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Preface

Two important methods in analysis is differentiation and Fourier trans-
formation. Unfortunally not all functions are differentiable or has a Fourier
transform. The theory of distribution tries to remedy this by imbedding
classical functions in a larger class of objects, the so called distributions (or
general functions). The basic idea is not to think of functions as pointwise
defined but rather as a "mean value”. A locally integrable function f is
identified with the map

P / fe,

where ¢ belongs to a space of "nice” test functions, for instance C§°.

As an extension of this we let a distribution be a linear functional on the
space of test functions. When extending operations such as differentiation
and Fourier transformation, we do this by transfering the operations to the
test functions, where they are well defined.

Let us for instance see how to define the derivative of a locally integrable
function f on R. If f is continuously differentiable, an integration by parts

implies that
/ fo=- / fe.

Now we use this formula to define the differential of f, when f is not classi-
cally differentiable. f” is the map

sOH—/st’-

In these lectures we will study how differential calculus and Fourier anal-
ysis can be extended to distributions and study some applications mainly in
the theory of partial differential equations.

The presentation is rather short and for a deeper study I recommend the
following books:

Laurent Schwartz. Théorie des Distributions I, II. Hermann, Paris, 1950
51.

Lars Hormander. The Analysis of Linear Partial Differential Operators
I 2nd ed. Springer, Berlin, 1990.
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Chapter 1

A primer on Cj°-functions

When we shall extend differential calculus to distributions, it is suitable to
use infintely differentiable functions with compact support as test functions.
In this chapter we will show that there is "a lot of” C§°-functions.

Notation

Let Q be a domain in R". C*(Q) denotes the k times comtinuously differ-
entiable functions on Q. (k may be +o00.) CF(Q) are those functions in
Ck(Q) with compact support. We denote points in R® with z = (xy,...,z,)
and dr = dxy...dx, denotes the Lebesgue measure. For a vector a =
(aq,...a,) € N" we let

lal =14+ ...+a,, al=aq!...a,!, z=2a"...

and oo fen 5o
o°f = ! — ...

Oz~ Oz{" Oz

f.

Example 1.1. With these notations the Taylorpolynomial of f of degree N
can be written as

0°f(a) o
> R
la|<N
O

1

e, We will associate the

As described in the preface, to a function f € L
map Ay, given by

O > fodz, ¢eCf.
Rn



Problem. Does the map Ay determine f7
More precisely, if f,g € L{ . and

fsod:BZ/ gedz, ¢ e Cf,
Rn n

does this imply that f = g a.e.? O

To be able to solve this problem we need to construct functions ¢ € C§°.
We start with

Example 1.2. There are functions f € C*°(R) with f(z) = 0 when x <0
and f(z) > 0 when z > 0.

Remark 1.3. There is no such real analytic function. O

Proof. Such a function must satisfy f(™(0) = 0 for all n. Thus f(z) =
0(z™),z — 0, for all n. Guided by this, we put

eV x>0
fla) =

0, x<0.
We have to prove that f € C"°. By induction we have

Po(YHe =, >0
0, <0

70 a) =

for some polynomials P,. This is clear when = # 0. But at the origin we
have if h > 0,

100 Ly (1,

Example 1.4. There are non-trivial functions in C§°(R").

Proof. Let f be the function in Example 2 and put ¢(z) = f(1 — |z]?). O



Approximate identities

Pick a function ¢ € C°(R") with [¢ = 1 and ¢ > 0. For § > 0 we let
os(x) = 07"p(x/d). Then @5 € CP(R™) and [ s = 1. {ps;0 > 0} is called

an approximate identity:.
A

7 SOS _> 6’7

Regularization by convolution

The convolution of two functions f and ¢ is defined by

frop(x) = . f(x—y)ey)dy.

The convolution is defined for instance if f € L. and ¢ € C§°. Then

loc

frxo=@xf, fxeeC™®and 0*(f*yp)=f*0%.
Exercise 1.1. Verify this.
Theorem 1.5.
a) If f € Cy, then f* s — f, d — 0, uniformly.
b) If [ is continuous in x, then f * ps(x) — f(x), § — 0.
c) If fel’, 1<p<+oo, fxps— f 1Ll (and a.e.).

Remark 1.6. a) implies that C3°(Q2) is dense in Cp(€2) (in the supremum
norm).

Exercise 1.2. Verify this.



Proof.

a) Take R so that supp ¢ C {x;|z|] < R}. We have

% os(x) — f(@)] < / @ — ) — F@)los(y)dy

ly|[<é6R
< uniform continuity < e [, ¢s(y)dy = €, if § is small enough.

b) Exercise 1.3.

c¢) Jensen’s inequality implies

frgsle) - P < ([
< [ 1) = f@Pestody = [ 15— = f@)leledr

n

@ =) = F@)lesw)y)”

Using Fubini’s theorem and the notation f%(z) = f(x — dt), we get

£ g5 = sl |
= [0 = 11 ettra o,

ooyt [ |fa =5t - fa)pds

That the limit is zero follows by dominated convergence and that translation
is continuous on LP. This in turn follows since Cj is dense in I, 1 < p < +o0:
If g € Cp, then

lg° — gl = /K gz — 8) — g(@)Pdz — 0, 6 — 0,

by dominated convergence. Now approximate f € LP with g € Cy, || f—y¢l, <
e. Minkowski’s inequality (the triangle inequality) implies

172 = Fllo < 1F° = 9llp + 19° = gllp + g = fllp < 2+ [l9° — gll,, < 3e,
if 0 is small enough. ]

Exercise 1.4. a) Let B, = {x;|z| < r}. Construct a function 95 € C§°(R™) such that
0 <5 <1,9s =1o0n B, and supp s C B,1s. How big must ||6*¢5|| be?

b) Let K C Q where K is compact and € is open in R™. Construct ¢ € C§°(£2) with
1 =1 on a neighborhood of K and 0 < ¢ < 1. How big must ||0%¢)||~ be?



Now we are able to answer yes to the problem on page 7.

Theorem 1.7. A locally integrable function that is zero as a distribution is
zero a.e.

Proof. We assume that [ fo = 0 for all ¢ € C§°. According to Theorem 1a),
we have [ f® =0 for all ® € Cj, and thus f = 0 a.e. (for instance by the
Riesz representation theorem.)

Alternatively we can argue as follows: Take 1, € C§° with ¢, (z) = 1
when |z| < n. Then fi, € L' and

ftn x @s(x) = - FW)n(y)es(z —y)dy =0,

since y — ¥, (y)ps(z — y) is C5°. But fib, * ps — fib, in L' according to
Theorem 1 ¢). Hence fi,, = 0 a.e., and thus f =0 a.e. H

10



Chapter 2

Definition of distributions

Definition 2.1. Let 2 be an open domain in R™. A distribution u in € is
a linear functional on C§°(2), such that for every compact set K C ) there
are constants C' and k such that

P <C Y 10%¢lles (2.1)

o<k
for all ¢ € C§° with supp ¢ C K. O

We denote the distributions on Q by 2'(Q2). If the same k can be used
for all K, we say that u has order < k. These distributions are denoted
2,.(£2). The smallest k that can be used is called the order of the distribution.
D = U9, are the distributions of finite order.

Example 2.2.
(a) A function f € Li_ is a distribution of order 0.
(b) A measure is a distribution of order 0.
(¢) u(p) = 0%p(xg) defines a distribution of order |«|.
)

(d) Let x; be a sequence without limit point in €2 and let

u(p) =Y 0 p(ay).

Then u is a distribution. u has finite order if and only if
sup |a;| < oo and then the order is sup |oy]. O

We will use the notation Z(2) to denote the set C§°(€2), in particular
when we consider Z(Q2) with a topology that corresponds to the the following
convergence of test functions.

11



Definition 2.3. ¢; — 0 in 2(Q) if, for all j, supp ¢; are contained in a fix
compact set and ||0%p;|loc — 0, j — o0, for all a. O

Theorem 2.4. A linear functional uw on Z()) is a distribution if and only
if u(p;) = 0 when p; — 0 in 2(Q).

Proof. =): Trivial.

<): Assume that (1) doesn’t hold. We have to prove that u(p;) /4 0,
although ¢; — 0 in 2(€2). That (1) doesn’t hold implies that there is a
compact set K and a function ¢; € Z(Q), with p; C K, u(p;) =1 and

[ule)] > 5D 1905l oo-

o <j
This implies [[0%¢;]lo < % if j > |a|. Thus ¢; — 0 in 2(9). O

Theorem 2.5. A distribution u € Z,(§2) can uniquely be extended to a linear
functional on C¥(). For every compact set K C Q there is a constant
C = Cg such that

lu(@)] < C Y 10l (2.2)

|| <k

for all o € CE(Q) with support in K.
Corollary 2.6. Measures and distributions of order 0 coincides.

Proof of Theorem 5. Let ¢ be a fix function in C¥(Q). Let &5 € C5° be
an approximate identity and put ¢, = ¢ * &1, n > N. Then all ¢, are
supported in a fix compact set K in € and if |a| < k then

10%(p = en)lloo = 0% = (0%¢) * ®1][oc = 0, n = 00, (2.3)

Hence, if u has an extension satisfying (2), then u(p) = lim,, o u(p,). This
proves the uniqueness of the extension and makes it natural to define

u(p) = lim u(p,) .

n—oo
The limit exists since u(y,) is a Cauchy sequence:
[u(on) = ulpm)] = [ulpn — om)l < C Y~ 10%(n — om) | = 0,
ol <k

as m,m — oo.
It is easy to see, by taking limits in (1), that u satisfies (2). O

12



Exercise 2.1. Verify this.

Theorem 2.7. A positive distribution is a positive measure.
Definition 2.8. A distribution w is positive if ¢ > 0 implies u(p) > 0 O

Proof. By Corollary 6 it is enough to show that u € Z.
Assume first that ¢ is real valued. Let K CC Q and take x € C§°(Q2), 0 <
X < 1 with x =1on K. If supp ¢ C K, then x||¢|c = ¢ > 0. Hence

u(x|l¢lloe £ ) >0, or

()] < ulxll@llee) = vl @l oo

So (1) holds with k =0, C' = u(x).
If ¢ = f +ig is complex valued,we get

()] < Ju(F)] + [u(g)] < w0l flloo + llgllee) < 2u0)[@lloo-

Theorem 2.9. A distribution is determined by its local behavior.

More precisely: Assume that Q = UQ; and that u; € 2'(Q;). Furthermore
we assume that u; = u; on ,;NQ;, i.e. if p € CFP(SLNKY;) then u;(¢) = u;(p).
Then there is a unique distribution u on Q with u = u; on ;.

To prove this we need a C§° partition of unity.

Proposition 2.10. Let K C UNQ;. Then there are p; € C°(€2;), 0 < ¢; < 1
and Yp; =1 on K.

Proof of Theorem 9. Assume that u = u; on €2;. Let supp ¢ = K and ¢; be
a partition av unity as above. By linearity, since ¢ =) . ¢y;,

u(ip) = ZU(SO%) = ZUZ(SD%) (2.4)

)

This shows the uniqueness.
To prove the existence, we need to show that (4) gives a well defined distri-
bution u. But if ¢y, is another partition of unity, then @, = . ¢;¢) on K and

thus > u(@r) = 32k 225 un(PPrps) = 225 Dy wilwPrps) = 25 uilpgi), s0
(4) defines u uniquely.
It is easy to show that u satisfies (1), and the theorem is proved. ]

Exercise 2.2. Do it!

13



Proof of Proposition 10. We shall show the following
Claim. There are open sets V; with V; C €; and K C UMV,

Assuming this take ¢; € C§°(€), 0 < @; < 1 with ¢; = 1 on V.
Then »X¢; > 0 on a neighborhood U of K. Take y with y = 1 on K and
supp x C U. Put
Di
S
It is clear that ; satisfy the conditions in the proposition.

To prove the claim, take to x € K a neighborhood V, with z € V, C
V., C Q; for some j. Then K C |JV,. By compactness we get K C Uf[ Vi,
Let Vi= ] Va. O

Vzk cQ;

Yi =X

The support of a distribution

If f € C then supp f = {x; f(z) # 0}. This implies that [ fo = 0 for all
¢ € C§° whos support doesn’t intersect the support of f.

Definition 2.11. If u € 2'(2) then supp u = {z € Q; There is no neighbor-
hood of z with w = 0 in this neighborhood.}

Exercise 2.3. Show that supp u is closed.

Theorem 2.12. If supp u Nsupp ¢ = 0, then u(p) = 0.

Proof. This follows directly from Theorem 9, since u = 0 locally on
Q\ supp wu. O

An important extension of Theorem 12 is the following theorem and its
corollary.

