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Chapter 1

Introduction

Differential equations are equations involving an unknown function and its
derivatives, like
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All of these equations have names. Equation is the simple harmonic
oscillator equation. It appears in mechanics and many other places. Equation
[(T.0.2)] is the Van der Pol equation. It first appeared in electrical engineering.
Equation|(1.0.3)|is the Laplace equation. It appears in the study of gravitational
and electrostatic fields. Equation is the diffusion equation, also known as




the heat equation. It appears in study of diffusion, originally diffusion of heat
but it also applies to, for example, diffusion of chemical solutions. Equation
is the wave equation. It appears in the study of various kinds of waves,
e.g. electromagnetic, acoustic, etc., but not generally water waves. Equation
is Burgers’ equation. Unlike the wave equation Burgers’ equation is often
used as a simple model for water waves. Equation is the Korteweg—De
Vries equation. It is a more refined model of water waves, but still simpler than
real water waves. Equation is the Black-Scholes equation. It appears in
mathematical finance.

Some terminology is useful for describing these. We say that variables which
are differentiated are dependent variables, variables with respect to which we
differentiate them are independent variables, and variables which don’t appear
in derivatives at all are parameters. Note that which variables play which role
varies from equation to equation. x, for example, is a dependent variable in
the first two equations, an independent variable in the next five equations, and
doesn’t appear in the last equation. If there’s only one independent variable,
i.e. if we only differentiate with respect to one variable, then the derivatives
are ordinary derivatives and so the equation is called an ordinary differential
equation. If there is more than one then the derivatives are partial derivatives
and so the equation is called a partial differential equation, which is the subject
of these notes. In the list above equations|(1.0.1)[and [(1.0.2)[are ordinary, while
the others are all partial differential equations. Some knowledge of ordinary
differential equations is useful for studying partial differential equations, but for
what we’ll do here it’s not essential. The order of a differential equation is the
order of the highest derivative appearing in it. Equation is first order
and equation is third order while all the other equations above are second
order. Second order equations seem to be pervasive in mathematical physics.

The most important distinction in the theory of differential equations is
between linear and nonlinear equations. The distinction is somewhat subtle
though. A linear differential equation is a linear equation in the unknown func-
tion, i.e. the dependent variable, and its derivatives, the coefficients of which
are allowed to be functions of the independent variables and parameters, but
not of the dependent variable. It’s this last bit which tends to cause confusion.
In the list above equations|(1.0.1)}{(1.0.3)] [(1.0.4)} [(1.0.5)|and |(1.0.8)| are linear,
while [(1.0.2)} [(1.0.6)] and [(1.0.7)| are nonlinear. Equation |[(1.0.8)] for example, is
linear because the coefficients of the derivatives, v/dt, 8%v/0s?, dv/0ds and v,
the last of these being considered as a zeroeth order derivative of the unknown
function v, are 1, %0232, rs and —r, all of which are functions of the indepen-
dent variables t and s and the parameters r and o, but don’t depend on the
independent variable v. Equation by contrast, is nonlinear because if we
try to write it as linear equation for the derivatives du/dt, 93u/0x® and du/Ox
with coefficients 1, 1 and 6u then the first two are okay but 6u is a function of
the dependent variable u, which is not allowed. Note that constant functions
are functions, so 1 is a function of the independent variables ¢ and z, it’s just a
constant function. 6u, by contrast, is not a function of ¢ and x.




Chapter 2

Wave Equation

2.1 D’Alembert Solution

Suppose that u is a twice continuously differentiable function on R?2. For
this chapter we’ll label the coordinates on R? as ¢t and z, written in that order,
and in diagrams the ¢ will be vertical and the x axis will be horizontal. This
is slightly awkward since we are used to coordinate systems in the plane where
the first coordinate corresponds to the horizontal axis and the second one cor-
responds to the vertical. The letters ¢ and x for time and space coordinates are
far too well established to consider changing. Similarly the convention that in
space-time diagrams time corresponds to the vertical direction is fairly univer-
sal. The only other option to avoid listing the vertical coordinate before the
horizontal one would be to reverse the order of ¢t and z. Some authors do this,
but listing coordinates in alphabetical order is standard nearly everywhere else
and physicists largely switched from the convention of listing time last to listing
time last more than half a century ago so the conventions we’re using here are
probably the least bad option.

