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1. For which p, q, r is the scaling u = λpu, t = λqt, x = λrx a symmetry
of the cubic non-linear wave equation

utt − c2uxx + u3 = 0?

Solution: From the chain rule,

utt − c2uxx + u3 = λp−2qutt − c2λp−2ruxx + λ3pu3.

To ensure that this is zero if and only if utt − c2uxx + u3 is, we need it
to be a non-zero multiple of utt − c2uxx + u3. This happens if and only
if q = r = −p.

2. Show that for solutions of the cubic non-linear wave equation the energy
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is constant.
Hint: Of the proofs of energy conservation for the ordinary wave equa-
tion presented in class, only the last one, the one with the trapezoids,
can be adapted to this problem.
Solution: The differential form of energy conservation is again

ǫt = µx + (utt − c2uxx + u3)ut = µx
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for solutions. Here
µ = c2utux,

as before. Integrating over the trapezoid defined by

0 ≤ t ≤ T, x− ct ≥ a− cT, x+ ct ≥ b+ cT

gives, as in class,
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The second summands on the right are new, but they don’t change the
fact that the integrands are everywhere non-negative. It follows then
that ∫ b
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Similarly, integration of ǫt = µx over the trapezoid

0 ≤ t ≤ T, x+ ct ≥ a+ cT, x− ct ≥ b− cT
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From the squeeze principle for limits it follows that∫
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does and that the integrals are equal.