Theorem 2.13. Assume that u € Z,(Q) and p € C¥(QQ) with 0%p(x) = 0 if
la| <k and x € supp u. Then u(p) = 0.

Corollary 2.14. If u € 2'(?) and supp u = {zo} C Q, then u is of the
form

u(p) = Y aa0%p(xo).

| <k

Proof of Theorem 13. Let K = supp u Nsupp . If K = 0, the result follow
from Theorem 5. But K can be non empty. Then, let K, = {z;d(z, K) < €}

14



and take x. € C{°(K,) with x. = 1 in a neighborhood of K. Then, by
Theorem 5,

u(p) = ulxer + (1 = xe)®) = ulxep).
If £ = 0 this implies

[u(@)] < Clixeplloe =0, € = 0.
If £ >0 we get

(@) < C Y 0@ le <C > [0°%0%0 ]| .

o<k laf+]BI<k

We can choose x. such that [[0%xc|lec < Ce™1?l. To estimate [|0%p|o we
consider the Taylor expansion of ¢ at a point x € K. Let y € K, and take
r € K with |z —y| <e. Put

9(t) = 0%p(z + t(y — x)).
By the Taylorexpansion of g at t = 0 of order k — |3] — 1, we get
(1)
8 _ _ 9(0)
el =laWl=| Y L7+ Rw)|
i<k—|B|-1
Now ¢@(0) = 0 and
[R(y)| < C sup [0*Plg(s)| < Cet Y 0%

0<s<1
- |Bl=F

K-

This implies

u(p)l < C Y Y 0P|

laf+|B8]<k |Bl=k

k. — 0, e—=0.

[

Proof of the corollary. w is of finite order k for some k. Fix x € C§°(2) with
X = 1 near xg and put

30‘90(%)_

(@) = plz) = x(x) Y (x — o) al

|| <k

Then 0% (xy) = 0 if |a] < k. By Theorem 13, u(y)) = 0 or

ule) = 3 etz (I @) = 3 andrga).
loo| <k lo| <k

15



Exercise 2.4. H 2.2
Exercise 2.5. H 3.1.7.
Exercise 2.6. Show that u(yp) = Y.7° n%(p(1) — ¢(—1)) is a distribution of order < 1 if

a < 0. Also show that supp u = {0, il,i%,i%, ...}, but if K is a closed set with

k

lu(p)| < Czsip 0%¢l, @€ C(R),
=0

then either a < —1 or else K contains a neighborhood of the origin. (In particular
we can not choose K = supp u.)

Exercise 2.7. Assume that v € %, (R) and supp u C I where I is a compact interval.
Show that

lu(@)] < C > supld®pl, ¢ € CR(R).

lal<k
(Hint. Theorem 13.)

Exercise 2.8. Is there a linear functional v on Cg° that isn’t a distribution?

16



Chapter 3

Operations on distributions

The derivative of distributions

If u is a continuously differentiable function in R™, an integration by parts
gives

A Gku-goda::—/ u-Oppdr, ©€ 9D,
as  has compact support. This motivates the following definition.
Definition 3.1. If u € 2'(Q), we define dyu € Z'(2) by
u(p) = —u(Okp).

That O,u defines a distribution follows since

[Oru(e)] = [u@rp)l < C Y 10*Okp)lloe < C Y 1107l

|| <k |ar| <k+1
If u € C*' the distribution derivative coincides with the classsical derivative.

Example 3.2. Let the Heavisidefunktionen H be defined by

1, z>0

Then



The Dirac measure at zo € R” is given by d,,(¢) = ¢(x0). So we have
showed that H" = §g. The derivatives of the Dirac measure are given by
0%, (@) = (=115, (0%) = (=1)l®9*p(x0). With this notation, by Corol-
lary 2.14, a distribution supported at xy can be written as

u= > Cuol.
lal<k
A generalization of Exempel 2 is given by

Proposition 3.3. Let u be a function in @ C R, which is continuously
differentiable for x # xq. Assume that the derivative v is integrable near xg.
Then

u' = v+ (u(xo + 0) — u(xe — 0))dy,-

Proof. We start by showing that the limits exist. Let xp < x <y. Then

Since v is integrable we obtain as = | z

u(xzo +0) = u(y) — /y v(t)dt.

o

By the same argument also u(zg — 0) exists. We get

u' (@) = —u(¢') = — / ug' dr = lim — w(z)y' (z)dx
R 0 lx—zo|>€

To—€

~[r@e@]” [ e

= (u(wo + 0) — u(wo — 0))p(x0) + /Rv(x)cp(x)dx.

= hm{ - [u(m)gp(:c)} -

e—0 xo+e

[]

Theorem 3.4. Let u be a distribution on an interval I C R. If u' = 0, then
u 18 constant.

Proof. That ' = 0 as a distribution means that u'(p) = 0 or u(y¢’) = 0 for
all p € 2. To compute u(¢), we want to decide if ¢ = ¢’ for some ) € 2.
This is the case exactly when [¢ = 0 and then ¢(z) = [*__ ¢(t)dt. Thus,
if [¢ =0, then u(¢) = 0. We shall reduce the general case to this special
case. Fix ¢y € 2 with [y = 1. Put ¢ = ¢ — o [ ¢. Then féz 0 so

0 = u(¢) = u(p) — u(tpo) [ ¢ or u(¢) = u(thy) [ ¢. Thus u is the constant
u(tp). o

18



Multiplication by functions

2(Q) is a linear space, since we can add distributions and multiply a distri-
bution with a scalar in a natural way. We also want to multiply a distribution
with a function f. If u is a locally integrable function, then

fute) = [ (fwypds= [ ulfe)ds=u(se).
To be able to use this to define fu when u is a distribution we need that
fo e C>.
Definition 3.5. If f € C* we define fu by

fu(p) = u(fep).

Exercise 3.1. Show that fu € 2'(Q).

Remark 3.6. If u is of order k, it is enough to demand that f € C*. a

Proposition 3.7.
(a) 0;0ku = 0x0;u
(b) Ox(fu) = (Onf)u+ fOru.

Exercise 3.2. Prove Proposition 7.

Remark 3.8. By (a), the distributional derivatives commutes and we can
use the notation 9%u, 0%u(p) = (—1)Iu(9%p) where a is a multiindex. O

Theorem 3.9. Ifu € 2'(Q0), Q C R, and v' + au = f where f € C and
a € C®, Then u € C' and the equation is holds classically.

Proof. Assume first that @ = 0. Let F be a (classsical) primitive function
of f. Then F € C' and (u— F) =u' — F' = f — f = 0 as a distribution.
Theorem 1 implies that v = F + C, and thus v € C' and v/ = F' = f
classically.

If a # 0, we multiply the equation with its integrating factor. Let A be a
primitive function of a. Then A and e” are C™ functions. Furthermore, we
have

(etu) = e + etau = e (W + au)
in the distributional sense. Therefore, the equation is equivalent to
(etu) = e f,

and we can use the case a = 0. O]

19



Exercise 3.3. H 3.1.1
Exercise 3.4. H 3.1.5
Exercise 3.5. H 3.1.14
Exercise 3.6. H 3.1.21
Exercise 3.7. H 3.1.22.

Exercise 3.8. Assume that u € 2'(Q), Q C R, satisfies u(™ + a,,_1u™Y 4+ ... +aqu =
f, where f € C and a; € C*°. Show that v € C', and that the equation holds
classically.

20



Chapter 4
Finite parts

In this chapter we will extend Proposition 3.3 to the case where the derivative

is not locally integrable.

d 1
Example 4.1. What is e ( :c+)?
We have

<= [ e =i (- [Jew] -5 [ SR )

1, ~ 1 2¢(0)
=5l ([ el - 27

Definition 4.2.

L e, 20
<fp@’¢>_1ﬂ%{/e e

Thus we have shown that
d 1 1 1
'y = T
+ x/

A version of the definition that is easier to remember is

1 o) — ¢(0)
f; = dx.
< pxi/27(p> / x3/2 &

21



Example 4.3. We define fp——= by

| |5/2

L= [l e,

<fp|x‘—5/2790> - ‘.1”5/2

The order of fp———= is 2. To show this we split the integral into two pieces,

’ ‘5/2

—(0) —2¢'(0)
fp———=, ) / / dr = I+IL
< \5/2 lz|<1 |lz|>1 |9C|5/2

To estimate the first integral we use that

1
lp(@) = 0(0) = 2@ (0)] < 52[1"[|oo -
This implies

1 4 1 /!
<1 | e < 1

For the second integral we have

2lloe + lol ¢l
< [ = 4 < e + ')
|z|>1 ‘.CL"

Thus the order is at most two.
To show that the order can not be smaller, we let p € C5°, 0 < ¢ < 1,
supp ¢ C (0,3) and ¢ = 1 on [1,2] and put ¢.(x) = ¢(x/€). Then

1 pe(z) ] 1
|<fp|$‘—5/27905>|_/R 2572 deZ/E deZCegw

Furthermore [|¢c|loo + [|¢.]|coc < C/e. Thus if the order were less than 2, we
would have ¢/e¥/? < |(fp )| < C/e, a contradiction.

[EIEEM

Since the order of fp—— is 2 and |z[>? € C?, |z|**fp is well

defined and

’ ‘5/2 ’l"5/2

(J]**fp %)

1
e |5/2,s0> = <fp—|$|5/2, £

/ I:v||z|25/2 /Rgp(g;)d:c = (1,¢).

Here we have used that |x|>/?p(z) and its derivative vanishes at x = 0.
Thus fp‘gm#s/2 solves the division problem |z|*/?u = 1. O

22



3 1

1
Exercise 4.1. Show that (fpg—/Q)’ = fifpﬁ.
z zy

The above examples can be generalized to to define fp 7%, fp |z|™® and
(for certain a) fp = etc. when a is not an integer, for instance

<fpi Q) = /_OO Mdm,

]’ ol

where P is the Taylorpolynomial of ¢ at the origin of order [a] - 1. Then

1, sgn x 1 1
(fp|x|a) =—a fp|x|a+1 =a (fpx‘fl - fpm(frl)

och
1

[

|z|“fp

1
Another important property of pr, a # —1,—2,..., is that it is ho-
x
mogeneous of degree —a. As we shall see later this fact simplifies the com-
putation of its Fourier transform.

1
To show that fp—-— is homogeneous we first must define what this means.

x
If u(x) is a function on R™, u is homogeneous of degree o if u(tz) = t*u(z), t >
0. This can be reformulated in a way that is meaningful for distributions.

For a function u, we have

(u(ta), ) = [ uta)p(o)ds = [y =tz) = [ ) oGy = (w0

tn

But if u is homogeneous of degree «, we also have

(u(t), o) = / u(te)p(x)de = / tu(a)p(e)de = ¢ (u, ).

R

Therefore we make the following definition.

Definition 4.4. v € Z'(R"™) is homogeneous of degree « if

(u,00) = 1 (1, @)t > 0.

O

1
Proposition 4.5. fp—— och fp—- are homogeneous of degree —a if a #

|| A
1,2,3,...