It’s helpful to introduce the auxiliary functions
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ferentiable.
Suppose that (t1,21) and (t2,z2) are points such that
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and set
(2.1.3) T(r)=t1+r(ta—t1), &r)=z1+7r(x2—21).
Then, by the chain rule
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for any function z which is at least once continuously differentiable. Integrating
from 7 = 0 to r = 1 and using the fundamental theorem of calculus we see that

Z(t2,$2) = z(tl,xl)

(2.1.5) Lo )
+ (t2 — tl)/o <8i + C@j:) (ty +r(te — t1), 21 +1(22 — 21)) dr.

This holds in particular for z = v and z = w. In the latter case note that
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so if, as we will assume from now until the end of this section, u satisfies the
wave equation, the integrand vanishes throughout the interval of integration.
We then conclude that

(2.1.7)

1
u(te, z2) = u(ty, x1) + (t2 — tl)/ vty +r(ta —t1),x1 +r(x2 — 21)) dr.
0

and
(2.1.8) w(tg,l‘g) = ’U}(tl,.l?l).

The preceding calculation was carried out under the assumption that z; —ct; =
T9 — cty, which is certainly true if

(2.1.9) r1 = Tg + ¢ty — cto,
so we can rewrite the preceding equations as

u(tg,l’g) = u(tl,xg +cty — Ctg)

(2.1.10) 1
+ (tQ — tl)/ v (tl +7’(t2 — tl),l’g — (]. — T‘)C(tg — tl)) dr.
0
and
(2.1.11) w(ta, x2) = w(t1, 2 + ¢ty — Ctg).

If instead we assume that
(2.1.12) T1 + ¢t = xo + cty
then a very similar calculation leads to
(2.1.148)2, T2) = u(ty, x2 — cty + cty)
+ (t2 — t1) /01 w (ty+r(tz — 1), x2 + (1 = 1)tz — t1)) dr.
and
(2.1.14) v(ta, x2) = v(ty,x2 — cty + cta).

Since (t2,x2) is an arbitrary point in the equations above we can substitute
any other point for it. In particular we can substitute

(2115) (tl + 'f‘(tz — tl),JJg + (’I" - 1)C(t2 — t1))



for it in|(2.1.14)] which gives
(2116) ’U(tl + T(tg - tl),xl + ’I’C(tg — tl)) = U(tl,l'z + (2T - 1)C(t2 — tl)),
which we can substitute into [(2.1.10)| to obtain

’LL(tQ,.’EQ) = u(tl,xg + Ctl — Ctg)

(2.1.17) i) /1 v (b1, 20 + (2r — D)e(ty — t1)) dr.
0

The substitution
(2118) Yy = X9 + (27" — 1)C(t2 — tl)
converts this into

’u(tg, .172) = u(tl, To + Ct1 — Ct2)

(2.1.19) 1 xa+c(ta—t1)
+ 5 v(t1,y) dy.
c wz—c(tz—tl)

Similarly, we could substitute

(2120) (tl + T(tg - tl), To + (1 — T)C(tQ - tl))

for (t2,z2) in|(2.1.11)| substitute the result into |(2.1.13), and make the substi-
tution

(2.1.21) y=x2+ (1 — 2T>C(t2 - tl)

into the resulting integral to obtain

U(t271’2) = U(tl,SL’Q — Ctl + CtQ)

(2.1.22) 1 xa+c(ta—t1)

- w(ty,y) dy.
20 .’L‘Q—C(tQ—tl)

Averaging [(2.1.19)| and [(2.1.22)| and noting that

(2.1.23) vtw= 2%

gives the equation
1
U(tg,xg) = iu(tl,l‘g + ct1 — Ctg)

1
(2.1.24) + 5“(7517902 —cty + cta)
1 I2+C(t27t1) 6u

+ — — (t1,y) dy.
2C :627c(t27t1) 8t

Relabeling the variables gives D’Alembert’s formula

1 1 1 r—cs+ct
(2.1.25) w(t,z)=fzx+ecs—ct)+ -f(x —ecs+ct) + — / g(y) dy,
2 2 2c zr+cs—ct



where

(2.1.26) F&) = uls.). o) = a5,

This gives the solution at time ¢ in terms of its values and the values of its first
derivatives at time s. Note that we haven’t assumed s < ¢, although the formula
is usually applied in this case. We haven’t even assumed s # t, although the
formula doesn’t give us any useful information when s = t¢.

