
MAU34215 Assignment 1
Due 1 October 2025

Solutions

1. What are the orders of the following differential equations? Which of
them are linear?

• Helmholtz equation:

∂2u

∂x2
+
∂2u

∂y2
+ u = 0,

• Biharmonic equation:

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
= 0,

• Eikonal equation: (
∂u

∂x

)2

+

(
∂u

∂y

)2

− 1 = 0,

• Euler-Tricomi equation:

∂2u

∂x2
+ x

∂2u

∂y2
= 0,

• Minimal surface equation:[
1 +

(
∂u

∂y

)2
]
∂2u

∂x2
− 2

∂u

∂x

∂u

∂y

∂2u

∂x∂y
+

[
1 +

(
∂u

∂x

)2
]
∂2u

∂y2
= 0,

• Aller-Lytkov equation:

a
∂3w

∂t∂x2
+ d

∂2w

∂x2
− ∂w

∂t
= 0.

Solution: The eikonal equation is of first order. The Helmholtz equa-
tion, Euler-Tricomi equation and minimal surface equation are all of
second order. The Aller-Lytkov equation is of third order. The bihar-
monic equation is of fourth order. All but the eikonal equation and
minimal surface equation are linear.
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2. (a) Show that if the initial data f and g are infinitely differentiable
then so is the solution u to the initial value problem for the wave
equation.
Solution: Integrating an infinitely differentiable function gives an
infinitely differentiable function so the functions ϕ and ψ defined
in the notes by

ϕ(z) =
1

2
f(z) +

1

2c

∫ p

z

g(y) dy,

ψ(z) =
1

2
f(z) +

1

2c

∫ z

p

g(y) dy

are infinitely differentiable. Then

u(t, x) = ϕ(x+ cs− ct) + ψ(x− cs+ ct)

is also infinitely differentiable.
(b) Show the following sort of converse: If u is infinitely differentiable

for t > s then f and g are infinitely differentiable.
Solution: Choose a τ > s and let

f̃(x) = u(τ, x), g̃(x) =
∂u

∂t
(τ, x).

f̃ is the restriction of the function u from the set (s,+∞)×R,
where it is infinitely differentiable, to the subset {τ}, and so is in-
finitely differentiable. Similarly, g̃ is the restriction of the infinitely
differentiable function ∂u/∂t, and so is infinitely differentiable.
The initial value problem

∂2ũ

∂t2
− c2

∂2ũ

∂x2
= 0,

ũ(τ, x) = f̃(x),
∂u

∂t
(τ, x) = g̃(x)

has at most one solution by the uniqueness theorem from the
notes. If it has a solution then that solution is infinitely differen-
tiable for all t by the previous part of this problem. But we know
it has a solution, namely ũ = u, so u infinitely differentiable not
just for t > s, as was assumed, but for all values of t. ∂u/∂t is also
then infinitely differentiable. But then f and g, as the restrictions
of u and ∂u/∂t to {s} ×R, are also infinitely differentiable.
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3. Suppose that a solution of the wave equation on the interval [a, b] sat-
isfies the Robin boundary conditions

∂u

∂x
(t, a)− αu(t, a) = 0,

∂u

∂x
(t, b) + βu(t, b) = 0.

(a) Show that

αc2

2
u(t, a)2+

∫ b

a

[
1

2

(
∂u

∂t
(t, x)

)2

+
c2

2

(
∂u

∂x
(t, x)

)2
]
dx+

βc2

2
u(t, b)2

is independent of t.
Solution: The argument follows the one given for the Dirichlet
and Neumann conditions in the notes. We define functions

p =
1

2

(
∂u

∂t

)2

− c2

2

(
∂u

∂t

)2

and
q = c2

∂u

∂t

∂u

∂x

in the rectangle
R = [t1, t2]× [a, b].

Then∫ b

a

p(t1, x) dx+

∫ t2

t1

q(t, b) dt−
∫ b

a

p(t2, x) dx−
∫ t2

t1

q(t, a) dt

=

∫∫
R

(
∂q

∂x
− ∂p

∂t

)
dA

Now
∂q

∂x
− ∂p

∂t
= −

(
∂2u

∂t2
− c2

∂2u

∂x2

)
∂u

∂t
= 0

because u is a solution of the wave equation. Also,∫ b

a

p(tj, x) dx =

∫ b

a

[
1

2

(
∂u

∂t
(tj, x)

)2

+
c2

2

(
∂u

∂x
(tj, x)

)2
]
dx.

So far everything has proceeded exactly as for the Dirichlet or
Neumann boundary conditions. In those cases the next step was
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to say that the two q integrals vanish because of the boundary
conditions. That’s no longer true here though. Instead we have

q(t, a) = c2
∂u

∂t
(t, a)

∂u

∂x
(t, a)

= αc2u(t, a)
∂u

∂t
(t, a)

=
αc2

2

d

dt
u(t, a)2.

The fundamental theorem of calculus therefore gives

−
∫ t2

t1

q(t, a) dt =
αc2

2

[
u(t1, a)

2 − u(t2, a)
2
]
.

Similarly, ∫ t2

t1

q(t, b) dt =
βc2

2

[
u(t1, b)

2 − u(t2, b)
2
]
.

Combining the equations above we see that

αc2

2
u(t1, a)

2+

∫ b

a

[
1

2

(
∂u

∂t
(t1, x)

)2

+
c2

2

(
∂u

∂x
(t1, x)

)2
]
dx+

βc2

2
u(t1, b)

2

is equal to

αc2

2
u(t2, a)

2+

∫ b

a

[
1

2

(
∂u

∂t
(t2, x)

)2

+
c2

2

(
∂u

∂x
(t2, x)

)2
]
dx+

βc2

2
u(t2, b)

2.

(b) Prove uniqueness of solutions to the initial value problem with
Robin boundary conditions under the assumption that α and β
are non-negative.
Solution: Suppose u1 and u2 are solutions to the initial value
problem with Robin boundary conditions and the same initial
data. Then u = u1 − u2 is a solution with zero initial data. It
follows that

αc2

2
u(t, a)2+

∫ b

a

[
1

2

(
∂u

∂t
(t, x)

)2

+
c2

2

(
∂u

∂x
(t, x)

)2
]
dx+

βc2

2
u(t, b)2
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is zero initially and hence is zero for all t. Since each summand is
non-negative they must all be zero. The integrand is non-negative
and continuous so if the integral is zero then the integrand is zero
everywhere. But this means that u is zero everywhere.

(c) Does your argument for the preceding part work without that
assumption?
Solution: No. Without that assumption we can’t say that the
first and last terms are non-negative. Of course this doesn’t mean
that uniqueness of solutions necessarily fails, merely that this ar-
gument can’t be used to prove it.
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