MAU34215 Assignment 3
Due 5 November 2025
Solutions

1. In the notes and in lecture we mostly restricted our attention to bounded
solutions and bounded initial data. There were good reasons for this
but unbounded data and solutions do occur in applications. It’s still
possible to draw some useful conclusions provided the data aren’t too
badly unbounded.

(a) Find solutions to the usual initial value problem

ou 0*u
for t > 0 and z € R with
u(0,z) = f(z)

with the following initial data:
i.
f(z) = exp(rz),
ii.
f(x) = exp(—rz),
iii.
f(z) = cosh(rz).
Here r is a real number.

Note: If we exclude the rather uninteresting case of r = 0 then
these f’s are unbounded, so few of the the theorems from lecture
or the notes apply. Depending on how you solve the problem
you may therefore need to check some things which you could
otherwise use those theorems for.

Solution: The most straightforward option is to use the explicit
solution formula

1 (z—y)?
ult,z) = mexp( —) Fy) dy.
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For the first datum this gives

u(t,z) = exp (- (5’;4;3)2> exp(ry) dy
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Now by a simple linear change of variable

1 exp (z =y +2krt)? ay =
Varkt 4kt
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u(t, z) = exp(kr’t + rx).

The explicit solution formula was only proved for bounded f so we
don’t actually know that this is a solution but it clearly satisfies
the initial conditions and an easy calculation gives

%(t, r) = krtexp(kr’t +rx),
9,
8_Z(t’ x) = rexp(kr’t + rx),
and o2
8_Z(t’ z) = r? exp(kr’t + ra),
x
S0 5 52
u u

This solves the first problem. There is a better way to solve this
problem though. One of the few things we did with the diffusion
equation before imposing boundedness assumptions was to find
symmetries, one of which was

v2t VL

(Gou)(t, z) = exp (E - %) ult, @ — vt).
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Taking
v = —2kr

and the trivial solution
u(t,z) =1
we get that
exp(kr?t + rz)

is a solution and it clearly satisfies the first initial condition.
While we could solve second one the same way it’s simpler to note
that no assumptions were made on r beyond the fact that it’s real
so we can just substitute —r for r, which gives

u(t,r) = exp(kr*t — rx).

For the third we can use linearity to say that if the two func-
tions above are solutions to the diffusion equation then so is their
average

exp(kr?t +rx) + exp(kr®t — ra)

N 2

exp(rz) + exp(—rzx)
2

u(t, x)

= exp(kr?t) = exp(kr?t) cosh(rz).

Show that if
|f(z)| < Cexp(ra)

or

|f ()] < Cexp(—rz)

for some real C' and r then the initial value problem has a unique
solution u satisfying

lu(t, z)| < Cexp(kr’t +rz)
or
lu(t, z)| < Cexp(kr’t —rx),

respectively, for all ¢ > 0 and =z € R.

Hint: Tt’s certainly possible to follow the existence and unique-
ness proofs from the notes making various changes to fit these



new hypotheses and conclusions but those proofs were long and
complicated. Can you use symmetries instead?

Solution: Because of the spatial reflection symmetry of the diffu-
sion equation, or just the fact that we can substitute —r for r, it
suffices to consider only the case

|f(z)] < Cexp(ra).

We use the symmetry
%t
(Gyu)(t,x) = exp (U— — E) u(t, z — vt)

from the notes. Define f by
f(@) = exp(—ra)f(z).
Then f is bounded. In fact
@) <C

for all z. It follows that there is a unique bounded solution u to
the diffusion equation with

w(0,z) = f(z).

In fact we saw that this solution satisfies the same bounds as f,

SO
a(t, x)| < C

forallt > 0 and x € R. Let u = G_o,u. In other words,
u(t,z) = exp(kr’t + ro)a(t, v + 2krt)
Then u satisfies the diffusion equation and
u(0, ) = exp(ra)a(0, z) = exp(rz) f(z) = f(z).
Also
lu(t, )| = exp(kr®t + ra)|a(t, x + 2krt)| < Cexp(kr’t + rz).
The above argument gives existence, but for uniqueness we need
one additional step. For any solution of the initial value problem
for w which satisfies the bound the function Gop,u solves the ini-

tial value problem as u and we already have uniqueness for this
problem so Gy, = .



(c) Show that if
|f(z)] < C cosh(rz)

for some real C' and r then the initial value problem has a solution
u satisfying
lu(t, z)| < Cexp(kr?t) cosh(rz).

forall t > 0 and z € R.