2.2 Existence and Uniqueness

D’Alembert’s formula has a natural interpretation in terms of the in initial
value problem for the wave equation, i.e. the problem of finding a classical
solution to the wave equation with initial conditions at time s given by

(221) u(s,9) = F0), e s,) = oy).

A classical solution is just a twice continuously differentiable function. It’s nat-
ural to assume two derivatives because the equation is of second order. In other
words, second derivatives are the highest ones which appear. The equation
doesn’t have any obvious interpretation if we assume much less differentiability
than this. It is possible, and indeed useful, to give it less obvious interpreta-
tions which assume less differentiability, but that would be a topic for a more
advanced text. Here we’ll only consider classical solutions. Since u should be
twice continuously differentiable the initial conditions force f to be twice contin-
uously differentiable as well and g to be continuously differentiable. So a more
precise formulation of the initial value problem is, given a twice continuously
differentiable function f and a continuously differentiable function g, to find a
classical solution u of the wave equation such that the initial conditions [(2.2.1)|
are satisfied, i.e a twice continuously differentiable function u satisfying
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In terms of the initial value problem of the preceding paragraph the calcu-
lation of the preceding section provides a proof of the following theorem.

(2.2.2)

Theorem 2.2.A. For given f and g, defined on the real line R, there is at most
one solution to the initial value problem in R2, which is given by D’Alembert’s

formula |(2.1.25)

In fact a closer inspection of the proof shows that it in fact also proves the
following local version.

Theorem 2.2.B. For given f and g, defined on the interval [a, b] there is at most
one solution to the initial value problem in the parallelogram with vertices (s, a),

(s — b;—ca, atb) " (s,b), and (s+ Z’Q_—Ca, %‘b), R2, which is given by D’Alembert’s
formula |(2.1.25)

To verify this you can go back through the calculation and see where the
various functions need to be defined in order to justify our uses of the chain



rule and fundamental theorem of calculus. The global theorem is actually a
consequence of the local theorem since every point in R2? belongs to such a
parallelogram for some choice of interval [a, b].

Both theorems above are pure uniqueness theorems. They assert that there
is at most one solution of the initial value problem, without guaranteeing that
there is at least one. And indeed there is no way to turn the calculation of
the preceding section into an existence proof, since we assumed at a very early
stage that we had a classical solution u. The nice thing about an explicit formula
though is that it naturally suggests a way of proving existence: we just need to
take the formula and verify that what it gives is indeed a solution. Fortunately
this works for D’Alembert’s formula. The most naive way of doing this is rather
awkward though, for two reasons. First, we’d need to differentiate under the
integral, and the variables with respect to which we want to differentiate appear
in the limits of the integral. Second, we need to take two derivatives and the
function ¢ appearing in the integrand is only known to have one derivative.
Neither of these problems is insurmountable but it’s possible to avoid facing
either of them directly.

We start by choosing some point p in the interval in which the functions f
and g are defined and set

o) = 30 + o [ swa,
(2.2.3) e
w2 = 531G+ o [ oy

with the usual convention that if the lower limit of an integral is greater than the
upper limit then the limits should be swapped and the sign should be changed.
Then ¢ and v are twice continuously differentiable functions, defined on the
same interval that f and g were. Indeed the fundamental theorem of calculus
gives

1 1
¢'(2) = 51'(2) = 5-9(2),

(2.2.4) % 21C

V() = 51'() + 59(2)

and then taking an additional derivative gives

1 1
¢'(2) = 51"(2) = 59 (2),

(2.2.5) 2 2
P(z) = §f”(z) + %91(2)-

By assumption f is twice continuously differentiable and ¢ is continuously dif-
ferentiable in the initial value problem so the right hand sides are continuous.
Let

(2.2.6) u(t,z) = o(x +cs — ct) +(z — es + ct)
and note that u is twice continuously differentiable. Then

(2.2.7) u(s,x) = p(z) + U(@) = f(a).