23



1
Proof when a = g We have ¢;(0) = ;cp(O) and ¢;(0) = t—zgol(O). Thus

1 1 1 =z 1 x
orgrsee) = [ o (39 5) = 19000 = F(0) s
T 1

== = | e - ol0) —ae O = o)

]

Example 4.6. Compute (log |z|)".
We have

(g |2])', ) = —(log 2], &) = / o/ (2) log||dx

N / —1i _ —€
= —timy | /() logeldz = lim —{ [p(x) log ],

e—0 |$‘>E

+low)loglell® - [ o))

|z|>e Z

=i { [ o)+ 0 —el-onc)

e—0 x

= lim cp(.r)d—x = pv/ @dm ,
R

e—0 |I‘>E €T

where the last equality is a definition. a

Mdm

1
Definition 4.7. (pv—, ¢) = lim
oy |z|>€ T

e—0

If we instead differentiate log x, , we get

(logxy,p) = liné —/ ¢'(x) log xdx =
€—> €
= lim (—[go(x) log x| —i—/ %‘r)dx) =

g ([ ) - ([ [0, -
v ola) = x(@)pl0) O E

X

where x = X[~1,1], as in the rest of this chapter.
Thus with the following
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1 o _
Definition 4.8. (fp—, ¢) = / p(x) X(x)(p(())dz -
L+ 0 x

1
we have proved that (logz,)" = fp—.
Tt

1
Exercise 4.2. Show that fp— solves the division problem xu = H.
T+

The above examples can be generalized to the following

Definition 4.9.

n—1
1  p(a) = P(a) — 5" D (0)x(2)
(fp—,¢) = / ) dx
|z o0 ]
ifn=1,2,3,... and P is the Taylorpolynomial of ¢ of degree n — 2. O
1, 1 L o)
Example 4.10. (fp— )" = —2fp— + 07, O
Ty xy 2
Proof.
1 1 < Q' (x) — ¢'(0) — 2¢"(0)x(x
(fp—5)sp) = —(fp—5,¢) = —/ () = 1 )2 Ox) 4,
xi x5 0 x

g [0, [0,y

As p(z)—p(0) —2¢'(0) is a primitive function of ¢'(z) —¢'(0), an integration
by parts in the first integral implies that

<(fpi2)’, ©) = —lim { [90(55) —#(0) — W’(O)] 0

5 +
x+ e—0 €x €
) . _ ! 1 "
5 / () 90(03) z¢'(0) ;. / T 2(0) dx}.
€ ‘/E € ‘/E
How (2) — 9(0) — 2¢/(0) 1
. pP\r) — @ — XY o N
and




<<fpé>',¢> — 20) -2 /  2le) = ¢0) =2/ (0) =3¢ Ot
— (~2fp— + %5@), ©)
-

1
Example 4.11. pr is not homogeneous of degree —3 since
x

1 L2y — Ln(0) — 2 (0) — 220" (0)v (2
<p_3,90t> :/ t@(t) t(tp( ) t2903( ) 2 e 90 ( )X( )dZL'
|| R ||
S Y EURCUR R U
(7w ) EE
1 1 1 dx
= (If we assume that t > 1) = — (fp—, —”O/ —
1 1 yoon logt
= t_3<pr790> + ¢ (O)t_g‘
Exercise 4.3. What happens if ¢t < 17
Exercise 4.4. Is fpw—l3 homogeneous of degree —37
N—-1
Exercise 4.5. Show that the equation 2V« = 0 has the solution u = Z cnd™.
n=0
Since zVfp—y = 1, Exercise 4.5 implies that the equation
.
zN¥u =1 has the general solution u = fp— + Z cnd™
L n=0
In the same way the equation
1 N-1
N, _ : _ (n)
x — a)"u = 1 has the solution u = fp——— O .
(z—a) Pt ; §
: . 1
where fp——— is defined in the same way as fp—.
(x —a)V N
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Now we can solve the division problem Pu = 1, where P is a polynomial
of one variable. In a neighborhood where P # 0, u = 1/P is a nice function.
So the the only problem is to understand 1/P near a real zero a of P. But
there we have P(z) = (z — a)"Q(z) where Q(a) # 0. Hence, near x = a,

1
we have (z — a)"Q(x)u = 1. This is satisfied if Qu = fpﬁ. Hence
r—a)"
1

¢ 1

p

Q(z) " (zr —a)"
defined distribution on R that solves Pu = 1.

u = solves Pu = 1 near x = a. By Theorem 2.9, u is a well

Exercise 4.6. H 3.1.14
Exercise 4.7. H 3.1.20

Exercise 4.8. Let u be a continuous function on R™ \ {0} that is homogeneous of degree
—n. Show that we can define a distribution pvw by

(pvu, ) = lim u(z)p(z)dz,

e—0 |]J‘>€

if and only if f|z\:1 u(x)do(z) = 0.

Exercise 4.9. An alternative method to define fp 2¢ is by analytic continuation. If p € 2
and Rea > —1 the map

Fo(a) = /000 x%p(z)dz

is analytic. Show that this map can be continued to a meromophic function in C,
whose only singularities are simple poles in —1, —2,—3,.... Compute the residues
R_j, of F, and show that if we for £ =1,2,3,... extend the definition of F,, by

L R_y
Fo(-b) = Jim, (Fofo) = 24 )

we have
Fo(a) = ({fpzg, ¢).

This approach gives an alternative proof that
zifpr*=H, acC

and
(fpx%) =afpa™, a#0,-1,-2,-3,...
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Chapter 5

Fundamental solutions of the
Laplace and heat equations

Definition 5.1. Let P(D) be a differential operator. A distribution £ with
P(D)E =4, is called a fundamental solution of P.
O

In Example 3.2, we saw that the Heaviside function H is a fundamental
solution of d/dx. A little more general, H(x;)... H(z,) is a fundamental

solution of 0y ...0,.
In this chapter we will treat the Laplace operator

and the heat operator

0 ou " 9%
(2 s)utt 5o

To accomplish this we need to be able to integrate by parts in R"”, and we
remind the reader about

Green’s identity

ov ou
/Q (uAv — vAu) dx = /aQ (u% — v%> do

where 0/0n is the exterior normal derivative.
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Theorem 5.2.

1
2—log\x|, n =2,
E(x)={ “" 1
wnp(n — 2)|x|n=2

is a fundamental solution of the Laplace operator in R™.

n>3

)

(wp, is the surface measure of the unit sphere in R™.)

Exercise 5.1. Compute w, in terms of the I' function,
I'(s) :/ t*"le7tdt, Res > —1.
0
Exercise 5.2. Visa att AE(z) =0 om z # 0.

Proof.

(AE, p) = (E,Ap) = lim EApdx

e—0 ‘LE|>E

= Exercise 2 = lim (EAp — pAE)dx = Green’s identity =

e—0

|z|>€
: Dy oL :

We only consider the case n > 3, and leave the case n = 2 as

Exercise 5.3.

We have .

n—2
o €

n

o)
|1J§CH8—“0 W€t — 0,6 =0,
n

and as 0/0n = —30/0r,
11 = / oo = —— / o) =D ()
|z|=e |x|=€

or (n — 2)wy, ||t
el = e MG RO

— ¢(0),e — 0.

Theorem 5.3.
1 |z[®
Bl = | Gty P
0, t <0,

), t>0,

is a fundamental solution of the heat equation in R™ 1.
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Exercise 5.4. Show that (% —Ay)E(t,x) =0if ¢ # 0.

Proof. Let ¢(x) = E(z,3). When n = 1, this is the density of a N(0,1) dis-
tributed stochastic variable and, when n > 1 the product of n such densities.
Furthermore, E(x,t) = ¢ () and thus [;, E(z,t)dz =1 for all t > 0 and
FE € L}, (R™). Now

E
08 N= (5,22 —tim - da:/ agpdt
at at e—0 Rn t>e¢
:lim{/ E(z,e)p(x edx—i—/ / go—dq:dt}
=0 n R™ Jt>e
and

(ALE, o) = (E,Ayp) —hm/ / EAxgod:cdt—hm A, Eodxdt
R? Jt>e R? Jt>e

e—0

Thus

(fa-2)e)-
li_r%{/nE(x ol edx—l—/Rn/De (——A E)dxdt}:

= Exercise 4 =lim [ E(z,¢)p(x,€)dx.

e—0 R™

Since E(x,t) = ¢ () is an approximate identity, we ought to have

I = /n E(z,€)p(z,e)dx — ¢(0), € — 0.

This does not follow directly from Theorem 1.4 since the support of ¢(z,€)
is not compact and depend on e. But the change of variables = v/2ey gives

o(2)p(V2ew,€)dr .
RTL
Since ¢ € L' and |o(v2ex,€)| < |||, we get by dominated convergence

lim/ = | ¢(z)lim o(V2ez,e)dr = | ¢(x)p(0,0)dx = ©(0) .
R e— R

e—0

1 0
Exercise 5.5. Show that — is a fundamental solution to — in C.
Tz z

d
Exercise 5.6. Compute — log|z| and Alog|z| in C.

0z
Exercise 5.7. H 3.3.9
Exercise 5.8. H 3.3.11
Exercise 5.9. H 3.3.12
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Chapter 6

Distributions with compact
support

Theorem 6.1. Assume that u € 2'(§2) has compact support Then u has a
unique extension to C(Q2) that satisfies u(yp) = 0 if suppu and supp ¢ are
disjoint.

If K 1s a compact set that contains a neighborhood of supp u, then

ul@)l < C Y 0%k, » € C™(9Q). (6.1)

o<k

Proof. Take x € C§°(K) with x = 1 in a neighborhood of supp u. If ¢ € C§°,
then according to Theorem 2.12

u(p) = ulxy + (1 = x)p) = ulxp) +u((1 = x)p) = ulxy).
Thus
u(p) = u(xyp), p € C™

defines an extension of u. (1) follows Leibnitz’ rule.

Assume on the other hand that u; is an extension to C*°. The condition
on the support implies that u;((1 — x)¢) = 0, and consequently wu;(¢) =
u1(xe) = u(xp) and thus the extension is unique.

O

Remark 6.2. Exercise 2.6 shows that it is not always possible to take K =
suppu in (1). O

Exercise 6.10. State and prove a converse of Theorem 1.

Thus we can identify distributions with compact support with the linear
functionals on C*°(€2) that satisfies (1). These distributions are denoted
E'(Q).
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Chapter 7

Convergence of distributions

Definition 7.1. A sequence u; € 2'(§2) converges to u € 2'(Q) if

uj(p) = u(p),j = o0,
for every test function ¢ € 2(Q2). We denote this by u; — v in Z'. O

If u; = win &', we also have 0%u; — 0%u in 2’ for every multiindex c.
We write u = > u; in 2’ if the partial sums converges in 2. If the series
converges, it is differentiable and we have 0%(>_ u;) = > 0%u;.

Remark 7.2. Convergence in 2’ is a "weak” condition, if for instance f; — f
in LP then f; — f1 2" a
Exercise 7.1. Prove that.

Definition 7.3. u; € 2'(Q2) is a Cauchy sequence in Z'(Q2) if u;(p) is a
Cauchy sequence in C for every ¢ € Z(Q).

Theorem 7.4. 2'(Q) is complete.

Since u;(y) is a Cauchy sequence in C, the following limit exist
u(p) = lim u;(p),
j—o00

and defines a linear functional on Z(Q2). The difficulty is to show that u is a
distribution, i.e. that u satisfies the norm inequality (2.1), or the equivalent
formulation in Theorem 2.4. This is a consequence of the Banach-Steinhaus
theorem.

Let K be a compact set in {2. We shall study the space X = X =
{p € C>*(Q);supp¢ C K}. We introduce a metric on X by

Ay, 00) = S 27k 1 — allk 7
(o1, 02) ; 1+ o1 — ol
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where [[p][x = >, < SuPx [0%p| and put [l¢|| = d(¢,0).
Observe that if € > 0, and we take N = N, so that Z?\?ﬂ 27k < 5, then

N N
— € _ € €
loll < D22 el + 5 < 302 el 5 < Ml + 5 <
k=1 k=1

if ol < 5.
Exercise 7.2. Show that d is a metric on X.
Exercise 7.3. Show that X is complete.

Exercise 7.4. Show that ¢; — 0 in Z2(K) if and only if ||¢;| — 0.

Exercise 7.5. Show that if ||¢;|| — 0in Z(K), there are positive numbers ¢; with ¢; — co
but [|c;e;(l — 0.

The Banach-Steinhaus theorem

Let A, be a family of linear functionals on X with |[Ayp| < Cull¢ll. Then,
either
1) there are r > 0 and C' < oo with

sup |App| < C

for all p € X with ||p|| <71,
or

2)  sup, |Aap| = 0o for some p € X.

Now we can complete the proof of Theorem 4. Take ¢ with support in
K. Since u;(p) converges, 2) can not hold. Thus 1) holds, ie.

u(@)] < sup |u;(p)| < Cif [of] <7 .
J

Hence if ¢, — 0 in Z(K), k — oo, Exercise 7.5 implies that |u(cppr)| < C
if k& is large enough. Thus |u(p)| < % — 0, k — o0, le. u € 7.
O
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The Banach-Steinhaus theorem is a consequence of

Baire’s theorem

Assume that X is a complete metric space. Let Vi, Vs, ... be open dense sets
i X. Then N;V; is non-empty.

Proof. Let B.(¢) = {¢ € X;d(p,¢) < r}. Since V; are open and dense vi

can successivly choose ¢; and r; with 7; < 1 such that B,,(¢1) C Vi and

By () CViN By, (di1),i=1,23,....

If i,j > n, then ¢;,¢; € B,, (¢,), and therefore d(¢y, ¢;) < % Thus ¢,
is a Cauchy sequence, and ¢, — ¢o for some ¢y € X. But ¢; € B, (¢,) if
i > n. Hence ¢y € B, (¢,) C Vyfor all n and ¢y € NV;. O

Proof of the Banach-Steinhaus theorem. Let ¢(p) = sup |Ayp|. ¢ is lower
semi-continuous, and hence V,, = {¢; ¢(p) > n} is open. If some Vi isn’t
dense, then there are ¢y, with B,.(¢g) C Vy ie.