Hint: Uniqueness is still true with these hypotheses but I haven’t
asked you prove it, only existence. Again, it’s possible, but un-
necessary, to follow the existence proof from the notes. Can you
use linearity instead?

Solution: Write
f(@) = f+(2) + f-(2)

where
B exp(rz)
fola) = exp(rz) + exp(—rz)
and (—ra)
B exp(—rzx
J-(w) = 2exp(rx) + exp(—rz)
Then 1 1
flz) = §f+($) + §f—(1’),
|+ ()] < Cexp(ra),
and

|f-(2)] < Cexp(—rx).

From the previous part of this problem we know that there are
solutions u, and u_ to the diffusion equation satisfying the initial
conditions

u(0,2) = fy(z)
and

u-(0,x) = f_(x)
and the bounds

luy (t, )| < Cexp(kr’t + rx)



and
lu_(t,x)| < Cexp(kr’t —rz).

Let
1 N 1
u = —-u —U_.
2t 9

By linearity we know that u satisfies the diffusion equation. It
also satisfies the initial condition u(0,z) = f(x) and the bound

lu(t, r)| < Cexp(kr’t) cosh(rz).

Suppose u is a solution to the initial value problem

ou d%u
S (ta) - k@(t x) =0, u(0,z) = f(x)

where f is bounded and continuous. Prove that

[ wteaan < [ isa

Solution: The hypotheses of our uniqueness theorem are satisfied
and we know that in that case the unique solution is given by the
explicit formula

) = \/ﬁ/_:oem (—%) f(y)dy

otto)l = | [ (<) s
and

/_;w|u(t,x)ydx:/+°0'\/m/+oo ( %Z;)?) f(y)dy‘ da.

The absolute value of an integral is always less than or equal to
the absolute value of the integral so

+00 400 +o00
[ Tl [T exp(—”m))w )| dy da.
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u(t,x
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The factor 1/v4rkt is constant and so can be brought inside the
inner integral. By Fubini we can then exchange the integrals, so

+oo +oo  poo —_ )2
[ Twteonaes [ e (< i) s

The factor |f(y)| is a constant as far as the inner integral is con-
cerned, so we can bring it outside the inner integral, obtaining

/_:O lu(t, z)| dz < /_::O |f(y)|/_:O \/jwmexp (—%) dx dy
< [ iy

oo

This is what we were meant to prove, except for the name of the
variable of integration on the right hand side, which is irrelevant.

With hypotheses as above prove that the inequality above is strict
if and only if there are points x; and xy where f(x;) >0 and

f(l‘g) < 0.

Solution: If there are no such points then either f(z) > 0 for all
x or f(x) <0 for all x. In the former case our positivity theorem
guarantees that u(¢,z) > 0 for all ¢ > 0 and all z. But then

/+o° lu(t, 2)] dx = /+Oou(t, 2) da

o0 [e.9]

and

/ T@lde [ fa) de.

[ee] -

and we already know that

+oo +o0o
/ u(t,x)dr = f(x)dx.

/m lu(t, z)| dz = /+°° ult, ) dz.

o [e.e]

SO

The argument for the case where f(z) <0 for all z is the same,
except that we use —u in place of u. Thus the inequality above is
strict only if there are x; and x5 with f(x1) > 0 and f(zs) < 0.
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To prove the converse we note that if there are x; and xy with
f(z1) > 0 and f(x2) < 0 then the integrand in

/ e (—%) F(y) dyd

o0

is continuous and changes sign so the absolute value of the integral
is strictly less than the integral of the absolute value, and so

Ry (-5 ) sy s

We can therefore run the argument from the previous part with
strict inequalities in place of non-strict ones to obtain

/m lu(t, )| dz < /m \f(2)| de.

o0 —00

3. Solve Burgers’ equation

ou ou B

with initial data

u(0,2) =+ V1 + 22

Solution: For general initial data f the solution to

u(0,z) = f(x)

is given by solving
u= f(x —ut).

In this case

flx)=z+V1+2?
so a bit of algebra gives the equations
u=2x—ut+ 1+ (x—ut)?

(1+t)u—2=V1+ 22— uts + ut?,
(142t +tHu? — 2(1 + t)au + 22 = 1 + 2 — 2utx + u*t?,
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(1+2t)u* — 2zxu—1 =0,

and
20 £ /422 +4(1+2t) x4 V1+ 2t + 22
U= = .
2(1+2t) 142t
In order to satisfy the initial conditions we need to take the + sign so
r+ V142t + 2?
u(t,x) = :
142t