Also,

(2.2.8) %(t, z) = —cp'(x +cs —ct) + e (x — cs + ct)
u / /
(2.2.9) —(s,2) = —cp' () + ' (z) = g(s).

ot

Thus w satisfies the initial conditions. Does it also satisfy the wave equation?
Taking another derivative,

2
(2.2.10) %(t7 x) = ¢ (x + s — ct) + Y (x — cs + ct).
Similarly,

ou , ,
(2.2.11) %(t,x) =¢'(x+es—ct) +¢'(x —ecs+ct)
and

0?u / ,
(2.2.12) @(t,x) =y (x+cs—ct)+ ¢ (x—cs+ct)
S0
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and so w is a classical solution of the wave equation. In particular, since we’'ve
already checked that the initial conditions are satisfied, the initial value problem
has at least one solution. We’ve already seen that it has at most one solution so
there is exactly one solution. The uniqueness theorems tell us that this solution
must be given by D’Alembert’s formula so there is no need to check separately
that the expression for u given above is equal to the one in D’Alembert’s formula,
although it is not difficult to do so.

We’ve now proved existence theorems, complementary to our earlier unique-
ness theorems:

Theorem 2.2.C. For given f and g, defined on the real line R, there is at least
one solution to the initial value problem in R?, which is given by D’Alembert’s

formula |(2.1.25)

Theorem 2.2.D. For given f and g, defined on the interval [a, b] there is at least
one solution to the initial value problem in the parallelogram with vertices (s, a),

(5 — b;C“, atb) ' (s,b), and (5 + b;—c“, “7“’), R2, which is given by D’Alembert’s
formula |(2.1.25)

2.3 Energy

We saw in section [2.1]that when u is a classical solution to the wave equation
the functions

~ Ou ou ~ Ou ou
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satisfy the relations
(2.3.2) v(t,z) =v(s,x —cs+ct), w(t,z)=w(s,x+cs—ct).

The quantity

1 1 1 /0u\> ¢ [ou\’
2. . E = — 2 — 2 — — _ P .
(23.3) TR 2(&) +2<8x>
has a physical interpretation as the energy density, so the integral
1 b
(2.3.4) I= 1/ (v(t,z)® + w(t,z)?) dx

represents the energy present in the interval [a,b] at time t. We can split this
into two parts,

I I
(2.3.5) I= 1/ v(t,x)* dr + Z/ w(t, r)* dx
and use the relations above to get

I I
(2.3.6) I= 1/ v(s,x — cs + ct)? dx—l—i/ w(s, x4 cs — ct)? dx

or, changing variables in the integrals,

1 b+cs—ct 1 b—cs—+ct
(2.3.7) I= 7/ v(s,x)? dx + 7/ w(s,z)? dz.
4 a-+cs—ct 4 a—cs+ct

Now the integral of a non-negative integrand over an interval is at least as large
as the integral over a smaller interval and at most as large as the integral over
a larger integral so we see that

(2.3.8)
1 min(b+cs—ct,b—cs+ct) 1 min(b+cs—ct,b—cs+ct)
I> f/ v(s,z)? dx + 7/ w(s,r)* dzx
4 max(a+cs—ct,a—cs+ct) 4 max(a+cs—ct,a—cs+ct)

(2.3.9

I< v(s,x)?dx 4+ = w(s,z)? dz.

4

N

/max(b+cs—ct,b—cs+ct) 1 /max(b+cs—ct7b—cs+ct)

min(a+cs—ct,a—cs+ct) min(a+cs—ct,a—cs+ct)

Combining the integrals, and writing the limits in a slightly cleaner form, we
find

b—c|s—t| b+c|s—t|
(2.3.10) / E(s,z)dx <1< / E(s,z)dx.

+cls—t| a—c|s—t|

If 2¢|s — t| > b — a then the lower limit of the integral on the left is greater than
its upper limit but that’s okay. We continue to follow the convention that in
such cases the limits are to be swapped and the sign is to be changed and we
still get a valid inequality in that case.

10



Suppose that the integral

+oo
(2.3.11) E(s,z)dx

— 00

is finite, i.e. that the total energy in all of space at time s is finite. This is true
if and only if the limit of the integral over a finite interval,

(2.3.12) /B E(s,z)dx

tends to a finite limit as « tends to —oo and 8 tends to +o0o, in which case the
integrals in the upper and lower bounds of the inequality above tend to that
same limit as a tends to —oo and b tends to +oo. It then follows from the
squeeze principle from real analysis that the limit of I as a tends to —oo and b
tends to +o00 exists and is equal to the other limits considered. In other words,

+oo +oo
(2.3.13) E(t,z)dx = E(s,z)dz

— 00 — 0o
in the sense that if the integral on the right is finite then so is the integral on

the left and both are equal. Since s and ¢ are arbitrary we therefore have the
following theorem.