{5 lle = ol <7} C Vy .

Thus if ||| <7, then [Ay(wo + ¢)| < N. This implies
[Aatpl < [Aa(p + @)l + [Aapo| < 2N = Cif [l <

On the other hand if all V,, are dense, then there are ¢ € NV,,, ie. ¢(p) =
00 or sup,, |Aqp| = oc. O

Theorem 7.5. Assume that u; — uy in 2'(Q?) and that u; > 0. Then u;
converges weakly to a positive measure .

Proof. Since ug is the limit of positive distributions, uq is a positve distribu-
tion. By Theorem 2.7, ug is a positive measure. If y € C§° is equal to 1 on
K, the proof of Theorem 2.7 gave the estimate

| (9)] < 2u; 00|l

when ¢ € C§° is supported in K.
Since u;(x) — uo(x), we have sup; |u;(x)| < C, and we obtan

|u; ()] < Cllelloe, ¥ € C5° 15 =0,1,2,...
By taking limits, compare Theorem 2.5, this also holds when ¢ € Cj.
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Now let ¢ € Cy. We have to prove that u;(p) = uo(y), j — oco. Take
©n, € C§° whit ¢, = ¢ uniformly. Then

ui(p) — uo(p)| < Juj(p) = uj(wn)] + [wi(wn) — uo(en)| + [uo(pn) — uo(p)]
= (e — @n)| + |ui(pn) — uo(wn)] + |[uo(pn — ¢)|
< 20”90 - 90n|| + |Uj(90n) - u0<¢n)| .

Hence o
lim |u;(p) — uo(@)| < 20|l — @nlleo < €

Jj—00
if n is large enough.
]

Exercise 7.6. Assume that f is analytic in Q = I x (0,0) C C, where I is an open
interval. Show that if |f(z)| < C|Imz|™N, then f(z +i0) = limy_,o f(z + iy) exists
in the distribution sense and f(x +i0) € Zy . (I).

Exercise 7.7. Compute

1 1
a) v T 1w
and

1 1
b) z+i0 ~ x+i0"

Exercise 7.8. H 2.5
Exercise 7.9. H 2.6
Exercise 7.10. H 2.7
Exercise 7.11. H 2.9
Exercise 7.12. H 2.16
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Chapter 8

Convolution of distributions

If ue L, and ¢ € C§°, then u x p(z) = [u(y)p(z — y)dy. This motivates

loc

the following

Definition 8.1. If u € Z'(R") and ¢ € Z(R"), then

ux (x) = (uy, p(z —y)).

O

The notation (u,, ¢(z —y)) means that the distribution u acts on the test
function y — ¢(x — y). Sometimes we also write (u, p(x — -)).

Remark 8.2. This definition can also be used in the case where u € &'(R"),
p € C°(R"). O

Theorem 8.1. Ifu € Z'(R™) and p € Z(R"), then
a) ux e C*(R")
b) supp(u * ) C supp u + supp ¢
¢) 0%(u* @) = u* % = (0%) * ¢

Proof. We first show that u * ¢ is continuous. Let x — z¢. If |z — o] < 1,
then y — ¢(z — y) has support in a fixed compact set. Furthermore

Iy (p(r—y)—w(ro—y)) = 0,z — 20, uniformly. Hence p(z—y) = ¢(r0—y),
in 7 when © — x, and we get u* p(z) = (uy, p(x —y)) = (Uy, o(xo —y)) =
u* (), T — To.

Since u * @ is continuous, to prove b) it is enough to show that if = ¢
supp u + supp ¢, then u x gp(x) =0. Butif z gé supp u + supp ¢, there are
no y € suppu with x —y € supp . So there is no y with y € suppu and
y € supp p(x — -). Hence suppu Nsupp ¢(z — ) = 0 och u * p(z) = 0.
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The proof of the second equality in ¢) is simple.

0“u* () = (0"uy, p(x — y)) = (—1)*Nuy, 85 (x — y)) =
= (uy, ' (x — y)) = u* (0%¢)(x).

The first equality follows by induction if we can prove it in the special case
a=(1,0,...,0). Thus it is enough to show that

lim (s o+ her) — s p(x)) = u Oyp(a).
Let ¢un(y) = 3 (p(z+her—y) —@(x—y)). Then i (uxp(z+he) —uxp(x))
WPy n). But ¢upn(y) — 8*" (a: y) 1 2. Hence 0%(uxyp)(x) = limy,_o u(pyp) =

uy (52 (x —y)) = ux (9190( )-
Since a) follows from c) the theorem is proved.

O

Exercise 8.1. Show that ¢, 5 (y) — g—aﬁ(w —y)i2.

Exercise 8.2. Show that the convolution of functions is associative.
Theorem 8.2. Ifu € Z'(R") and p, € Z(R"), then (uxp)*xp = ux(p*).

Remark 8.3. If u € &'(R"), it is enough that one of ¢,1 has compact
support. O

Proof. We have

wx (px ) (@) = {uy, 0% (z —y) uwégwx— ity
2 [ twrta =y - 00t = [ wr o - Dot
= (ux ) * (),

To prove that = holds, we approximate the integral with its Riemann sum.
By Lemma 4 below the Riemann sum converges to the convolution in ¥ and

thus - holds. O

Lemma 8.4. If o € CJ(R") and ¢ € Cy(R™), then

> pla — kh)p(kh)h" — @ xb(x) i CF,

kezZm

as h — 0.
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Proof of Lemma 4. The sum is supported in supp ¢ + supp . The function
(z,y) = p(xr — y)1(y) is uniformly continuous. Hence the Riemann sum
converges uniformly to ¢ * 1 (z). Since 0*(p * 1) = 0%p * 1 om |a| < j, this
also holds for the derivatives. O

Theorem 8.5 (Regularisation of distributions.). Let u € Z'(R™) and ps be
an approximate identity. Then ux ps — u in Z'(R"),§ — 0 .

Proof. Define @vb by @7} (x) = ¥(—x). Then u(y)) = ux* @7} (0). By Theorem 2,
this implies

us () = 1wk pa(1) = (u* p5)% ¥ (0) =
= u* (ps* 1)(0) .

\%2 \%
But, since @s is an approximate identity, ps* ¥—1 in Z2(R™), § — 0. Hence

lim 115(14) = i+ (g 1)(0) = wx 1 (0) = u(®).

6—0

]

Exercise 8.3. Let u € 2'(2). Show that there are C§° functions w, with w, — u in
7'(9), n — 0.

Example 8.6. An alternative proof that u is constant if u’ = 0.
Let us = u* s € C®°. Then us = u' * s = 0% s = 0. Hence us = Cj.
But us — v in &', and Cs — C for some constant C' and u = C'. a

Exercise 8.4. Let u € 2'(R). Show that
a) If u/ > 0, then u is an increasing function.
b) If v’ > 0, then u is a convex function.

Example 8.7. Harmonic functions.
If u € C*(R") satisfies Au = 0, we say that u is a harmonic function.
Harmonic functions satisfies the mean value property.

1

B@)] s, “WW!

u(z) =

In R?, this follows from the Cauchy integral formula since a harmonic function
locally is the real part of a holomorphic function. The general case follows
from
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Exercise 8.5. Prove the mean value property.
Hint. We may assume that x = 0. First apply Green’s identity to the functions u and
1 on B, = {|z|] < r}, and then on v and E (E is the fundamental solution of A) on
Q. ={e<|z| <1}. Let ¢ — 0.

A different proof is given in Section 17.2.

Theorem 8.8 (Weyl’s lemma). If u € Z'(R™) and Au = 0, then v € C™
and Au = 0 classically.

Proof. Let @5 be an approximate identity, ¢(z) = ¢(|z|), ¢ > 0and [ ¢ = 1.
Put us = u * 5. Then us € C° and Aus = (Au) * ps = 0% s = 0. So us
satisfies the mean value property. Hence

us * p(z) = /000 " Lo(r)dr /S"—l us(z — rw)do(w)
—wusa) [ ptrr = us(o) | o)y = uila).

Thus us = us * . Now let 6 — 0. We get u = ux ¢ € C® and Au =
Auxp=0xp=0. O

Next we will define the convolution of two distributions. We want to do
it in such a way that the associativity is preserved. To be able to that we
assume that at least one of the distributions has compact support.

Definition 8.9. Assume that u,v € Z'(R"), and at least one of them has
compact support. Then wu * v is the (uniquely determined) distribution that
satisfies
(uxv) ko =ux(vip), ¢ecIR").
O

Is this a definition?

We first observe that ux* (v * ) is well-defined. If v has compact support,
then v * p € 2 and u * (v * ) is well-defined by Definition 1.1. On the
other hand, if w has compact support, then v x ¢ € C* and u * (v * ) is
well-defined by Remark 1.2.

That there is at most one U = u * v is also clear. Namely, if there
were two such distribution U and U, then U xp =ux* (v*y)=U % ¢ and
U(p) = Ux ¢ (0) = Ux ¢ (0) = Ulyp).

To show the existence we will study the map ¢ — u * ¢.

Proposition 8.10. Let T'o = u*x ¢. Then we have
a) If u € Z'(R™), then T is a continuous linear map Z(R™) — C*(R"™).
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b) If u e & (R™), then T is a continuous linear map Z(R™) — Z(R"™) and
C>®(R") — C>(R").

Proof. We prove a) and leave b) as an exercise. Thus we assume that ¢; — 0
i 2(R™) and shall prove that 0*(u*¢;) — 0 uniformly on compact sets. Since
0%; — 0in Z(R") if p; = 0 in Z(R"), and 0%(u * ¢;) = u * 0%p;, we may
assume that @ = 0. If z is contained in a compact set and if all ¢, are
supported in another compact set, then also y — ¢,(xz — y) is supported in
a fix compact set. Thus

[ux ()] = Julps(z =) < C Y 10%05(z = l|oe — 0, j — oo.

| <k
O
Exercise 8.6. Prove Proposition 10b).
Let 75, be the translation operator, 7,¢(z) = ¢(x — h). Then we have
Proposition 8.11. Convolution and translation commutes.
Proof.
ux Th(x) = (uy, Tp(x — y)) = (uy, p(x —h —y))
=ux*xp(x—h)="1(ux)(x).
[

An important converse of this is

Theorem 8.12. Assume that T is a continuous linear map from Z(R")
into C®°(R™) that commutes with translations. Then there is a distribution
u € Z'(R") with

Teo=uxp, ¢ePR").

%

Proof. If T = u * ¢, then in particular u(yp) = ux ¢ (0) =T ¥ (0). We
therefore define u by

u(lp) =T © (0).

The continuity assumption implies that u is a distribution. Furthermore we
have
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The above results implies that Definition 9 is a definition. Proposition 10
shows that ¢ — u * (v x ) satisfies the conditions in Theorem 12 and, u x v
is this distribution. O

Remark 8.13.

a) If v € Z(R"), Definitions 1 and 2 coincides.

b) If both w and v have compact support, then (u*v)*p = u* (v*¢) for
all p € C*(R").
(]

Example 8.14. u* 0 = u since (u*9) * ¢ = u* (0 * ©) = u * . O
Theorem 8.15.

a) uxv=vku

b) supp (u*v) C suppu + suppv

c) ux(vrw)=(u*xv)*w
if at least two of the distributions have compact support.

Proof. a) To show that two distributions U and V' coincides, it is enough to
show that U x (o x¢) =V x (p x 1), if p,» € Z(R™). Namely, in that case,
(Ux@)xp =Ux(px1)) = Vx(px1p) = (Vx¢)*1), according to Theorem 2.
This implies U x o =V x ¢, and U = V.

Now

(uxv)* (@ x ) =ux (v (px1)) =ux((vxp)*y)
=k (Yx (Vxp)) = (wx)* (V).

If v has compact support, the last equality follows by Theorem 8.2. If v does
not have compact support it follows from the next exercise.
We also have

(vru)* (@x9) = (vxu)* (Y xp) = (vx@)* (ux) = (ux ) (vxp),

and a) is proved.
b) By the commutativity we may assume that v has compact support.

