MA 342H Assignment 2 Due 14 March 2018

Id: 342H-2017-2018-2.m4,v 1.1 2018/03/07 14:36:26 jgs Exp jgs

1. Show that

$$k(x) = -\frac{\exp(-\|x\|)}{4\pi \|x\|}$$

is a fundamental solution for

$$p(\partial) = \partial_1^2 + \partial_2^2 + \partial_3^2 - 1$$

in \mathbf{R}^3 .

Hint: Use Green's second identity on the region

$$\int_{\Omega} (u \operatorname{div} \operatorname{grad} v - v \operatorname{div} \operatorname{grad} u) = \int_{\partial \Omega} (u \operatorname{grad} v - v \operatorname{grad} u) \cdot n$$

where $\partial\Omega$ is the boundary of Ω and n is the exterior unit normal there. You'll want

$$\Omega = \{ x \in \mathbf{R}^3 : \epsilon < ||x|| < \rho \}.$$

u = k and $v = \varphi \in \mathcal{D}(\mathbf{R}^3)$.

2. (a) Find a fundamental solution for the differential operator

$$p(\partial) = \partial^2 + 2\partial + 2$$

on \mathbf{R} .

(b) Use the fundamental solution you just found to solve the initial value problem for the inhomogeneous equation

$$u''(x) + 2u'(x) + 2u(x) = f(x), \quad u(0) = \alpha, \quad u'(0) = \beta.$$

If you didn't manage to find a fundamental solution then just take as given that there is one and call it k.