MAU34215 Assignment 2
Due 15 October 2025
Solutions

1. Consider the initial value problem

u((),x) :f(x)’ E(O’x) :g(CL’)

for the wave equation

Pu 0%

oz Com 0

in R x [0,400) with Dirichlet boundary conditions at = 0, i.e.

(a)

u(t,0) = 0.

What conditions on f and ¢ are needed to obtain a classical so-
lution.

Solution: ¢ should be continuously differentiable and f should
be twice continuously differentiable. Also f(0) =0, ¢(0) = 0 and
f'(@) =0

For f and g satisfying the conditions you gave in the first part
prove that there is at least one classical solution.

Solution: We solve the initial value problem in all of R? with
initial data which are odd extensions of f and g, so

f(@) = =f(=x), g(z)=—g(-x)

for x < 0. The extended f and g are twice continuously differ-
entiable and once continuously differentiable, respectively, so this
initial value problem has a classical solution u. The functions u
and u, where

u(t,x) = —u(t, —x)

satisfy the same initial conditions and so, by the uniqueness the-
orem for solutions in R?, are the same function. In other words,

u(t,z) = —u(t, —x)
Taking x = 0 in this equation we see that

u(t,0) =0,
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so the Dirichlet boundary condition is satisfied. So the restriction
of this u to R x [0, +00) is a solution to the original, unextended,
initial value problem.

The preceding argument didn’t give an explicit solution, since
none was required, but it’s very easy to obtain one if we want it.
D’Alembert gives

x+ct
u(t,z) = %f(x—ct)+%f(x+ct) +2_c/t g(y)dy.

Here f, g and u are the extended functions but if = > c|t| all the
points where we evaluate them are in the original region so the
formula above also works as an explicit formula for the original
problem. If ¢t > x > 0 then we write

fle—ct) = =flct —x)
and split the integral

z+ct 0 z+ct
/ 9(y) dy =/ 9(y) dy+/ 9(y) dy.
T r—ct 0

—ct

In the first integral we write

to get

[ swar=— " s

or, after a change of variable,

0 ct—zx
/ g(y)dy = —/ 9(y) dy.
r—ct 0
So

x4ct ct—zx xr+ct xr4ct
| swar=— [ sway+ [ o= [ gty
T 0 0 C

—ct t—x

The explicit solution formula in this case is therefore

x+ct
u(t,x):—%f(ct—x)+%f(:v+ct)+—/ g(y)dy.

2C ct—x
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Here again we are evaluating all functions in the original domain
so these are the unextended functions and so this makes sense as
a solution to the original problem. A similar argument in the case
ct < —x gives

ltx) = 3 —et) = 5o =)= 5 [ gy

For f and g satisfying the conditions you gave in the first part
prove that there is at most one classical solution.

Solution: There are at least three ways to do this. You can use
Green’s theorem in an appropriately shaped regions to show that
any solution must be given by the formulae formulae in the solu-
tion to the previous part. Or you can extend to two hypothetical
solutions to R? by making them odd functions x, show that the
extensions satisfy the initial value problem for the wave equation
in R? with the same initial data, and then refer to the uniqueness
theorem for that problem. Or you can use the usual energy con-
servation and linearity argument: If there were two solutions their
difference would be a solution with zero initial data, hence zero
initial energy, and so would have zero energy for all time, which
is possible only if it’s the zero solution.

Which of these options should we choose? The first option is
straightforward but it’s messy since we need to choose three dif-
ferent regions for the three different cases. The second option is
not as easy as it might seem. The difficulty is in showing that
the second partial derivative 9%u/dz?* for the extended u exists
at the boundary x = 0. Once you realise this isn’t obvious it’s
not too difficult to prove, but it can be avoided by choosing the
third option. Energy conservation for the Dirichlet problem on
R X [a, +00) was already proved in the notes so we just use that
with a = 0 and we are done.



2. Show that

2

(Ju)(t,z) = tl%exp (-4%) w(=1/t,2/t)

is a symmetry of the diffusion equation.

