MA 342H Assignment 1 Due 14 February 2018

Id: 342H-2017-2018-1.m4,v 1.5 2018/04/10 12:55:24 jgs Exp jgs

1. For the linear first order scalar partial differential equation

$$(-x-y-z)\frac{\partial u}{\partial w}(w,x,y,z) + (w-y+z)\frac{\partial u}{\partial x}(w,x,y,z) + (w+x-z)\frac{\partial u}{\partial y}(w,x,y,z) + (w-x+y)\frac{\partial u}{\partial z}(w,x,y,z) = 0,$$

with initial conditions

$$u(1, x, y, z) = f(x, y, z)$$

- (a) Find the non-characteristic points on the initial hypersurface.
- (b) Write down and solve the characteristic equations.
- (c) Solve the differential equation. Note that you only need your solution to make sense near the non-characteristic part of the initial hypersurface.

Solution:

(a) We can do this either using the implicit form

$$g(w, x, y, z) = w - 1$$

of the initial hypersurface or the parameterisation

$$w=1, \quad x=q, \quad y=r, \quad z=s.$$

The former is a bit easier. We need

$$g(w, x, y, z) = 0$$

and

$$(-x-y-z)\frac{\partial g}{\partial w}(w,x,y,z) + (w-y+z)\frac{\partial g}{\partial x}(w,x,y,z) + (w+x-z)\frac{\partial g}{\partial y}(w,x,y,z) + (w-x+y)\frac{\partial g}{\partial z}(w,x,y,z) \neq 0.$$

For the given g this means

$$w = 1, \quad x + y + z \neq 0.$$

If we are using the parameterisation then we need

$$\det\begin{pmatrix} 0 & 0 & 0 & -q-r-s \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \neq 0,$$

which leads to the same result.

(b) The characteristic equations are

$$w' = -x - y - z, \quad x' = w - y + z, \quad y' = w + x - z, \quad z' = w - x + y,$$

$$u' = 0$$

or, in matrix form

$$\frac{\partial}{\partial t} \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & -1 & -1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix}$$
$$u' = 0$$

The initial conditions are

$$\begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ q \\ r \\ s \end{pmatrix}, \quad u = f(q, r, s)$$

when t = 0. The solution is

$$\begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos(\sqrt{3}t) & -\frac{\sin(\sqrt{3}t)}{\sqrt{3}} & -\frac{\sin(\sqrt{3}t)}{\sqrt{3}} & -\frac{\sin(\sqrt{3}t)}{\sqrt{3}} \\ \frac{\sin(\sqrt{3}t)}{\sqrt{3}} & \cos(\sqrt{3}t) & -\frac{\sin(\sqrt{3}t)}{\sqrt{3}} & \frac{\sin(\sqrt{3}t)}{\sqrt{3}} \\ \frac{\sin(\sqrt{3}t)}{\sqrt{3}} & \frac{\sin(\sqrt{3}t)}{\sqrt{3}} & \cos(\sqrt{3}t) & -\frac{\sin(\sqrt{3}t)}{\sqrt{3}} \\ \frac{\sin(\sqrt{3}t)}{\sqrt{3}} & -\frac{\sin(\sqrt{3}t)}{\sqrt{3}} & \frac{\sin(\sqrt{3}t)}{\sqrt{3}} & \cos(\sqrt{3}t) \end{pmatrix} \begin{pmatrix} 1 \\ q \\ r \\ s \end{pmatrix}$$

$$u = f(q, r, s).$$

(c) We need to use the equations from the previous part to eliminate q, r, s and t. The matrix above is orthogonal, since it came from exponentiating an antisymmetric matrix. It follows that

$$\begin{pmatrix} 1 \\ q \\ r \\ s \end{pmatrix} = \begin{pmatrix} \cos(\sqrt{3}t) & \frac{\sin(\sqrt{3}t)}{\sqrt{3}} & \frac{\sin(\sqrt{3}t)}{\sqrt{3}} & \frac{\sin(\sqrt{3}t)}{\sqrt{3}} \\ -\frac{\sin(\sqrt{3}t)}{\sqrt{3}} & \cos(\sqrt{3}t) & \frac{\sin(\sqrt{3}t)}{\sqrt{3}} & -\frac{\sin(\sqrt{3}t)}{\sqrt{3}} \\ -\frac{\sin(\sqrt{3}t)}{\sqrt{3}} & -\frac{\sin(\sqrt{3}t)}{\sqrt{3}} & \cos(\sqrt{3}t) & \frac{\sin(\sqrt{3}t)}{\sqrt{3}} \\ -\frac{\sin(\sqrt{3}t)}{\sqrt{3}} & \frac{\sin(\sqrt{3}t)}{\sqrt{3}} & -\frac{\sin(\sqrt{3}t)}{\sqrt{3}} & \cos(\sqrt{3}t) \end{pmatrix} \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix}$$