Theorem 2.3.A. Suppose u is a classical solution to the wave equation. If the
total energy

(2.3.14) /+<>° E(t,z)dx

— 00

is finite for some value of t then it is finite for all values of t and is independent

of t.

2.4 Symmetries

Symmetries of a differential equation are transformations of a function with
the property the that transformed function satisfies the differential equation if
and only if the original function does. Symmetries often depend on one or more
parameters. For example, the wave equation has the scaling symmetry

(2.4.1) (Squ)(t,z) = u(t/a,z/a),

where « is non-zero. To verify that this is indeed a symmetry we need to check
that if & = S,u for some non-zero value of o then w is a solution of the wave
equation if and only if @ is. This is completely straightforward because the chain
rule gives

ot 10u
(2.4.2) E(t,x) = Ea(t/a,x/a),
ou 1 0u

(2.4.3) %(t,x) = a%(t/a,x/a),

11
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(2.4.4) 2 (t,x) = @ﬁ(t/a@/a%
and
0% 1 0%u
S0
0%t 0 01 1 [0%u 5 0%u
(2.4.6) @(UT) —c @(tax) =32 W(t/aax/a)a —c @(t/aw’f/a)

and hence u satisfies

% 0%

wherever it’s defined if and only if @ satisfies

0%u 0%u
2.4.8 — - =0
(2.48) o2~ © o
wherever it’s defined. The domains of definition need not be the same, although
they could be.
Although the preceding proof is straightforward there is one point where the
notation could be confusing. In [(2.4.2)| the expression

(2.4.9) %(t/a,x/a)

means that we take the function wu, differentiate it with respect to its first
argument, and then evaluate the resulting function at the point (¢/a, z/«), not
that we differentiate the function obtained by mapping (¢, z) to u(t/a, x/a) with
respect to its first argument. Either of these would be a plausible interpretation
of the expression but they are unfortunately not equal in general. In these notes
we’ll be consistent in interpreting partial derivatives as in this example.
Another symmetry of the wave equation is the spatial reflection symmetry

(2.4.10) (Ru)(t, z) = u(t, —x).

The proof that this is indeed a symmetry is straightforward. Temporal reflection
is also a symmetry, but don’t need to check this separately, since we can write
a temporal reflection as the composition of a spatial reflection and a scaling by
a factor of —1, in either order:

(2.4.11) (RS_1u)(t,x) = (S_qu)(t, —xz) = u(—t, )
and
(2.4.12) (S_1Ru)(t,x) = (Ru)(—t, —z) = u(—t,z).

Although scaling and spatial reflection happen to commute this isn’t true of
symmetries in general. For example, we also have spacetime translational sym-
metries

(2.4.13) (Treu)(t,z) =u(t — 7,2 — &).

12



Again, the proof that this is a symmetry for any real numbers 7 and £ is straight-
forward. Note that

(2.4.14) (TreRu)(t,z) = (Ru)t — o — &) =u(t —7,§ — 2)
while
(2.4.15) (RTrcu)(t,x) = (TreRu)(t,—x) = u(t — 7, —x — &),

so although the compositions T ¢ R and RT, ¢ are both symmetries they are not
the same symmetry unless £ = 0.

Not all symmetries of the wave equation are as easy to verify as the ones
above. Another important class of symmetries are the Lorentz transformations

1
(2.4.16) (Lpu)(t,z) =u (cosh kt+ —sinhkx, csinh k¢t + cosh nx) .
c

If 4« = L,,u then

o0t 0 1
—u(t,:z:) = coshx o coshkt+ —sinhkx, csinhkt + coshkx
(2.4.17) ot ot c
o 0 1
—|—csinhna—u (coshmﬁ—i—sinhmw,csinhnt—i—coshnx),
x c
ot 1 0 1
—u(t,cv) = ~sinhx 2 coshkt+ —sinhkz,csinhkt + coshk
(2.4.18) Ox c ot c
o 0 1
+Coshﬂa—u (Coshnt+ sinhmx,csinhntJrcoshnfc) ,
x c
T 0*u 1
(8t1;(t’> x) = cosh%zﬁ (coshﬁt—k Csinh/fx,csinh/@t—kcosh/fx)
2.4.19
0? 1
+ 2csinh k COSh/Qa ; <cosh/<t+ sinh;-sx,csinhmt%—cosh/w:)
c
2 . 2 82'& 1 . .
+ ¢”sinh ko2 coshkt+ —sinhkz,csinhkt + coshkzx |,
x c
D% 1 d*u 1
o 2(t x) = C—Qsmhznﬁ (coshnt—l—Csinh/@m,csinhnt—i—cosh/@x)
(2.4.20) 9 92u 1 '
+ —sinh s cosh;@a o coshkt+ —sinhkx,csinhkt + coshk x
c c

