
MAU34215 Assignment 3
Due 5 November 2025

Solutions

1. In the notes and in lecture we mostly restricted our attention to bounded
solutions and bounded initial data. There were good reasons for this
but unbounded data and solutions do occur in applications. It’s still
possible to draw some useful conclusions provided the data aren’t too
badly unbounded.

(a) Find solutions to the usual initial value problem

∂u

∂t
(t, x)− k

∂2u

∂x2
(t, x) = 0

for t ≥ 0 and x ∈ R with

u(0, x) = f(x)

with the following initial data:
i.

f(x) = exp(rx),

ii.
f(x) = exp(−rx),

iii.
f(x) = cosh(rx).

Here r is a real number.
Note: If we exclude the rather uninteresting case of r = 0 then
these f ’s are unbounded, so few of the the theorems from lecture
or the notes apply. Depending on how you solve the problem
you may therefore need to check some things which you could
otherwise use those theorems for.
Solution: The most straightforward option is to use the explicit
solution formula

u(t, x) =
1√
4πkt

exp

(
−(x− y)2

4kt

)
f(y) dy.
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For the first datum this gives

u(t, x) =
1√
4πkt

exp

(
−(x− y)2

4kt

)
exp(ry) dy

=
1√
4πkt

exp

(
−(x− y)2 − 4krty

4kt

)
dy

=
1√
4πkt

exp

(
−(x− y + 2krt)2 − 4krtx− 4k2r2t2

4kt

)
dy

= exp(kr2t+ rx)
1√
4πkt

exp

(
−(x− y + 2krt)2

4kt

)
dy.

Now by a simple linear change of variable

1√
4πkt

exp

(
−(x− y + 2krt)2

4kt

)
dy =

1√
4πkt

exp

(
− z2

4kt

)
dz = 1

so
u(t, x) = exp(kr2t+ rx).

The explicit solution formula was only proved for bounded f so we
don’t actually know that this is a solution but it clearly satisfies
the initial conditions and an easy calculation gives

∂u

∂t
(t, x) = kr2 exp(kr2t+ rx),

∂u

∂x
(t, x) = r exp(kr2t+ rx),

and
∂2u

∂x2
(t, x) = r2 exp(kr2t+ rx),

so
∂u

∂t
(t, x)− k

∂2u

∂x2
(t, x) = 0.

This solves the first problem. There is a better way to solve this
problem though. One of the few things we did with the diffusion
equation before imposing boundedness assumptions was to find
symmetries, one of which was

(Gvu)(t, x) = exp

(
v2t

4k
− vx

2k

)
u(t, x− vt).
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Taking
v = −2kr

and the trivial solution

u(t, x) = 1

we get that
exp(kr2t+ rx)

is a solution and it clearly satisfies the first initial condition.
While we could solve second one the same way it’s simpler to note
that no assumptions were made on r beyond the fact that it’s real
so we can just substitute −r for r, which gives

u(t, x) = exp(kr2t− rx).

For the third we can use linearity to say that if the two func-
tions above are solutions to the diffusion equation then so is their
average

u(t, x) =
exp(kr2t+ rx) + exp(kr2t− rx)

2

= exp(kr2t)
exp(rx) + exp(−rx)

2
= exp(kr2t) cosh(rx).

(b) Show that if
|f(x)| ≤ C exp(rx)

or
|f(x)| ≤ C exp(−rx)

for some real C and r then the initial value problem has a unique
solution u satisfying

|u(t, x)| ≤ C exp(kr2t+ rx)

or
|u(t, x)| ≤ C exp(kr2t− rx),

respectively, for all t ≥ 0 and x ∈ R.
Hint: It’s certainly possible to follow the existence and unique-
ness proofs from the notes making various changes to fit these
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new hypotheses and conclusions but those proofs were long and
complicated. Can you use symmetries instead?
Solution: Because of the spatial reflection symmetry of the diffu-
sion equation, or just the fact that we can substitute −r for r, it
suffices to consider only the case

|f(x)| ≤ C exp(rx).

We use the symmetry

(Gvu)(t, x) = exp

(
v2t

4k
− vx

2k

)
u(t, x− vt)

from the notes. Define f̃ by

f̃(x) = exp(−rx)f(x).

Then f̃ is bounded. In fact

|f̃(x)| ≤ C

for all x. It follows that there is a unique bounded solution ũ to
the diffusion equation with

ũ(0, x) = f̃(x).

In fact we saw that this solution satisfies the same bounds as f̃ ,
so

|ũ(t, x)| ≤ C

for all t ≥ 0 and x ∈ R. Let u = G−2krũ. In other words,

u(t, x) = exp(kr2t+ rx)ũ(t, x+ 2krt)

Then u satisfies the diffusion equation and

u(0, x) = exp(rx)ũ(0, x) = exp(rx)f̃(x) = f(x).

Also

|u(t, x)| = exp(kr2t+ rx)|ũ(t, x+ 2krt)| ≤ C exp(kr2t+ rx).

The above argument gives existence, but for uniqueness we need
one additional step. For any solution of the initial value problem
for u which satisfies the bound the function G2kru solves the ini-
tial value problem as ũ and we already have uniqueness for this
problem so G2kru = ũ.
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(c) Show that if
|f(x)| ≤ C cosh(rx)

for some real C and r then the initial value problem has a solution
u satisfying

|u(t, x)| ≤ C exp(kr2t) cosh(rx).

for all t ≥ 0 and x ∈ R.
Hint: Uniqueness is still true with these hypotheses but I haven’t
asked you prove it, only existence. Again, it’s possible, but un-
necessary, to follow the existence proof from the notes. Can you
use linearity instead?
Solution: Write

f(x) = f+(x) + f−(x)

where
f+(x) = 2

exp(rx)

exp(rx) + exp(−rx)

and
f−(x) = 2

exp(−rx)

exp(rx) + exp(−rx)

Then
f(x) =

1

2
f+(x) +

1

2
f−(x),

|f+(x)| ≤ C exp(rx),

and
|f−(x)| ≤ C exp(−rx).