Definie v by (v, ¢) = (U,QVD). If z € supp (u * v), there is to every € > 0 a
v e PR"), suppy C {y;|r —y| < €} = O, with 0 # u*xv(p) = u*v* ¢ (0)
= u((vx* QVD)V) = (v *p). So E = suppunsupp (v xp) # 0. Let y € E. Then
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Yy € suppu och y € supp v xp, or y = —z + x + 0, where z € suppv and
10| <€ Thus x =y + 2z — 9 € suppu + suppv + O.. Now let € — 0.

c¢) Assume first that w has compact support. Then w * ¢ € &, and we
get

(uxv)xw)*x@p = (uxv)*(w*p)=ux*x(v*(w*ep)).
But also,
(ux(vxw))xe=ux*((vxw)*xp)=ux*(v*(wep))
and hence u * (v * w) = (u* v) * w.
If w does not have compact support, both u and v have, and a) implies
ux(vrw)=(vxw)*xu=v*(wxu)=(w*u)*v

=w* (u*v) = (u*xv)*w.

Exercise 8.7. Show that u* (Y x @) = (ux ) x @ if u e &, € P and ¢ € C*.

Theorem 8.16. 0“(u*xv) = 0% x v = u x 0% if at least one of the distri-
butions have compact support.

Proof. If u € 2'(R™), we have 0% = 0“9 * u, since
ux o =u*x0% =ux* (6% 0%) =ux* (0" * @) = (ux0%) * p.
Using this we get
O*(u*v) =0 (uxv) = (00 *u) *v = 0% * v.
The second equality follows from Theorem 15a). n

Theorem 8.17. Assume that u € 9}, andv € C} (oru € &, v € C*). Then
u v is the continuous function x — (u,,v(r —y)).

Proof. If & — xg, then v(z —-) — v(xg —-) i C§. But u is continuous on C¥,
and we get (uy, v(r — y)) — (uy, v(ro — y)). Thus h(z) = (uy,v(z —y)) is a
continuous function.
According to Definition 9, (u * v) x ¢ = u* (v * ). As in the proof of
Theorem 2 one can show that h %1 = u % (v * ). Hence h = u * v.
[

Exercise 8.8. Let u,v € Z2'(R) with support in {z > 0}. Define u * v.
Exercise 8.9. H 4.2.1
Exercise 8.10. H 4.2.2
Exercise 8.11. H 4.2.3
Exercise 8.12. H 4.2.4
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Chapter 9

Fundamental solutions

Let

P = Z e, 0%

la<N|

be a differential operator with constant coefficients and E a fundamental
solution to P, ie. E € Z'(R") and PE = . Then

PExf)=f, [fed&'(R"), (9.1)

and
ExPu=u, wuedé'(R"). (9.2)

Thus E is both a left and a right invers to P on &”. (But on different domains,
so it does not imply that P is bijective.) So (1) gives a solution v = E * f
of the equation Pu = f if f has compact support. (2) can be used to study
regularity of solutions of Pu = f.

Remark 9.1. In Chapter 14 we will show that every differential operator
with constant coefficients has a fundamental solution. O

In Chapter 5, we obtained fundamental solutions to the Laplace and heat
equations. Another example is that

(x1...2,)*/(K)", all z; >0
Ey(z) =
0 otherwise,

is a fundamental solution to Pyy; = OF™ ... 9F*+! Using this we can prove

Theorem 9.2. If u € & (R"), there is a continuous function f with

ot ot f =,
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Proof. E,, 1 is a fundamental solution to P, 2. Thus f = E,, 11 * u satisfies
P, .of =u. By Theorem 8.17, f is continuous. [

A corollary of Theorem 1 is the following representation theorem for
distributions.

Theorem 9.3. If u € 2'(Y), there are functions f, € C(§2) with

u=2 9f
in 9'. The sum is locally finite, and if u has finite order the sum is finite.

Proof. Choose a partition of unity ¢; € C§° and x; € C§° with x; = 1 on
supp ;. This can be done in such a way that Xy; is locally finite. We get

u(yp) = Z Yiu(p) = Z Xiu(Pip).

The distribution y;u has compact support, and hence finite order. Theorem 1
implies that xy;u = 0% f;, f; € C. Hence

u(yp) = Z 0% fi(Yip) = Z(—l)“"” - fi0% (i) d .

If we compute 0% (1), we get

wp) =X [ fadrede =YY 0l

Finally, we let fo, = )", fia- O

To study the regularity of solutions of the equation Pu = f, we want to
study the set where u is not C'**°.

Definition 9.4. The singular support of a distribution u € 2'(Q2) is denoted
singsupp u, and consists of those points in 2 that have no neighborhood
where u is C*. O

sing supp u is the smallest closed set such that v is C*° in its complement.
It is clear that singsuppu C supp u.

Theorem 9.5. If u,v € Z'(R"), and at least one of them have compact
support, then

sing supp (u * v) C singsupp u + sing supp v. (9.3)
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Proof. Put u; = u and us = v. Let us first assume that both distributions
have compact support. Let K; = sing supp u;, and €2; a neighborhood of K;
and take 1; € C§°(£2;) with ¢; = 1 on K;. Then

uy * ug = (Prug + (1 —h1)ur) * (Paug + (1 — ho)us)
=ty * Yoty + Prug * (1 — ha)ug
+(1 = P1)ur * houg + (1 — Pr)uy * (1 — 2)us.

Since (1 — )u; € C§°, Theorem 8.1 implies that the last three terms are
C*. Thus

sing supp (uy * ug) = singsupp (Y1ur * 1ous)
C supp (Y1ug * Poug) C suppy + supp a C £y + Qo.

If we let ©; | K;, we obtain (9.3).

If only one of the distributions have compact support, we can by Theo-
rem 8.15 asssume that v € &”.

To show that singsuppu % v C singsupp u+singsupp v, it is enough to
show that sing supp u*xv N By(z) C (singsupp u+singsupp v)NB;(x) for each
x € R™

Take R > 1 so large that suppv C Bg(0) and |z| < R, and choose
X € C5°(Bsr(0)) with x = 1 on Bsg(0). Put uy = yu and us = (1 — x)u.
Thus u = u; + up where u; has compact support and suppus C BSg(0).
Then suppug * v C BSR(0) + Br(0) C B$(0) and By(x) C Byr(0). Hence

ug * v = 0 on Bj(z). Since both u; and v have compact support, we get
sing supp (u * v) N By(z) = singsupp (u; * v) N By(x)

C (sing suppuy + singsuppv) N By(x) = (sing supp u + singsupp v) N By (x),

and the theorem is proved. O

Theorem 9.6. If P has a fundamental solution with singsupp E = {0}, then
sing supp u = sing supp Pu, u € &'.

Remark 9.7. The converse is also true. Thus if there is a fundamental solu-
tion with singular support at the origin, then this is true for all fundamental
solutions. O

Proof. sing supp Pu C singsupp u allways holds since Pu is C'* if u is.
For the other inclusion, we first observe that if u© has compact support,
then u = E %« Pu and by Theorem 5

sing supp u C singsupp E + sing supp Pu = sing supp Pu.
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If w is not compactly supported, take ¢ € C§° with 1) = 1 on an open set 2.
Then

sing supp u C singsupp P(yu).
But on €2 we have P(1)u) = Pu and tu = u, and the result follows. ]

A differential operator P is called hypoelliptisk if every solution u of Pu =
fis ¢ if f is. Theorem 6 thus implies that P is hypoelliptic if P has a
fundamental solution E with singsupp E = {0}.

The Laplace and the heat operators are hypoelliptic. In Chapter 12, we
will show that all elliptic operators are hypoelliptic. The Laplace operator is
elliptic but not the heat operator.

Exercise 9.1. Let P be a polynomial of one variable. Show that P(-L) has a fundamental
solution.

Exercise 9.2. H 4.4.3

Exercise 9.3. H 4.4.4

Exercise 9.4. H 4.4.5

Exercise 9.5. H 4.4.6

Exercise 9.6. H 4.4.9
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Chapter 10

The Fourier transform

If w is a "nice” periodic function with period T, u can be written as

u(z) = Z e/t (10.1)

m

Then
u(x)e—Qm’wc/T _ Z CVGQWi(m—V):t:/T7

14

and integration over [—%, %] gives formally that

TC,/ _ / u(x)—Qﬂ'il/x/Tdm

r
2
eller
1 /%
. —2mive /T
Cy Tf—g u(z)e dx

¢, are the Fourier coefficients of w. (1) is the inversion theorem. We also
have Parseval’s identity

1
>l = llull -

How can this be generalised to R"? Let us first consider the case n = 1.
Let u € C°(R) and choose T' so that suppu C (—%,%). Let up be the
periodic extension of u,

up(x) = Zu(m — kT).

kEZ
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Then we have

!

or(v) = /_ u(z)e e,

1
T

Sl

Thus for |z| < %, (1) implies

u(z) = up(z) = Z cp(v)e?™Te,

Define
u(§) = /u(m)ei&dw, £ eR.
R
We observe that cp(v) = £u(%%), and we can write
1 _27mv 1 2m__21v omy

u(@) = ) FAGE)TIT = 50 ) AT

v

This is a Riemann sum of the integral

1 )
o~ 'L{:vd
5 [ e
So, if we let T"— oo, we obtain
(@) = - [ At
u(z) = o Ru e .

(10.2)

With some care, the above argument can be used to prove (2) when u is a nice
function. We will not do this, but instead prove (2) (and its generalization
to R™) directly. The theory for Fourier series will then be a corollary of the

theory of the Fourier transform.

Definition 10.1. Assume that f € L'(R"). The Fourier transform of f is

defined by

~

fler = [ f@)etan

where x§ = > x;&;. We sometimes write F f instead of f

O

We will prove the following important properties of the Fourier transform.

I. The inversion formula. If f and fe L', then

1

T) = —— Fl&)ede.
F0) = e | Fl€heiwsag
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I1. Parseval’s identity. If f € L' N L2, then f € L? and || f||; = ﬁ“ﬂb

IIL If f,g € L', then (f xg)" = f §.

IV. F(P(D)£)(€) = P(©)F(€) where D; = —id;.

Exercise 10.1. Prove the Riemann-Lebesgue lemma: If f € L', then f is continuous

~

and f(£) — 0 when [£] — oc.
Exercise 10.2. Prove III and IV.

To solve the constant coefficient differential equation P(D)u = f, we
can use [ and IV. By Fourier transformation, we get P(£)u(¢) = f(£). Thus
u(€) = f(&)/P(§) and u = FI(f/P). To be able to use this method ”often”,

we want to extend the Fourier transform to distributions. As a motivation
for the definition, we observe that, by Fubini’s theorem we have

Proposition 10.2. If f,g € L', then fgdx = fgdz.
Rn R™

Exercise 10.3. Prove Proposition 2.

Hence for a L' function we have

(foo)= | fede= [ fode=/(f,p).

Rn Rn

It is therefore natural to define © when u € 2’ by

(U, ) = (u,@). (10.3)

But if ¢ € 2, ¢ # 0, then @ can not have compact support and hence ¢ ¢ 2.
So we can not define (u, @) by (3).

So what to do? Well, we will consider a different class of test functions,
that is preserved by the Fourier transform. This is the Schwartz space .7,
that consists of C* rapidly decreasing functions.

Definition 10.3.

(a) p € S (R") if o € C* and sup,cpa(1 + |2]?)*|0%0(z)| < oo for alla k
and o.

(b) ¢; = 0in .7 (R") if

S%O+MWWWMM%U
reR™

for all £ and «. O
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Definition 10.4.

(a) A tempered distribution on R™ is a linear functional on .#, such that

u(pj) — 0 when ¢; — 0 in .. We write u € ..

(b) A sequence u; € .9 converges to u € . if

for every testfunction ¢ € ..

O

To show that (3) works as a definition of the Fourier transform if v € .%”
we need to study the Fourier transform on .. We start with the following

Proposition 10.5. If f,g € ., then

(a)
(b)
()
(d)
(e)
(f)
(8)

(1)

and

Fla®f(z)) = %0 f

(O°F)NE) = (i€) f(€)
(hf)NE) = e 4 f(€)

Exercise 10.4. Prove Proposition 5.

Theorem 10.6 (The inversion theorem). If f € .7, then

N
@) = s | e (10.9)
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To prove this we need to find one function that satisfies (4). Then (4)
follows in general by Proposition 5. We make the choice G(x) = e~ 1#°/2,

Lemma 10.7. G = (27)"/2G.

Proof. By Fubinin’s theorem it is enough to consider the case n = 1. G
satisfies the differential equation

G'(z) + zG(z) = 0.

If we take the Fourier transform of this equation, Proposition 5 (a) and (b)
implies R N

i€G(e) +iC(€) = 0,
or

G'(€) +£G() = 0.
Hence G(€) = CG(€). If we let € = 0, we get

C=G(0) = / e Pdx = /2.
R

Exercise 10.5.
a) Prove Lemma 7 using the Cauchy theorem.
b) Prove Lemma 7, letting £ = ¢ € C, and compute G(in).