Solution: Differentiating repeatedly,

exp (—f—;) 2% exp (_f_ijt>

- WU(—l/tw/t) + WU(—l/tax/t),

oJu eXp <_f_l:t> ou € eXp <_Z:t>
W(tal’) = T%(—l/tw/ﬂ T T o u(=1/t,z/t),
and
9% Ju exXp (_Z_I:t) 9%u T exp <_Z_Ijt) ou
922 (t,r) = 1572 ax2(—1/t,$/t) - Wa—x(—l/t,flf/ﬂ
exp <—ﬁ> 2% exp (—ﬁ)
— g WL/t e/t + —a e —u(=1/t 3 /),

SO

_ exp <_Z_k2t> (8u 0%u ) '

£5/2 E(_l/tax/t)—k%(—l/t,x/t)

It follows that Ju satisfies the diffusion equation everywhere it’s defined
if and only u satisfies the diffusion equation everywhere it’s defined.



3.

(a) In the notes we saw that

(Sanu)(t,z) = Mu(t/o?, z/a)

is a symmetry for all non-zero a and A. In particular, for any p
and any positive «

(Sa.artt)(t, 2) = aPu(t/a?, z/a)
is a symmetry. Show that for each p the following two conditions

area equivalent:

e wu is invariant under the transformations S, 4» for all positive
a?

o There is a function ¢ such that
u(t,z) = t"?o(x/Vkt)

Note that we’re not assuming, for the moment, that u is a solution
of the diffusion equation.

Solution: Suppose that u is invariant under the transformations
Sa,avr for all positive o, i.e. that S, opu = w. Then

u(t,z) = oPu(t/a? x/a)
for all & and so, in particular, for o = Vkt:
u(t,z) = (k)" *u(1/k, z/Vkt)

Thus
u(t, x) = %o (x/Vkt)
with
p(y) = K Pu(1/k,y).
This is the same argument that appeared in the notes in the spe-
cial case p = 0.
Conversely, suppose

u(t, ) = %o (x/Vkt)



Then

(Saaru)(t,z) = aPult/a® z/a) = aP(t/a?)"*¢ ( %7&)

= t"2p(x/Vkt) = u(t, @),

50 Saartt = u. In other words u is invariant under the transfor-
mations S, » for all positive a.

What ordinary differential equation does the function ¢ in the
preceding part need to satisfy in order for u to be a solution of
the diffusion equation.

Solution: If

u(t, z) = %o (x/Vkt)

then, by the chain rule,

0 1
a—?(t, T) = —§k’1/2t(p’3)/2x90’(a:/\/g) + gt(p’mﬂ(p(a:/\/ﬁ),
O ) = k2402 e V),
and
u —1,(p—2)/2, 1
Then
ou 0*u
—(t —k—(t
1) — k2 4 (1,)

=t (o V) 4 e VD) — Bt VD)

So u satisfies the diffusion equation is satisfied if and only if ¢
satisfies the equation

©"(y) %s@’(y) - gw(y) = 0.

Show that when p is a non-negative integer the equation has a
solution which is a polynomial of degree p.



Solution: One option is to substitute

p

ply) = ey’

J=0

into the differential equation and see what conditions the coeffi-
cients need to satisfy.

p
Py = dey’ ™
j=1

and
p

¢ (y) = Zj(j — Dejy’ 2

p p
)= jey =Y gy
=1 =0

The two sums are the same, since the j = 0 summand is zero. We
can change indices in the sum for the second derivative to get

SO

N

p—

") =Y G+ 15+ 22y

<
Il
o

If we set ¢, =0 for k > j, which makes sense since those coeffi-
cients are all zero, then we can equally well write this as

¢'(y) = Z(j +1)(J + 2)ep2y’
So
©"(y) + %w/(y) - gw(y)
= Z {(J +1)(J +2)cj2 + %(] —p)c;| 2 = 0.

A polynomial is zero if and only if all of its coefficients are so

©"(y) gso’(y) - gs@(y) =0
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if and only if

20+ )7 +2)¢j2 = (2 = 5)5-

for all j. For j > p this just says 0 = 0 and so doesn’t restrict the
choice of coefficients in any way. For j =p —1 it says 0 = ¢,_1,
so that coefficient must be zero. For 0 < j < p — 2 it determines
uniquely ¢; once c¢;;9 is known. So we can specify ¢, arbitrarily
and then all the other coefficients are determined.