The first row gives the equation

$$1 = \cos(\sqrt{3}t)w + \sin(\sqrt{3}t)\frac{x+y+z}{\sqrt{3}}.$$

Making the rationalising substitution

$$v = \tan\left(\frac{\sqrt{3}}{2}t\right), \quad \cos(\sqrt{3}t) = \frac{1-v^2}{1+v^2}, \quad \sin(\sqrt{3}t) = \frac{2v}{1+v^2}$$

gives

$$(1+v^2) = (1-v^2)w + 2v\frac{x+y+z}{\sqrt{3}},$$

or

$$(1+w)v^2-2\frac{x+y+z}{\sqrt{3}}v+1-w$$

with solutions

$$v = \frac{\frac{x+y+z}{\sqrt{3}} \pm \sqrt{\frac{(x+y+z)^2}{3} + w^2 - 1}}{1+w}.$$

When t = 0 we have w = 1 and v = 0 so the correct choice of sign is opposite to the sign of x + y + z.

$$\cos(\sqrt{3}t) = \frac{w \mp \frac{x+y+z}{\sqrt{3}}\sqrt{\frac{(x+y+z)^2}{3} + w^2 - 1}}{w^2 + \frac{(x+y+z)^2}{3}},$$

$$\sin(\sqrt{3}t) = \frac{\frac{x+y+z}{\sqrt{3}} \pm w\sqrt{\frac{(x+y+z)^2}{3} + w^2 - 1}}{w^2 + \frac{(x+y+z)^2}{3}}.$$

The other three rows of our matrix equation give

$$q = -\frac{\sin(\sqrt{3}t)}{\sqrt{3}}w + \cos(\sqrt{3}t)x + \frac{\sin(\sqrt{3}t)}{\sqrt{3}}y - \frac{\sin(\sqrt{3}t)}{\sqrt{3}}z,$$

$$r = -\frac{\sin(\sqrt{3}t)}{\sqrt{3}}w - \frac{\sin(\sqrt{3}t)}{\sqrt{3}}x + \cos(\sqrt{3}t)y + \frac{\sin(\sqrt{3}t)}{\sqrt{3}}z,$$

$$s = -\frac{\sin(\sqrt{3}t)}{\sqrt{3}}w + \frac{\sin(\sqrt{3}t)}{\sqrt{3}}x - \frac{\sin(\sqrt{3}t)}{\sqrt{3}}y + \cos(\sqrt{3}t)z.$$

Substituting the expressions found above for $\cos(\sqrt{3}t)$ and $\sin(\sqrt{3}t)$ into these equations gives

$$q = -\frac{wy + wz - xy + xz - y^2 + z^2 \pm \frac{w^2 + wy - wz + x^2 + xy - xz}{\sqrt{3}} \sqrt{w^2 + \frac{(x+y+z)^2}{3}} - 1}{w^2 + \frac{(x+y+z)^2}{3}},$$

$$r = -\frac{wx + wz + x^2 + xy - yz - z^2 \pm \frac{w^2 - wx + wz - xy + y^2 + yz}{\sqrt{3}} \sqrt{w^2 + \frac{(x+y+z)^2}{3}} - 1}{w^2 + \frac{(x+y+z)^2}{3}},$$

$$s = -\frac{wy + wz - x^2 - xy + y^2 + yz \pm \frac{w^2 + wx - wy + xz - yz + z^2}{\sqrt{3}} \sqrt{w^2 + \frac{(x+y+z)^2}{3}} - 1}{w^2 + \frac{(x+y+z)^2}{3}},$$

where, again, the sign in front of the square root is opposite to that of x + y + z. Substituting these into

$$u(w, x, y, z) = f(q, r, s)$$

gives our solution. It's valid where

$$x + y + z \neq 0$$
, $w^2 + \frac{(x+y+z)^2}{3} > 1$.