Proof of Theorem 6. ﬁ(@)g is an approximate identity. Proposition 5 f)
and g) implies that

o L 10@stas = o [ Freceae

Letting § — 0, we get

Exercise 10.6. Prove this.

If we apply this to 7_, f, we get

1

A _ 1 i
@) = maf0) = e [ (a0 = o [ Femae
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Remark 10.8. If we only assume that f € L', then

1 1

i€ ,—0%|€|?/
(27-(-)71 (2’/T) f(g) Ee ng

F(@)s(x) = fla+y)Gs(y)dy =

(@m)" Jon

This implies

f(2) = lim / Fle)einte 1R 2
5

§—0 (271')”

with convergence in L'.
In particular, if f € L, then

f@) = === Rnf(&)e”fdg a.e.

Theorem 10.9 (Plancherel). If ¢,¢ € .77, then

1
Corollary 10.10 (Parseval). If p € S, then
ol = 7l

Proof. Proposition 2 g) implies
plode = [ Guda .
Rn Rn

Let 12;0 = 1). By the inversion theorem,

1 1

(o) = s [ (s = o [ etieae

1 , 1 =
= 711‘6 d = .
e L O = i)
_ 1 ~=
Thus VS ¢1p. The corollary follows by taking ¢ = ¢. O]
R™ (2m)" Jgn
Remark 10.11. The Parseval formula also holds if ¢, € L?. We will prove
this in the next chapter. O

To prove that u, defined by u(p) = u(®), is a tempered distribution we
need the following
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Lemma 10.12. F : . — . continuously, i.e., if p; = 0 1.7, then o; —
0:.7.

Proof. Proposition 5 a) and b) implies £70°;(¢) = cF(9°(z%p;(z)))(€) -

Hence

RGO

sup £°0°3;(¢)| < csup

<c | 107, (2))ldz — 0,
R’I’L

as p; = 0in 7. [
We are now ready to make the following definition.

Definition 10.13. If u € .%’, then u is the tempered distribution given by

O

Remark 10.14. We observe that the two definitions of ]/”\ when f € L!
coincides. O

Theorem 10.15. The Fourier transform is a continuous linear bijection
from " to " with u = (2m)" .

V
Proof. We reminde the reader that U is defined by %/L(gp) = u(¥), and that
u; — u in . means that u;(¢) — u(p) for all ¢ € .. The theorem is an
easy consequence of the corresponding properties on .¥:

-~ V \V4

lp) = (@) = u(@) = 2m)"u(?) = (27)" uly)

and

uj(p) = ui (%) = w(@) = u(p)
ifu; »ui . O
Example 10.16. a) A measure g with [, (14 [z|*)*du(z) < oo for some
k is a tempered distribution.

b) If f e LP,1<p<oo,then f €. (Proof. Holder’s inequality.)

¢) 6 =1and 1= (2r)"0.

d) €” is not a tempered distribution. O
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Proposition 10.17. Ifu € ., then
a) (zju) = —D;u
b) (Dju)" = &
¢) (mhu)™(§) = exp(—ih&)u()
and

d) F(exp(izh)u) = 1.

Proof. Tt is easy to see that Dju,z;u, ... are tempered distributions. Then
the formulas follows from Proposition 5. (Remember that D; = —i0;.) O

Exercise 10.7. Show that e” cos(e®) € .7
Exercise 10.8. Show that u € . if and only if

u@) <C Y sup(l + [2P)H0" ()
k+|a|<N
for some N.

Exercise 10.9. H 7.1.10
Exercise 10.10. H 7.1.19
Exercise 10.11. H 7.1.20
Exercise 10.12. H 7.1.21
Exercise 10.13. H 7.1.22
Exercise 10.14. H 7.6.1
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Chapter 11

The Fourier transform on L?

According to Exempel 10.16b), f € L? has a Fourier transform defined as a
tempered distribution. In fact we have the following result.

Theorem 11.1. If f € L*(R?), then f € L*(R") and

IFlle = =751l

(27)

Furthermore f s given by

f(f) = lim e_ifxf(x)dx

with convergence in L2.

Proof. Take f, € C°, f, — f in L% Then f, is a Cauchy sequence in L.
By the Plancherel theorem, we have

1 fo = fonllz = €llfn = fumlla = 0, n,m — oo

Hence fn is a Cauchy sequence in L?. By the completeness of L?, we have
fn — g i L? for some g € L2 This implies that f, — ¢ in .. Furthermore
Jo — fin &, and since the Fourier transform is continuous on ., we have
fo— fin 5” Hence f = g € L? and we get

1

and the first part is proved.
Put fx = fX{jzj<n}- Then fy — fin L*? and fy € L'. Hence

fn(é) = / " e f () da
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and by the Plancherel theorem, we obtain
If = fxllz=cllf = full2 =0, N — o0,

and the proof is complete.
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Chapter 12

The Fourier transform and
convolutions

We shall show that under suitable conditions (u * v)"* = ©v.

First we observe that 2 C .% C C'*°. The inclusions are continuous, ie. if
w; = 01, then p; — 0in ., and this in turn implies that ¢; — 0 in C*°.
Furthermore, 2 is dense in ., and .¥ is dense in C*°. (Show that!) Hence

&'(R") c S (R") C Z'(R™).
Definition 12.1. If u € .’ and ¢ € ., we define the convolution u * ¢ by
ux ¢(x) = (uy, o(x — y)). =
Theorem 12.2. Ifu € . and ¢ € ., then
(a) ux @ € C™ och 0*(u* @) = 0u* ¢ = u* 0
(b) ux¢ is bounded by a polynomial (and hence ux¢ € .#’), and (ux¢)" =
ou.
(€) ux(@xv)=(uxg)*xy (Y€
and
(@) 753 = 2n)"(du)"

Sketch of proof. (a) We assume that n = 1. The second equality is proved
in the same way as in Theorem 8.1. As in the proof of Theorem 8.1, the first
equality folows if we can prove that

¢(x+h) = ¢(x)
h

— ¢'(z) in 7.
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To do this is elementary but tedious. The simplest way is (probably) to use
the Fourier transform.
(b) By Exercise 10.8, we have

ux ¢(z)| = [uy, ¢(x — y))|
<Csup Y (1+[yP)0%0( —y)|
Y ktlal<N
<Csup Y (14 [ (1 + |z = y)F|0°0(x - y)|
Y ktlal<N
< O(1+ [z]*)N.
If ¢ € &, we also have
(wx )D) = (u* 6)(®) = (2m)"(u s $)(¥)) = (QW)”/ ux ¢(x)(—x)dx

n

= (2m)" /_K(uy, Y(—x)¢(x — y))dr = Approximate with a Riemann sum =
= )y, [ 0=2)ola — p)de) = 20y, | Doy - 2)da)

= (2m)" (uy, (6 1)) = (1, (6 %)) = A((6 + ¥)") = WD) = P TU().

But Z is dense in ., and (b) follows.
(¢) From the proof of (b), we get

ux ¢(1p) = u((¢x)"),
first for ¢» € &, and by contiuity also for ¢ € .. This can be written

(ux @) % (0) = ux (¢ *)(0).

The general case follows if we replace Y with T_zl/}

() By (b), we have (@) =6 = (2m)*" gii= (2m)*"(¢u)* = (27)" (6]
Thus, by the inversion theorem we get @ * ¢ = (2m)" (pu).
[

Theorem 12.3. Ifu € &' (R"), then u € C* and U(€) = uy(e” ).

Proof. Let ¢ € C§° be 1 on a neighborhood of supp u. Then u = ¢¥u and by
Theorem 2(d) we get 4 = (Yu) = (27) U * 1) € C. Thus

€)= @m)T A d(E) = (2m) @ V(€ — 7)) = (2m) 7" <Ax,1v2(x—€)>
= (2m) 7 (e, P = ) = (2m) 7 (W, e ()
= (2m) 7 (ua, e F(2)) = ua(eT Y (2)) = ug(e7E).



Remark 12.4. In the next chapter we will prove the Paley-Wiener theorem
that gives much more precise information of & when u € &”. O

1
Example 12.5. Determine the Fourier transform of pv—. O
x

1
Method 1. Let u = pv—. Then u is the sum of a distribution in &’ and
x

an L? function. Thus

- . e d
u(§) = lim ot 4L
1\?320 e<|z|<N T
If £ > 0, the change of variables y = x£ implies,
- . e . [ siny .
u(¢) = lim dy = —1 dy = —i.
]\;:))go e<|z|<N Y — Y

When £ < 0, we instead get u(§) = im. Hence

u(§) = —m sgn &.

Exercise 12.1. Prove that [~ Si%dy = .

1 . ~ .
Method 2. We have xpv— = 1. This implies it' = 2xd, v’ = —27id and
x
u = —2mi(H + ¢). Since u is odd, so is . Hence ¢ = —1 och
u(§) = —im sgn &.

In the last argument we used that if a distribution u is odd, then w is also
odd. This is clear if u € L' (a simple change of variables).

Definition 12.6. A distribution is even if u= u, and odd if U= —u. O

Proposition 12.7. If u is an odd tempered distribution, then its Fourier
transform is also odd.

Proof. By Theorem 10.15

\%

2 AT
= (27m) "G = ((zww a) — %= (uis odd) = —7 .
O

In the same way we see that the Fourier transform of an even distribution
is even.
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1
Remark 12.8. The map Hy = pv— * ¢, is called the the Hilbert transform.
x
The Hilbert transform is an important example of a so called singular integral
operator. The Hilbert transform is bounded on LP, 1 < p < oo, and of weak-

type (1,1).
When p = 2, this follows from Exampel 5 and the Plancherel theorem. O

Next we will study invariance properties of the Fourier transform. Let
F : R" — R" be a diffeomorphism (i.e. a C'™° bijection). If u is a function,
we have

/ uo F(x)p(zr)dx :/ u(y) ’;‘ o F~'(y)dy.
Therefore, if u € ', we define u o F' by

(wo F,p) = <u,|?‘”,, o F71)

In particular, if F' = A is linear, then
(wo A, ) = |det A| ™ (u,p 0 A7)
O

Definition 12.9. A distribution u is radial if u o O = wu for all orthogonal
maps O.

Theorem 12.10. If u is a radial tempered distribution, then u is radial.

Proof. First, we observe that if ¢ € .%, then

50 0() = 3(0€) = / O (2)da

. = O*z
= / e O p(x)dr = Y
n x =0y
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Theorem 12.11. If u is a tempered distribution that is homogeneous of
degree «, then u is homogeneous of degree —n — av.

Proof. By Definition 4.4, v € .’ is homogeneous of degree « if (u, ;) =
t*(u, ). Therefore,

(U, 1) = (u, 1) = (ug, D)) = t7"(u, (¥)1/2)
= ¢~ (o) <u7 @) = ¢~ (o) <a7 90>'

Example 12.12. A fundamental solution of the Laplace operator when n >
3.

By Fourier transformation of

Au =6,
we get
—[¢[a(g) =1
One solution is .
) = ——.

Observe that # € L (R") if n > 3, and that @ is radial and homogeneous

loc
of degree—2. Hence u is radial and homogeneous of degree 2—n. This implies

Cn

Argument. 1If n = 3, then # € L' + L?, and thus u is a function. If
n >4, then —i— € L' + L?, and we can argue as above using the inversion

|x‘n72
1
theorem. When n = 4, we have u. = ||—2+6 € L' + L? and thus its Fourier
x
1
transform is a constant times ’f\ﬁ and the statement follows by letting

e — 0.
An alternative way is to use Exercise 4 below.

Exercise 12.2. What is ¢,
Exercise 12.3. What happens if n = 27

Exercise 12.4. Determine all radial distributions in R™ that are homogeneous of degree
.

Hint. Consider first n = 1. Compute the derivate of (u, ;) = t*(u, ) with respect
to t.
Warning. Be careful when —a=n,n+2,n+4,....
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Exercise 12.5. What is the Fourier transform of fp|z|® in R?

Exercise 12.6. What is a reasonably definition of fp|z|® in R"? What is its Fourier
transform?

Exercise 12.7. Determine a fundamental solution to the heat equation.

Hint. Determine F E(x,t), where F is the Fourier transform with respect to 2 € R™.

Theorem 12.13. Ifu € . and v € &', then uxv € " and
(uxv)" =07.

Proof. 1f ¢ € C§°, then

% \%

uxv(p) = (uxv)x © (0) =ux* (vk sé)(()) = u((vk ©)") = u(v *p).

To see that u * v € .%’, we need to show that v x@p; — 0 in . when
¢; — 0in .. Let K be a compact neigborhood of av supp v and & the order
of v. Then

1070 x0;) ()| = (v, 0%p(y — 2))] < C Y sup |0 p(x — y)l.

