = η−ξtut−ξxux−ξyuy−ξzuz = 2tu+(t2+x2+y2+z2)+2txux+2tyuy+2tzuz

and

Pt = ξtL+Q
∂L

∂ut

=−1

2
(t2 + x2 + y2 + z2)(u2

t + u2
x + u2

y + u2
z)− 2tut(xux + yux + zuz + u),

Px = ξxL+Q
∂L

∂ux
= (t2 + x2 + y2 + z2)utux + tx(u2

t + u2
x − u2

y − u2
z) + 2tux(yuy + zuz + u),

Py = ξyL+Q
∂L

∂uy
= (t2 + x2 + y2 + z2)utuy + tx(u2

t − u2
x + u2

y − u2
z) + 2tuy(xuy + zuz + u),

Pz = ξzL+Q
∂L

∂uz
= (t2 + x2 + y2 + z2)utuz + tx(u2

t − u2
x − u2

y + u2
z) + 2tuz(xux + yuy + u).

By Noether’s theorem this must be a conserved current.5

5This was first found by Cathleen Morawetz, the daughter of John Lighton Synge,
after whom the Synge Lecture Theatre in the Hamilton Building is named. Perhaps
surprisingly, she didn’t find it using Noether’s theorem, but simply by guessing the form
of the conserved current.
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