2. (a) Solve Burgers' Equation

$$\frac{\partial u}{\partial t}(t,x) + u(t,x)\frac{\partial u}{\partial x}(t,x) = 0$$

with initial data

$$u(0,x) = -\frac{x}{\sqrt{1+x^2}}.$$

You should get a quartic equation for u with coefficients which are polynomials in t and x. You needn't solve this quartic.

(b) For the solution you obtained in the previous part, find u(t,0). For which values of t does uniqueness fail?

Solution:

(a) In general the initial value problem for Burger's Equation with initial data

$$u(0,x) = f(x)$$

was shown in lecture to be given by the implicit equation

$$u = f(x - ut).$$

In this case,

$$u = -\frac{x - ut}{\sqrt{1 + (x - ut)^2}}.$$

Squaring this,

$$u^2 = \frac{(x - ut)^2}{1 + (x - ut)^2},$$

or

$$t^2u^4 - 2txu^3(1 - t^2 + x^2)u^2 + 2txu - x^2 = 0.$$

(b) substuting x = 0 gives

$$t^2u^4 + (1 - t^2)u^2 = 0.$$

For $t \leq 1$ the only solution is u = 0. For |t| > 1 we have the additional solutions

$$u = \pm \sqrt{t^2 - 1}.$$

3. Solve the initial value problem

$$u(0, x) = f(x)$$

for the first order scalar equation

$$\frac{\partial u}{\partial t}(t,x) + \frac{1}{2} \left(\frac{\partial u}{\partial x}(t,x) \right)^2 + \frac{1}{2}x^2 = 0.$$

Note that fully eliminating parameters is not possible with f unspecified. The best you can do it two equations with one extra variable. Solution:

$$F(t, x, u, u_t, u_x) = u_t + \frac{1}{2}u_x^2 + \frac{1}{2}x^2.$$

We can use¹

$$H(t, x, u, p_t, p_x, p_u) = -\frac{p_t}{p_u} + \frac{1}{2} \left(-\frac{p_x}{p_u}\right)^2 + \frac{1}{2}x^2.$$

The characteristic equations are then

$$\frac{\partial t}{\partial \tau}(s,\tau) = -\frac{1}{p_u(s,\tau)},$$

$$\frac{\partial x}{\partial \tau}(s,\tau) = \frac{p_x(s,\tau)}{p_u(s,\tau)^2},$$

$$\frac{\partial u}{\partial \tau}(s,\tau) = \frac{p_t(s,\tau)}{p_u(s,\tau)^2} - \frac{p_x(s,\tau)^2}{p_u(s,\tau)^3},$$

$$\frac{\partial p_t}{\partial \tau}(s,\tau) = 0,$$

$$\frac{\partial p_x}{\partial \tau}(s,\tau) = -x(s,\tau),$$

$$\frac{\partial p_u}{\partial \tau}(s,\tau) = 0.$$

Half of the initial conditions are

$$x = s$$
, $t = 0$, $u = f(s)$.

For the other half we need to figure out the partial derivatives of u initially. Clearly we need

$$-\frac{p_x(s,0)}{p_u(s,0)} = \frac{\partial u}{\partial x}(t(s,0), x(s,0)) = f'(s).$$

The original partial differential equation then forces

$$-\frac{p_t(s,0)}{p_u(s,0)} = \frac{\partial u}{\partial t}(t(s,0), x(s,0)) = -\frac{1}{2}f'(s)^2 - \frac{1}{2}s^2.$$

A simple choice is

$$p_t(s,0) = -\frac{1}{2}f'(s)^2 - \frac{1}{2}s^2, \qquad p_x(s,0) = f'(s), \quad p_u(s,0) = -1.$$

¹We can multiply this by p_u^2 to clear denominators, but that turns out not to simplify things.

The solution of the characteristic inital value problem is then

$$p_{u}(s,\tau) = -1,$$

$$t(s,\tau) = t,$$

$$p_{t}(s,\tau) = -\frac{1}{2}f'(s)^{2} - \frac{1}{2}s^{2},$$

$$x(s,\tau) = s\cos t + f'(s)\sin t,$$

$$p_{x}(s,\tau) = -s\sin t + f'(s)\cos t,$$

$$u(s,\tau) = f(s) + \frac{1}{2}\left(f'(s)^{2} - s^{2}\right)t.$$

The closest we can get to an explicit solution is the pair of equations

$$x = s \cos t + f'(s) \sin t$$
, $u = f(s) + \frac{1}{2} (f'(s)^2 - s^2) t$.

relating s, t, u, and x.