MA 342H Assignment 2 Due 14 March 2018

Id: 342H-2017-2018-2.m4,v 1.1 2018/03/07 14:36:26 jgs Exp jgs

1. Show that

$$k(x) = -\frac{\exp(-\|x\|)}{4\pi \|x\|}$$

is a fundamental solution for

$$p(\partial) = \partial_1^2 + \partial_2^2 + \partial_3^2 - 1$$

in \mathbb{R}^3 .

Hint: Use Green's second identity on the region

$$\int_{\Omega} (u \operatorname{div} \operatorname{grad} v - v \operatorname{div} \operatorname{grad} u) = \int_{\partial \Omega} (u \operatorname{grad} v - v \operatorname{grad} u) \cdot n$$

where $\partial\Omega$ is the boundary of Ω and n is the exterior unit normal there. You'll want

$$\Omega = \{ x \in \mathbf{R}^3 : \epsilon < ||x|| < \rho \}.$$

u = k and $v = \varphi \in \mathcal{D}(\mathbf{R}^3)$. Solution:

We choose ρ large enough that φ is supported in the open ball of radisc of radius ρ . We need to show that

$$p(\partial)k = \delta$$

or, equivalently, that

$$\int_{\mathbf{R}^3} k(x)(\operatorname{div}\operatorname{grad}\varphi(x) - \varphi(x)) = k(p(\partial)\varphi) = \delta(\varphi) = \varphi(0).$$

A straightforward calculation shows that

$$\operatorname{grad} k(x) = \frac{\exp(-\|x\|)x}{4\pi \|x\|^2} + \frac{\exp(-\|x\|)x}{4\pi \|x\|^3}$$

and

div grad
$$k(x) = -\frac{\exp(-\|x\|)}{4\pi \|x\|} = k(x)$$

for $x \neq 0$. It follows that

$$\int_{\Omega} (k \operatorname{div} \operatorname{grad} \varphi - \varphi \operatorname{div} \operatorname{grad} k) = \int_{\Omega} (k (\operatorname{div} \operatorname{grad} \varphi - \varphi) - \varphi (\operatorname{div} \operatorname{grad} k - k))$$
$$= \int_{\Omega} k (\operatorname{div} \operatorname{grad} \varphi - \varphi).$$

As ϵ tends to 0 this tends to the integral over the ball of radius ρ , but that's the same as the integral over all of \mathbf{R}^3 , since φ and its derivatives vanish outside that ball. So

$$\lim_{\epsilon \to 0^+} \int_{\Omega} (k \operatorname{div} \operatorname{grad} \varphi - \varphi \operatorname{div} \operatorname{grad} k) = \int_{\mathbf{R}^3} k(\operatorname{div} \operatorname{grad} \varphi - \varphi).$$

Turning now to the integral

$$\int_{\partial \Omega} (k \operatorname{grad} \varphi - \varphi \operatorname{grad} k) \cdot n,$$

 φ and grad φ are zero on the sphere $||x|| = \rho$ so the integral over that part of $\partial\Omega$ is zero. On the remaining part of $\partial\Omega$, the sphere $||x|| = \epsilon$, we have

$$n = -\frac{x}{\|x\|},$$
$$k(x) = -\frac{\exp(-\epsilon)}{4\pi\epsilon},$$

and

$$\operatorname{grad} k(x) \cdot n = -\frac{\exp(-\epsilon)}{4\pi\epsilon} - \frac{\exp(-\epsilon)}{4\pi\epsilon^2}.$$

So

$$\begin{split} \int_{\partial\Omega} (k \operatorname{grad} \varphi - \varphi \operatorname{grad} k) \cdot n &= \frac{\exp(-\epsilon)}{4\pi\epsilon^2} \int_{\|x\| = \epsilon} \varphi(x) \\ &+ \frac{\exp(-\epsilon)}{4\pi\epsilon} \int_{\|x\| = \epsilon} \varphi(x) \\ &- \frac{\exp(-\epsilon)}{4\pi\epsilon} \int_{\|x\| = \epsilon} \operatorname{grad} \varphi(x) \cdot n \end{split}$$

