MAU34215 Assignment 1
Due 1 October 2025
Solutions

1. What are the orders of the following differential equations? Which of
them are linear?

e Helmholtz equation:

o FEikonal equation:

o\ ? ou 2
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e Euler-Tricomi equation:
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e Minimal surface equation:
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o Aller-Lytkov equation:
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Solution: The eikonal equation is of first order. The Helmholtz equa-
tion, Euler-Tricomi equation and minimal surface equation are all of
second order. The Aller-Lytkov equation is of third order. The bihar-
monic equation is of fourth order. All but the eikonal equation and
minimal surface equation are linear.
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2.

(a)

Show that if the initial data f and g are infinitely differentiable
then so is the solution u to the initial value problem for the wave
equation.

Solution: Integrating an infinitely differentiable function gives an
infinitely differentiable function so the functions ¢ and v defined
in the notes by

o) =31+ 5 [ oy

v = 51+ 5 [ o)y

are infinitely differentiable. Then
u(t,x) = p(x +cs —ct) + P(x — cs + ct)
is also infinitely differentiable.

Show the following sort of converse: If u is infinitely differentiable
for t > s then f and g are infinitely differentiable.

Solution: Choose a 7 > s and let

f) = u(ra). i) = Wir)

f is the restriction of the function u from the set (s,4+00) x R,
where it is infinitely differentiable, to the subset {7}, and so is in-
finitely differentiable. Similarly, g is the restriction of the infinitely
differentiable function Ou/0t, and so is infinitely differentiable.

The initial value problem
o*u 0%
—— C —
ot? Ox?
_ < du .
’LL(T,.’L') :f(.fE), E(Tax) :g(l')
has at most one solution by the uniqueness theorem from the
notes. If it has a solution then that solution is infinitely differen-
tiable for all ¢ by the previous part of this problem. But we know
it has a solution, namely @ = u, so u infinitely differentiable not
just for t > s, as was assumed, but for all values of ¢. du/0t is also
then infinitely differentiable. But then f and g, as the restrictions
of u and Ou/0t to {s} x R, are also infinitely differentiable.

=0,
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3. Suppose that a solution of the wave equation on the interval [a, b] sat-
isfies the Robin boundary conditions

ou ou
%(t, a) — au(t,a) =0, %(t, b) + Bu(t,b) = 0.

(a) Show that

2 b 2 2 2
ac 9 1 (0u ¢ (Ou
- u(t,a) +/a 5 (_815 (t,x)) + 5 (—8$(t,x)>

is independent of t.

Solution: 'The argument follows the one given for the Dirichlet
and Neumann conditions in the notes. We define functions

_ L (9u\® @ (ou)?
P=5\ ot 2 \ ot

_ 20udu
1= 5 ox

2
d:c—l—%u(t, b)?

and

in the rectangle

R = [t1,ts] X [a,b].
Then

/abp(tl,x) dx+/t2q(t,b) dt—/bp(t27x) dx_/t2 q(t,a)dt

t1 a t1
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because u is a solution of the wave equation. Also,

/abp(tj,x) dw = /ab [% (%(@,@)2 ! 62_2 (%<tj’x))2] "

So far everything has proceeded exactly as for the Dirichlet or
Neumann boundary conditions. In those cases the next step was
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to say that the two ¢ integrals vanish because of the boundary
conditions. That’s no longer true here though. Instead we have

The fundamental theorem of calculus therefore gives

2

- [ atta)de = S [ultn o) (e

Similarly,

/tt2 q(t, b) dt = %62 [u(th b)2 _ U(tg, b)2j| '

Combining the equations above we see that

2 b 2 2 2
ac 2 7|1 (2u ¢ (Ou
5t a) +/a 2 (at (t1’$>> 3 (895(“’33))

is equal to

2 b
%u(tg,a)%l-/

2
dac—i—%u(tl, b)?

2
dx—i—%u(tg, b)2.

1 8u(t ) 2+02 8u<t ) 2
— | =(ta,x — | =—(to, 2

2\ ot > 2 \ oz %
Prove uniqueness of solutions to the initial value problem with

Robin boundary conditions under the assumption that o and g
are non-negative.

Solution:  Suppose u; and uy are solutions to the initial value
problem with Robin boundary conditions and the same initial
data. Then u = u; — uy is a solution with zero initial data. It

follows that
1 [/ 0u 22 (ou 2
3 (Grea) +5 (o)

2 b 2
EU(t,(wz—}—/ BC
2 a
4
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is zero initially and hence is zero for all ¢. Since each summand is
non-negative they must all be zero. The integrand is non-negative
and continuous so if the integral is zero then the integrand is zero
everywhere. But this means that u is zero everywhere.

Does your argument for the preceding part work without that
assumption?

Solution: No. Without that assumption we can’t say that the
first and last terms are non-negative. Of course this doesn’t mean
that uniqueness of solutions necessarily fails, merely that this ar-
gument can’t be used to prove it.