[vI<k yeK
Thus

(1+[2[)|0% (0 #p)(2)| < C Y (1+|z*) Sup 07 (x—y)| =0, j — oo
Iv|<k Y

To compute the Fourier transform, we observe that

(ux ) () = uxv(@) = u(v *p)

Exercise 12.8. Compute (HIIQ)*" and (e )*".
Exercise 12.9. H 7.1.6
Exercise 12.10. H 7.1.7
Exercise 12.11. H 7.1.9
Exercise 12.12. H 7.1.11
Exercise 12.13. H 7.1.18
Exercise 12.14. H 7.1.28
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Chapter 13

The Paley-Wiener theorem

If u € &'(R™), we know that & € C*° and that
i(€) = ue ™),

We shall show that @ can be extended to an analytic function in C”, ie.
(¢, - -+, C,) is an analytic function in each variable (i, ..., (,. We start with
a version of the theorem for test functions.

Proposition 13.1.

(a) If p € C§° and supp ¢ C {z;|z| < R}, then
b(¢) = /n e p(x)dx
1 an entire function with
(O] < Cn(1 4+ [¢])~Nefime! (13.1)

for all N.

(b) Conversely, if ¢ is entire and satifies (1), then ¢ € CS° and
supp ¢ C {xz;|z| < R}.

Proof. (a) By differentiation under the integral sign, we see that é is analytic.
Furthermore, if { = £ + i,

13(0)] < /| ol < Cet (13.2)
If we apply (2) to D%, (1) follows.
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(b) Since qZA> is rapidly decreasing we can differentiate under the integral
sign in the Fourier inversion formula. Hence ¢ € C*.

Again, by the rapid decrease of ¢ we can use the Cauchy theorem to
change the contour of integration and integrate along {(;Im¢; = n;}. We get

()| =

(27T)n/ eix(&ﬂﬁ)é(g_i_in)dg Scefxﬁele.

If we let n = tx, we obtain
|p(x)| < Cetlllel=R),
Thus if |z| > R, and we let t — 0o, we obtain ¢(x) = 0. Hence
supp ¢ C {z;[z| < R}. O

For distributions we have

Theorem 13.2 (The Paley-Wiener thorem).

(a) Ifu is a distribution of order N with support in {z;|z| < R}, then u is
an entire function and

a(¢)] < C(1+|¢|)Neft el (13.3)

(b) Conwversely, if t is an entire function that satisfies (3) for some N, then
w s a distribution that is supported in {z;|z| < R}.

Proof. (a) That « is entire follows since

aia@) - az“@”“) —

The last equality holds as

0
9G;

(e’”c)).

—iz(CHw;) _ ,—iaC o )
¢ i ¢ — 8_Q(€_w<> i OOO, w; — 0.
To prove (3), we fix x5 € C§° with xs = 1 in a neighborhood of {z; |z|
R} and supp x5 C {z;|z] < R+40}. We can choose xs such that || D*x;s||o
Co~l*l. We obtain

()] = fule™)| = lu(xs(x)e)]
< Cysup 3 |D2(xsla)e ™)

|o|<N

< Cerolimg 3 L NP
IBI<N

VANIVAN
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If we let 6 = ﬁ, (3) follows.

(b) The polynomial growth of @ implies that @, and hence also u, is in
S Let g5 € . be an approximative identity and let us = u * 5. Then
us € C*, usg — v as 6 — 0, and

[a5(Q)] = [a(¢)2(3¢)] < Cars(1 + [¢)) ™ exp((R + cd)[Tmc]).

Here we have used (3) and (1) in Proposition 1. If we apply Proposition 1
to us, we get supp us C {x; |z| < (R+¢d)}. If we let 6 — 0, we obtain supp
u C {x; |z| < R}. O

Exercise 13.1. Assume that u,v € &’(R"™) and that u % v = 0. Show that then v =0 or
v = 0. What happens if only one of u and v have compact support?

Exercise 13.2. H 7.1.40.
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Chapter 14

Existence of fundamental
solutions

Let P(D) be a differential operator with constant coefficients in R"™. We shall
show that P(D) has a fundamental solution F.

Let us first make a formal computation. By Fourier transformation of
P(D)E =6, we get P(E)E(¢) =1 and E(§) = P(€)~. Now

~

\%

(E,0) = (E, %) = (@) ™(E, ) = 2n)"(E.3) .

)<

Hence it is natural to define E by

(E.p) = (2m)™ / (&) B(—E)de.

n

Then (formally)

(P(D)E, ¢) = (E, P(~D)g) = ()" / (&) (P(—D)g)(—€)de

—2n) [ PO PO = ¢(0) = G.0).

However, this does not always work since P(§) may vanish. Therefore, we
will change the contour of integration and define (F, ¢) by an integral along
a set in C" that contains no zero of P.

Theorem 14.1. Fvery linear differential operator with constant coefficients
has a fundamental solution E € 9.

Proof. Let m = grad P. After a linear change of variables P is of the form

P(§) = Po(&) = &' + P (€)67 ™ + ..+ Po(€))
= (& — (&) (& — am(£)).
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Here £ = (&,...,&) = (£,&,) and o4(¢') are the zeros of Pe(E,). We
can choose ¢(§’) € R such that [¢(&)] < m + 1 and |¢(£) — ()| >
(&) —Im (&) > 1 for i =1,2,...,m. Define (F, ), when ¢ € Z, by

(. ) = (2n)" / ae P(O) ' B(—C)dC,.

Rn—1 Im ¢, =¢(¢)

By the Paley-Wiener theorem, »(() is an entire function and

C
PO < 7w D 1Dl
(L +1eh™ o=

Furthermore |P({)™!| < 1, and hence, if N is large enough, we get

(B, <C Y ID*].

lal<N
Thus F € 2'. Finally, we see that
(P(D)E, ¢) = (E, P(=D)p)
—en [ PO (P(-D)g) (~Q)dG,
R Im ¢.=¢(¢")

—em™ [ ae 3(—C)dC,
oy [ e | Eou

= the Cauchy th = (2m)™" ¢’ | o(—=€)d¢,
the Cauchy theorem = (27) /Rnlfngo( £)d¢

=) [ 30 = (0) = ().

Exercise 14.1. Determine a fundamental solution to the Schrodinger equation
n
(Dy =Y D2)E=3.
1

(D = —i0)
Hint. See Exercise 10.14 and the hint to Excercise 12.7
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Chapter 15

Fundamental solutions of
elliptic differential operators

Let P(D) be a differential operator with constant coefficients. We write the
polynomial P as
P=P,+P,1+...+F,

where Py is a homogeneous polynomial of degree k. The operator P(D) is

called elliptic if P,,(§) # 0 for £ #0, £ € R™.

Example 15.1. A and 0 are elliptic. The heat and wave operators are not
elliptic. a

Theorem 15.1. Let P(D) be an elliptic differential operator Then there is
a distribution E € /'(R™) such that singsupp E = {0} and P(D)E =0 —w,
for some w € S (R").

Corollary 15.2. If P is elliptic, then P is hypoelliptic.

Proof of the corollary. We shall show that w is C*° if P(D)u is. If u has
compact support, we have u = d*xu = (P(D)E+w)*u = ExP(D)u+w*u €
C*°. The general case follows by considering 1,,u where v,, € C5° with ¢, = 1
on {|z| < n} (compare Theorem 9.6) O

Proof of the theorem. Since P is elliptic, | P, (€)] > 0 > 0 when |{] = 1. By
homogenity this implies

| P (E)] = a1€]™.
Hence, if |{| > R where R is large enough,

[P(&)] = clg|™
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Take y € C§°(R") with x(§) = 1if || < R. Then (1 — x)P~! is bounded
and hence a tempered distribution. Thus we can define £ € .%/(R") by

~ 1— X
E= .
P
Then,

~ 1— -
(P(D)E)A:PE:Pszl—Xzé—X.

If we define w by & = y, then w € ¥ C .% and P(D)E = 6 — w. It remains
to show that £ € C*°(R" \ {0}). Observe that

(DB (©) = D (e 22Xy o tamiel) ] S o

P(g)
If we choose |3| large enough, we get (z°D*E)" € L*. Thus 2°D°E € C
and hence D*E € C'(R"™\ {0}), and the proof is complete. O
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Chapter 16

Fourier series

Let u be a distribution that is periodic with period 27 in each variable, i.e.
(u, Tomrp) = (u, ),
if k € Z". Intuitively u is determined by its "values” on
T ={z;0 <ux; <2rm}.
Lemma 16.1. If u is periodic, then u € ..
Proof. Let ¢ € Cf° with 0 < <1landty =1onT. Put

= ¢(x —2k).

kezZm

Then @Z is a periodic C*°-function with @Z > 1. Thus ¢ = 1/)/72 € C§° and
Z o(x — 2mk) = 1.
k
If p € 9, then

) = (ug, Z o(x — 2mk)p(x)) = a finite sum =

(u

i
= Z Uy, O(x — 27k)p(x)) = periodicity =

= Z Uz, () p(x + 27k)) = (Ug, @ Zcp + 27k))
k
But if p; = 0in .7, then ¢(x) >, ¢;j(x+21k) = 01 2. (Prove that!) Hence
the right hand side defines an extension of u to .%”. m
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To compute u, we first show the following result.
Theorem 16.2 (The Poisson summation formula). If ¢ € .7, then
> Bk = (k).
kezn kezn

Proof. Let u = ZkeZ" Oork- Then Ogr * u = u, since doxy * Oork = Oom(kti)-
(Prove that!)
Hence

(e7™ — 1) = 0.

But e 2™ — 1 £ 0 if ¢ ¢ Z", and consequently 7 is supported on Z™.
By choosing different I, we see that close to the origin we have {u = 0,
i=1,2,...,n. Thus @ = cd, there. Furthermore e **y = u, and hence @ is
invariant under translation by integers. From this, we obtain

This means that

S k) = el

kezn kezn
If we replace ¢ with a translation of ¢, we get

Z P(2rk)e*™ ™ = ¢ Z ok + ).

kezm kezm

Integration over {z;0 < z; < 1} gives

P0) =c [ ola)ds = ca(0).
Thus ¢ = 1 and the proof is complete. O

Let us return to the computation of u when u is periodic. Using the

~

Poisson summation formula on p(y) = 1 (y)e™Y, we get, as p(£) = Y(z+£),
> d(w+2mk) =D G@rk) =D (k) =D e (k).
K K k K

From the proof of Lemma 1, we have

(@) = (u,§) = (u,6(x) Y _ v(z + k)
= (u, () Y _ e (k)
=Y (k) {u, g(x)e").
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Hence u = ), c,0k,where

cr = (u, p(x)e ).

In particular, if v is an integrable function on 7', we have

cr = (u, p(x)e” k) = / u(z)p(x)e " da

n

= E / u(x — 215 p(x — 2mj)e @2k gy
~ Jr
j

- /T u(m)e_“ngb(:p—Zﬁj)dx: /T u(x)e "k de,

Hence ¢, are "our old” Fourier coefficients. The inversion theorem implies

that
1

— tkx /
u(z) = Gn) ;cke in V.

If u € C, then ¢, = O(|k|™), |k| — oo, and the sum is uniformly convergent
if [ > n. Thus we have proved

Theorem 16.3. If u € C'(R"), | > n, and u is periodic with period 2w in

each variable, then
1 )
u(z) = —— Y e,
o &

where the series is uniformly convergent.
We finish this chapter by proving

Theorem 16.4 (The Plancherel theorem). If u € L*(T) with Fourier coef-
ficients ¢y, then

and

1
2de = g
[ e = s e

Conversely, if > |cx|* < oo, then u(z) = ﬁ > cpe®
L3(T) with Fourier coefficients cy,.

k¥ is a function in

Proof. If u € C™*!, the series is uniformly convergent, and we get
1 , 1
lulPdx = ckél/e”(k_l)dx = lex]?.
/ e 29, (2 2=
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As O™ !is dense in L?, we can extend this tou € L?: Take u,, € C""* u,, — u
in L?. Then, also u,, — uin .’ and @,, — @ in .¥’. But also, by the isometry,
U, is a Cauchy sequence in [?. This implies @, — @ in [2. Hence

1
/T|u| dx—nh_)m T|un| dx—nh_)rgo Z| ()] 27T) Z|Ck|2.

Conversely, if > |cx|* < oo, let

1 )
" ki<

Then, uy — u in L? and ./, and we get

u= lim ﬂN: E ckék.