From the previous part of this problem we know that there are
solutions u+ and u− to the diffusion equation satisfying the initial
conditions

u+(0, x) = f+(x)

and
u−(0, x) = f−(x)

and the bounds

|u+(t, x)| ≤ C exp(kr2t+ rx)

5



and
|u−(t, x)| ≤ C exp(kr2t− rx).

Let
u =

1

2
u+ +

1

2
u−.

By linearity we know that u satisfies the diffusion equation. It
also satisfies the initial condition u(0, x) = f(x) and the bound

|u(t, x)| ≤ C exp(kr2t) cosh(rx).

2. (a) Suppose u is a solution to the initial value problem

∂u

∂t
(t, x)− k

∂2u

∂x2
(t, x) = 0, u(0, x) = f(x)

where f is bounded and continuous. Prove that∫ +∞

−∞
|u(t, x)| dx ≤

∫ +∞

−∞
|f(x)| dx.

Solution: The hypotheses of our uniqueness theorem are satisfied
and we know that in that case the unique solution is given by the
explicit formula

u(t, x) =
1√
4πkt

∫ +∞

−∞
exp

(
−(x− y)2

4kt

)
f(y) dy

so
|u(t, x)| =

∣∣∣∣ 1√
4πkt

∫ +∞

−∞
exp

(
−(x− y)2

4kt

)
f(y) dy

∣∣∣∣
and∫ +∞

−∞
|u(t, x)| dx =

∫ +∞

−∞

∣∣∣∣ 1√
4πkt

∫ +∞

−∞
exp

(
−(x− y)2

4kt

)
f(y) dy

∣∣∣∣ dx.
The absolute value of an integral is always less than or equal to
the absolute value of the integral so∫ +∞

−∞
|u(t, x)| dx ≤

∫ +∞

−∞

1√
4πkt

∫ +∞

−∞
exp

(
−(x− y)2

4kt

)
|f(y)| dy dx.
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The factor 1/
√
4πkt is constant and so can be brought inside the

inner integral. By Fubini we can then exchange the integrals, so∫ +∞

−∞
|u(t, x)| dx ≤

∫ +∞

−∞

∫ +∞

−∞

1√
4πkt

exp

(
−(x− y)2

4kt

)
|f(y)| dx dy.

The factor |f(y)| is a constant as far as the inner integral is con-
cerned, so we can bring it outside the inner integral, obtaining∫ +∞

−∞
|u(t, x)| dx ≤

∫ +∞

−∞
|f(y)|

∫ +∞

−∞

1√
4πkt

exp

(
−(x− y)2

4kt

)
dx dy

≤
∫ +∞

−∞
|f(y)| dy.

This is what we were meant to prove, except for the name of the
variable of integration on the right hand side, which is irrelevant.

(b) With hypotheses as above prove that the inequality above is strict
if and only if there are points x1 and x2 where f(x1) > 0 and
f(x2) < 0.
Solution: If there are no such points then either f(x) ≥ 0 for all
x or f(x) ≤ 0 for all x. In the former case our positivity theorem
guarantees that u(t, x) ≥ 0 for all t ≥ 0 and all x. But then∫ +∞

−∞
|u(t, x)| dx =

∫ +∞

−∞
u(t, x) dx

and ∫ +∞

−∞
|f(x)| dx

∫ +∞

−∞
f(x) dx.

and we already know that∫ +∞

−∞
u(t, x) dx =

∫ +∞

−∞
f(x) dx.

so ∫ +∞

−∞
|u(t, x)| dx =

∫ +∞

−∞
u(t, x) dx.

The argument for the case where f(x) ≤ 0 for all x is the same,
except that we use −u in place of u. Thus the inequality above is
strict only if there are x1 and x2 with f(x1) > 0 and f(x2) < 0.
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To prove the converse we note that if there are x1 and x2 with
f(x1) > 0 and f(x2) < 0 then the integrand in∫ +∞

−∞
exp

(
−(x− y)2

4kt

)
f(y) dy dx

is continuous and changes sign so the absolute value of the integral
is strictly less than the integral of the absolute value, and so

|u(t, x)| < 1√
4πkt

∫ +∞

−∞
exp

(
−(x− y)2

4kt

)
f(y) dy dx.

We can therefore run the argument from the previous part with
strict inequalities in place of non-strict ones to obtain∫ +∞

−∞
|u(t, x)| dx <

∫ +∞

−∞
|f(x)| dx.

3. Solve Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= 0

with initial data
u(0, x) = x+

√
1 + x2.

Solution: For general initial data f the solution to

u(0, x) = f(x)

is given by solving
u = f(x− ut).

In this case
f(x) = x+

√
1 + x2

so a bit of algebra gives the equations

u = x− ut+
√

1 + (x− ut)2,

(1 + t)u− x =
√
1 + x2 − 2utx+ u2t2,

(1 + 2t+ t2)u2 − 2(1 + t)xu+ x2 = 1 + x2 − 2utx+ u2t2,
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(1 + 2t)u2 − 2xu− 1 = 0,

and

u =
2x±

√
4x2 + 4(1 + 2t)

2(1 + 2t)
=

x±
√
1 + 2t+ x2

1 + 2t
.

In order to satisfy the initial conditions we need to take the + sign so

u(t, x) =
x+

√
1 + 2t+ x2

1 + 2t
.
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