0? 1
+ cosh? k a—g (COShfit + —sinh kx,csinh kt + coshnaz) ,
x c

and
o0} 0% 0? 1
me —c —( x) = atg(coshfit—i—Csinhmx,csinhnt—i—coshnx)
0? 1
_02671; <coshf£t+sinhfim,csinhnt—&—coshﬁx).
c

13



Here we’ve used the identity cosh? k —sinh? k = 1 from the theory of hyperbolic
functions. So @ is a solution of
o*u  ,0%u

2.4.22 gu _ 22t _
( ) a2~ a2

if and only if u is a solution of
0*u 0u
2.4.23 — === =0
( ) 9z~ € D2 ’

and so Ly is indeed a symmetry.
Even the calculation for L, is relatively tame though compared to the one
required to show that spacetime inversion

2t
(2.4.24) (L) (t, 7) = u <c2t2c_ - x2>
is a symmetry. Set u = [u,
2t
(2.4.25) r(t,z) = c2t§ =
and
(2.4.26) £t z) = Cztf_ >
so that
(2.4.27) a(t,x) = u(r(t,z),&(t, x)).
By the chain rule we have
di P 9 9 P
(2.4.28) %(t,:v) - a—Z(t,x)a—?(T(t,x),ﬁ(t,x)) n %(t,x)a—z(T(t,x),g(t,x)),
o B 9 o 9
(2.4.29) a—Z(t,x) - a—;(t,x)a—?(r(t,x),g(t,x)) + a—i(t,x)a—Z(T(t,x),f(t,x)),
R B) 2 92
Gt = (Grtn)) GEr(ea)ea)
or o€ 82u
) ? 92
(24.30) +(Gen) FEeo.e)
82 8
+ S () S (r(t,2), £t )
8¢ 9
+ 5 (L) 5 (7(1,2). 6(1.2),
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and

0% ) 2o
Gt = (Grtn)) GEr(ta)ea)
or I3 0%u

2 92
(2.4.31) %3 ou
+ 8I (t7$) axQ (T(t7x)3€(t7x))
0*r ou
+ ﬁ(t,x)ah(t, x),&(t, x))
0% ou
+ @(t,f)%(’r(t, x),&(t,x)).
We can then compute the partial derivatives
or 9. A2 + 2
(2.4.33) &(t x)_ﬂ
k. 8.]3 ) - (02t2 _ $2)23
193 B 2c%tx
193 B At + 22
o?r 1, 2677 + 622

foats 2¢%? + 622
2.4. —(t =Pt
(2.4.37) Sa(tr)=c o
0%¢ 5 6c%t2 + 222
(2.4.38) ETe (t,x)=c xi(c%z - x2)37
and
0%¢ 6c%t2 + 222
2.4. —(t = r—s.
(24.39) 8362( @) =@ (212 — 22)°
Substituting,
0%t 5, 021 ct 0%u 5 0%u
(24.40) —5(t o) - o5 (ta) = (22 g2 ((%Q(t,z) —c W(tvx)) -
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It follows that u satisfies the wave equation if and only if u does, i.e. that I is
a symmetry of the wave equation.

It follows immediately from the definition of a symmetry that the compo-
sition of two symmetries is a symmetry and the inverse of a symmetry is a
symmetry. In other words the symmetries of a differential equation form a
group. The problem of determining the full symmetry group of a differential
equation is in general quite a difficult one and indeed the theory of Lie groups
was originally developed as a technique for solving this problem.