N—oo

]

Remark 16.5. If u is a function with period ¢, then wu;(z) = u(*:%) has
period 27. Using this, we can generalise Fourier series to functions with
arbitrary period. O

Exercise 16.1. H 7.2.1
Exercise 16.2. H 7.2.5
Exercise 16.3. H 7.2.8

Exercise 16.4. Compute a) Y. 7= D) S (n_&a)Q and ¢) > %
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Chapter 17

Some applications

17.1 The central limit theorem

Let X, X1, X, ... be independent identically distributed stochastic variables
with E[X] =m and Var[X] = o*. Then

lim

n—o0

P(X1+X2+...+Xn—nm§$>: 1 / e 2Vdy.  (17.1)
O'\/ﬁ \/277' —0o0

Some background: To a stochastic variable X we associate a probability
measure p on R (we write X ~ p) by

T

P(X <) :/ du(y).

—00

If py are po probability measures, we define a new probability measure i1 * o
by

(1 * pa, @ // (x +y)dp (x)dpa(y).

Then (1% pu2)" = fi1fi2. (Show that!) If X ~ 3 and Y ~ ps are independent,
then X + Y ~ ~ U1 * 2.

Proof. We may assume that m =0 and o = 1. Let

g _X1+...+Xn
n \/ﬁ
and
W=k ok .
—_——
n times



Then S,, ~ p,,, where

(ks ) = /Rso (%) dp™ (),
- (6(5)"

ae) = / e du(z)

and
Since Var[X] < oo,

is a C%-function with
1'(0)=—im=0 and 71"(0)=—0>=—1.
Thus

and

- () - 0- oG e o

for each fixed £. But, since |f(§)] < 1, we get, by dominated convergence,
that
— _152 . /
fn(§) — e 25 in .
Hence Fourier inversion implies that
1 12

n— e 2%
a V2T

in ./, and hence also in &’. But pu, are positive measures, and by Theo-
rem 7.4

1.2
e 2”

1
n —
a V2T

weakly, and hence we obtain (1). O

17.2 The mean value property for harmonic
functions

If w € C* is harmonic in a neighborhood of {|x| < 1}, then

w0) =5 [ utwaoy)

Wn
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Remark 17.1. By Weyl’s lemma, the assumption that u € C'*° is unneces-
sary. O

Proof. Define a distribution A by
() = [ 0)dos) = wnpl0)

Then A € &', and hence A is an entire function. Furthermore, A, and
therefore also A, is radial. Hence /A\(C) = G(|¢]), where G(t) = T\(t, 0,...,0)
is holomorphic. Also, G is even, so G(z) = F(z?) for some entire function F'.
Since F(0) = A(0) = A(1) =0,

A) _ F(g*) — F(0)

€17 €17

is the restriction of an entire function. By the Paley-Wiener theorem, there
is a distribution p € & with 11(£) = —F(|€]?)/]€]?, and so

(A)(€) = ~I€PAE) = A).
Hence Ap = A, which gives
(A u) = (Ap, u) = (1, Au) = (1, 0) = 0.

17.3 The Heisenberg uncertainty principle

If f € L*(R), then

e f @l FE) = \/gufu%, (17.2)

with equality only if f(z) = exp(—ka?), k > 0.
Quantum mechanical background: The state of a particle is described by
a function v € L?(R) with |[¢||; = 1. We interprete

JG

as the probability that the particle is in the set E. An observable quantity
A is a symmetric operator on a suitable subspace of L?. The mean value of
A in the state v is

ElA] =/A¢.zz= (A, ).
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That A is symmetric means that A = A* and hence we have

(A, o) = (¥, A™) = (¥, AY) = (A, ).

Thus the mean value is real.

Example 17.2.
a) Position. AY(z) = xz(z)

b) Momentum. By = 2mwiy)’. O
We have
E[B] = /Bw ) = 27rz/ww Plancherel = /fw /f\w )|PdE.

Hence we can interprete \J(é’ )|? as the density of the momentum.

The general form of the Heisenberg uncertainty principle is
E[(A - E[A])YE[(B — E[B])* —|E [AB — BA]|” (17.3)

for arbitrary A and B.

Exercise 17.1. Show that if A and B are position and momentum, then AB — BA =
—2m1.

Exercise 17.2. Prove that (2) implies (3), when A and B are position and momentum.

Proof. If f € .7, then

le @) IEFE) 2 = Iaf @) ]2l| Pl = Parseval =
— V2|2 f (@) o]l £ (@)]}2 > Schwartz > v/ax / T @ (@)|dz

> (Jzzw| > x Re zw >\/_/ f@)f' () + fz )f’(a:)) dx

\/7/ (|f(2)|?)'dz = Integration by parts = \/7/|f| de = \/7HfH2

The proof that the theorem holds for functions in L?, and the statement of
equality is left to the reader. ]
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17.4 A primer on Sobolev inequalities

A benefit of the theory of distributions is that we can find solutions to prob-
lems that has no classical solutions. But we often want our solutions to be
nice functions. Therefore it is natural to ask the question
When is a distributional solution a function?
The theory of Sobolev spaces gives us a method to answer that question.
We start with the simplest result in Sobolev theory,

The Sobolev L'-inequality  Let f be an integrable function on
R™. Assume that the distributional derivatives 0% f also are integrable for all
la| < m. Then f is a bounded continuous function and

1flloo < D 10l - (17.4)

laj<n
If furthermore 9% f are integrable for all || < n+k, then f is a C*-function.

Proof. We start with the case n = 1 where we shall show that

1A lle < WM+ 1 - (17.5)
If ¢ € Cg°, then

ol)| = ' | w’(t)dt‘ < [ wwis [ 1wl

—00 —00 —00

This implies that
[elloo < N1l - (17.6)

This inequality is sharper than (5), but we have obtained it asssuming two
strong extra conditions, C*° and compact support. (The function 1 shows
that (6) can not be true in general.)

If f € C* is not compactly supported, we choose a sequence of cut off
functions x,, € C*°, with x,, = 1 as |z| < n and ||x} ]l < 1. If we apply (6)

to p = xnf,we get
I lloo < N0l < I flle =+ e f/ e < WFl+ (L]

Since n is arbitrary, (5) is proved for C'*°-functions.

If f is not C*°, we let ¢s be an approximative identity. Then f5 =
¢s x [ € C* and we can apply (5) to fs. We get, as ||¢s * f||1 < ||f|l1 och
1(@s % £)'llx = llos * F'lls < [[f'[|1, that

195 % Flloo < NFlL+ 11711 -
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But ¢s *x f — f a.e. and we have proved (5) in the general case.
To finish the proof, we apply (5) to f — fs, to obtain

If = folloo < IIf = 5% fllo+ If = ¢5 % f]h = 0,0 > 0.

Thus fs — f uniformly, and f is a continuous function.

The last claim follows by applying this argument to the functions 9" f,
i=1,2... k.

The argument when n > 2 is similar. The case n = 2 shows how but
without too cumbersome notation. If ¢ € C5°, we now get

T Yy ) [eS)
|¢<x,y>\—\ / / au%(s,t)dsdt’g / / 190D (s, 1) dsdt

and hence
Iellse < 10Dl -

When we apply this to x,f, f € C%, we get, as OV (y,f) = 00V, f +
OO\ 0% f 4+ 00D X, 00 f + X, 0V f, that

1Fllso < IFI A 1102 fll + 10 Fll + 10V £, £ € O

The rest of the argument works exactly the same as in the case n = 1.

]
Remark 17.3. The proof shows that it is enough to consider o = (o, . .., ),
where each «; is either 0 or 1, in the sum (4). O

The Sobolev L*-inequality Let f € 2/(Q), where Q is an open set
in R™, and let r and k > 0 be integers. If 0°f € L, for all a, 0 < |a| <7
where r >k + %, then f € C*(Q).

loc

Proof when n =1 and k = 0.

The assumption means that f € L and f' € L{_ . Let w be an open
set, w CC , and take xy € C3°(Q) with |[x[|ec < 1, [|X[lo <1 and x =1 in
a neighborhood of w. Define F(x) = F,(z) = x(x )f( ). (F = 0 outside the
support of x.) Since F € L*(R) and F' = \'f + xf' € L*(R), the Parseval
identity implies that

/\f|2d§ < oo and /g2|ﬁ|2dg <00
R R
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Hence

/R (1+ |€))2|F2de < oo

The Cauchy-Schwartz inequality implies

(f |ﬁ|d5)2 ~(fa+ |f|>|ﬁ\1jfﬂ§|)2
< [a+ie |F|ds/ S <oo.

Thus F is integrable and hence F' is continuous. As w is an arbitrary open
subset of €2, it follows that f € C(92). O

The general case.
If n=1and k = 1, we also know that F” € L% Thus &2F(§) € L?

and we have /(1 + |§|)4|]/7\|2d§ < 00. By the Cauchy inequality, this gives
R

/(1+ €| F|d¢ < oo. In particular, EF(€) is integrable and F” is continuous.
R

The case for arbitrary k follows in the same way.

If n > 1, the condition on 0°f implies that & F(¢) € L2, [ < r. Using the
inequality (1 + €))% < Ci(1+ & + ...+ £%), and the Cauchy inequality, we
obtain (1 + |€])*F € L' and hence F € C*.

O

Sobolev spaces
Let us abstract the ideas in the proof of the L2-inequality. We saw that
if f and its derivatives up to order r are in L? then (1 + |£])"f € L? or

equivalently (14 [£]2)"/ 2f € I2. In this condition, 7 may be an arbitary real
number, and we can make the following definition.

Definition 17.4. A distribution f € 2'(R"), is in the Sobolev space H*(R™),
s € R, if

1 fllrs = 1L+ €172 F €)1z < +o0

Proposition 17.5. If f € H"(R"), where r > s+ 5, then
1+ f € LY(R™).

Remark 17.6. If s = k is a non-negative integer, this implies that f € C*.
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Proof. We have (1 4 |¢[?)"/ 2]?(5 ) € L. Hence, by the Cauchy inequality, we
get

[ rieprfe

~ df
as (14 [¢)?)~¢~") is integrable when r — s > 2. O

17.5 Minkowski’s theorem

Let B be a conver set in R™ that is symmetric at the origin. If |B| > 2",
then B contains more than one lattice point.

Proof. We assume that 0 is the only lattice point in B, and show that this
implies that |B| < 2". Let f = xp * xp. Since B is symmetric, Xp is real.

Hence f = (X5)* = [Xs]*-
We observe that if f(2k) # 0, ie.

£28) = [ xn(2k ~ )xa(a)de £ 0.

then there is # € B with 2k—z € B. But then we have k = 1(2k—x)+32 € B,
as B is convex. Hence if f(2k) # 0 we have k = 0. Furthermore

1(0) = / v(—)xs()dr = / a2z = |B].

The Poisson summation formula, applied to the lattices (2Z)" and (7Z)",
gives

d e =27 fm) .

jezr jezr

Hence

Bl =f(0)=3_f25) =273 F ()

=2 Z Xp (j)* =27 <|B|2 +> IXs (Wj)|2> :

J#0

If we can show that

> s (@) >0,

J#0
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we obtain |B| > 27"|B|?, or |B| < 2", and we are done.
But if xg(7j) = 0 when j # 0, then

x(x) = Zm(m +29)

is constant. This follows from the Poisson summation formula since

X(@) = 30 raxn(2) = 27 3 € R(n) = 27 Ra(0).

But this is a contradiction as

Exercise 17.3. The proof is "wrong”. Why? Correct it!
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Cauchy sequence, 32
Central limit theorem, 74
compact support, 31
complete, 32
convergence, 32, 50
convolution, 8, 36

derivative, 17

Dirac measure, 18
distribution, 11
division problem, 25

elliptic, 68
even, 59

finite part, 21

Fourier coefficient, 47, 72
Fourier series, 48, 70

Fourier transform, 47, 48
fundamental solution, 28, 43, 66

harmonic function, 38
harmonic functions, 75
heat eqution, 29

Heaviside function, 17

Heisenberg uncertainty principle, 76

Hilbert transform, 60
homogeneous, 23, 61
hypoelliptic, 46, 68

inversion theorem, 50
Laplace operator, 29, 61

mean value property, 75
measure, 11
Minkowski’s theorem, 81

odd, 59

Paley-Wiener theorem, 63, 64
Parseval formula, 52, 55
partition of unity, 13

periodic, 70

Plancherel theorem, 52, 72
Poisson summations formula, 71
positive distribution, 13
principal value, 24

rapidly decreasing functions, 49
regularisation, 8, 38

Schwartz space, 49

singular support, 44
Sobolev inequalities, 78
Sobolev spaces, 80

support of a distribution, 14

tempered distribution, 50
translation, 40

Weyl’s lemma, 39
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