In the last two integrals the integrands are bounded uniformly by $\max |\varphi|$ and $\max \| \operatorname{grad} \varphi \|$ and the sphere over which we're integrating is of area $4\pi\epsilon^2$ so

$$\left| \frac{\exp(-\epsilon)}{4\pi\epsilon} \int_{\|x\|=\epsilon} \varphi(x) \right| \le \epsilon \max |\varphi|$$

and

$$\left| \frac{\exp(-\epsilon)}{4\pi\epsilon} \int_{\|x\|=\epsilon} \right| \le \epsilon \max \| \operatorname{grad} \varphi \|,$$

both of which tend to zero as ϵ tends to 0. The first integral, which is just $\exp(-\epsilon)$ times the average value of φ over the sphere $||x|| = \epsilon$ tends to $\varphi(0)$, so

$$\lim_{\epsilon \to 0^+} \int_{\partial \Omega} (k \operatorname{grad} \varphi - \varphi \operatorname{grad} k) \cdot n = \varphi(0)$$

Taking the limit in Green's identity therefore gives the desired result

$$\int_{\mathbf{R}^3} k(x)(\operatorname{div}\operatorname{grad}\varphi(x) - \varphi(x)) = \varphi(0).$$

2. (a) Find a fundamental solution for the differential operator

$$p(\partial) = \partial^2 + 2\partial + 2$$

on \mathbf{R} .

(b) Use the fundamental solution you just found to solve the initial value problem for the inhomogeneous equation

$$u''(x) + 2u'(x) + 2u(x) = f(x), \quad u(0) = \alpha, \quad u'(0) = \beta.$$

If you didn't manage to find a fundamental solution then just take as given that there is one and call it k.

Solution:

(a) We want

$$p(\partial)k = \delta$$

and hence

$$(p(\partial)k) \star \varphi = \delta \star \varphi = \varphi.$$

For such k we have

$$k \star (p(\partial)\varphi) = \varphi$$

and

$$\hat{k}(\xi)p(i\xi)\hat{\varphi}(\xi) = \hat{\varphi}(\xi).$$

Since this should hold for all $\varphi \in (\mathbf{R})$ we must have

$$\hat{k}(\xi) = p(i\xi)^{-1}$$

and hence

$$k(x) = (2\pi)^{-1} \int_{-\infty}^{\infty} \hat{k}(\xi) \exp(i\xi x) d\xi = \int_{-\infty}^{\infty} g(\xi) d\xi,$$

where

$$g(\xi) = (2\pi)^{-1} p(i\xi)^{-1} \exp(i\xi x).$$

Note that g is analytic except for simple poles at 1+i and -1+i. For $R > \sqrt{2}$ let C_1 be the contour from $-\infty$ to -R along the real axis, C_2 the contour from -R to R along the real axis, C_3 the contour from R to $+\infty$ along the real axis, C_4 the contour from R to -R along the circle $|\xi| = R$ in the upper half-plane and C_4 the contour from -R to R along the circle $|\xi| = R$ in the lower half-plane. Then

$$\left| \int_{C_1} g(\xi) \, d\xi \right| \le \int_{C_1} |g(\xi)| \, d\xi$$

$$= \int_{-\infty}^{-R} (2\pi)^{-1} (\xi^4 + 4)^{-1/2} \, d\xi$$

$$\le \int_{-\infty}^{-R} (2\pi)^{-1} \xi^{-2} \, d\xi$$

$$= (2\pi R)^{-1}$$

and

$$\left| \int_{C_3} g(\xi) \, d\xi \right| \le \int_{C_3^{\infty}} |g(\xi)| \, d\xi$$

$$= \int_{R_{\infty}}^{\infty} (2\pi)^{-1} (\xi^4 + 4)^{-1/2} \, d\xi$$

$$\le \int_{R}^{\infty} (2\pi)^{-1} \xi^{-2} \, d\xi$$

$$= (2\pi R)^{-1}.$$

On the circle $|\xi| = R$ we have

$$|p(i\xi)^{-1}| = |\xi - 1 - i|^{-1} |\xi - 1 + i|^{-1} \le (R - \sqrt{2})^{-2}.$$

If $x \ge 0$ then

$$|\exp(i\xi x)| \le 1$$

for ξ in the upper half-plane and hence

$$|g(\xi)| \le (2\pi)^{-1} (R - \sqrt{2})^{-2}$$

and

$$\left| \int_{C_4} g(\xi) \, d\xi \right| \le \frac{R}{2(R - \sqrt{2})^2}.$$

If $x \leq 0$ then

$$|\exp(i\xi x)| \le 1$$

for ξ in the lower half-plane and hence

$$|g(\xi)| \le (2\pi)^{-1} (R - \sqrt{2})^{-2}$$

and

$$\left| \int_{C_5} g(\xi) \, d\xi \right| \le \frac{R}{2(R - \sqrt{2})^2}.$$

By the Residue Theorem

$$\int_{C_2} g(\xi) d\xi + \int_{C_4} g(\xi) d\xi = 2\pi i \operatorname{Res}_{\xi = -1 + i} g(\xi) + 2\pi i \operatorname{Res}_{\xi = 1 + i} g(\xi)$$

$$= \frac{\exp(i(-1 + i)x)}{2i} - \frac{\exp(i(1 + i)x)}{2i}$$

$$= e^{-x} \sin x$$

and

$$-\int_{C_2} g(\xi) \, d\xi + \int_{C_2} g(\xi) \, d\xi = 0.$$

If $x \ge 0$ we write

$$k(x) = \int_{C_1} g(\xi) d\xi + \int_{C_2} g(\xi) d\xi + \int_{C_3} g(\xi) d\xi$$
$$= \int_{C_1} g(\xi) d\xi + \int_{C_3} g(\xi) d\xi - \int_{C_4} g(\xi) d\xi$$
$$+ \int_{C_2} g(\xi) d\xi + \int_{C_4} g(\xi) d\xi$$

and take the limit as $R \to \infty$ to get

$$k(x) = e^{-x} \sin x.$$

If x < 0 we write

$$k(x) = \int_{C_1} g(\xi) d\xi + \int_{C_2} g(\xi) d\xi + \int_{C_3} g(\xi) d\xi$$
$$= \int_{C_1} g(\xi) d\xi + \int_{C_3} g(\xi) d\xi + \int_{C_5} g(\xi) d\xi$$
$$+ \int_{C_2} g(\xi) d\xi - \int_{C_5} g(\xi) d\xi$$

and take the limit as $R \to \infty$ to get

$$k(x) = 0.$$

So the fundamental solution is

$$k(x) = \begin{cases} e^{-x} \sin x & \text{if } x \ge 0, \\ 0 & \text{if } x \le 0. \end{cases}$$

(b) Let H be the Heaviside function

$$H(x) = \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x < 0. \end{cases}$$

Then

$$\partial H = \delta$$
,

$$\partial(uH) = (\partial u)H + u(\partial H) = u'H + u\delta = u'H + u(0)\delta$$
$$\partial^2(uH) = u''H + u'(0)\delta + u(0)\partial\delta,$$

$$(\delta^2 + 2\delta + 2)(uH) = (u'' + 2u' + 2u)H + (u'(0) + 2u(0))\delta + u(0)\partial\delta.$$

If u satisfies our initial value problem then

$$(\delta^2 + 2\delta + 2)(uH) = fH + (\beta + 2\alpha)\delta + \alpha\partial\delta.$$

$$uH = \delta \star (uH) = (p(\partial)k) \star (uH) = k \star (p(\partial)(uH))$$
$$= k \star (fH + (\beta + 2\alpha)\delta + \alpha\partial\delta) = k \star fH + (\beta + 2\alpha)k + \alpha\partial k$$

If x > 0 then

$$u(x) = u(x)H(x)$$

$$= \int_{-\infty}^{\infty} k(x-y)f(y)H(y) dy + (\beta + 2\alpha)k(x) + \alpha k'(x)$$

$$= \int_{0}^{\infty} k(x-y)f(y) dy + (\beta + 2\alpha)k(x) + \alpha k'(x)$$

With the particular fundamental solution found above

$$u(x) = \int_0^x e^{-(x-y)} \sin(x-y) f(y) \, dy + (\beta + \alpha) e^{-x} \sin x + \alpha e^{-x} \cos x.$$