There are two particular simple symmetries which are valid not just for the
wave equation but for all linear differential equations. One is scaling of the
dependent variable

(2.4.41) (Myu)(t, z) = du(t, z)
and the other is the addition of another solution of the equation
(2.4.42) (Apu)(t,2) = ult, @) + o(t, 2),

where A is a non-zero real number and ¢ is a solution of the wave equation.
The fact that M_; is a symmetry means that ¢ is a solution if and only if —¢
is and so we could equally well have said that subtraction of another solution is
a symmetry rather than addition.

In general, a symmetry will take a solution to the differential equation and
give another, different, solution, but it may happen to give the same solution,
in which case we say that it is a symmetry not just of the differential equation
but of the solution. It is often useful to find the set of solutions with a given
symmetry or group of symmetries. Of course if we ask for too many symmetries
we are unlikely to get any solutions. For example, the only solutions of the
wave equation symmetric under the full group of spacetime translations are
the constant solutions. Interestingly, as long as we restrict our attention to
classical solutions defined on all of R?, the only scaling invariant solutions are
also constant. Indeed, if u is scaling invariant and £ is a line through the origin
then u must take the same value at all points of £, except possibly the origin
itself. But classical solutions are continuous, so it must take the same value at
the origin as well. Every point is on some line through the origin so the value
at that point is therefore equal to the value at the origin. What’s interesting
about this argument is we never actually needed the fact that u satisfies the
wave equation!

If we impose less symmetry then we get more solutions. We could, for
example, consider the set of solutions invariant under spatial reflection, i.e. the
ones satisfying Ru = u, i.e.

(2.4.43) u(t, —x) = u(t, z).

These are just the solutions which are even functions of the spatial variable for
each fixed value of the temporal variable. Note that differentiating the equation
above gives

ou ou
(2.4.44) —%(t, —x) = %(t,w)
and so

ou ou
(2.4.45) —%(t,()) = %(t,()),
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from which it follows that

Ju
(2.4.46) o (t,0) = 0.
More generally, any derivative of odd degree in z, if it exists, is zero on the time
axis.

Similarly we could look at the solutions symmetric under the symmetry
M_1R. These are the solutions which are odd, considered as a function of
the spatial variable for fixed value of the temporal variable, and they have the
property that any derivative of even degree in x, if it exists, is zero on the time
axis. In particular the zeroeth and second derivatives, which both certainly
exist for any classical solution, are zero:

(2.4.47) u(t,0) = 0.
and

2
(2.4.48) %(t, 0) = 0.

Symmetries, linearity and uniqueness interact in interesting ways. Suppose,
for example, that u is a solution to the initial value problem considered earlier,
the one with initial conditions given by If v has R as a symmetry, i.e.
if it is even as a function of the spatial variable, then f and g must also both be
even. More interestingly, suppose f and g are even. Since u is a solution and R
is a symmetry it follows that Ru is also a solution. From linearity it then follows
that u — Ru is a solution. But the initial data for u — Ru are identically zero
and we already know a solution with zero initial data, namely the zero solution,
so the uniqueness theorem implies that v — Ru is the zero solution. In other
words, © = Ru, or R is a symmetry of u. So not only does an even solution
necessarily have even initial data but even initial data can only give rise to an
even solution. Similar remarks apply to odd solutions and odd initial data.

2.5 Energy and Uniqueness for Boundary Value
Problems

Up to now we’ve been trying to solve the wave equation in the whole of
R? with initial data given on the whole of R but often one wants to solve the
equation in a region where the spatial variable is restricted to an interval, either
bounded or semi-infinite, and the initial data are given in this interval. This,
by itself, is not a problem that admits unique solutions, but it becomes one
if we impose appropriate boundary conditions at the endpoint or endpoints of
the interval. The two most important boundary conditions are the Dirichlet
condition, u = 0, and the Neumann condition, Ou/d0x = 0.

To start with, let’s consider the case of a finite interval, [a, b], with a Dirichlet
condition at the left endpoint and a Neumann condition at the right endpoint:

ou
(2.5.1) u(t,a) =0, pe (t,b) = 0.
These equations are to hold for all values of t. The initial conditions will be spec-
ified as usual by where the functions f and g are defined on the interval
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[a,b] and the solution u should be defined and twice continuously differentiable
on R X [a,b], and should of course satisfy the wave equation there.

We see immediately that some additional restrictions are needed on f and
g. If we set t = s in the equations above we get

(2.5.2) fla)=0, f'(b)=0

since taking a partial derivative with respect to z and then fixing ¢ is the same as
fixing ¢ and then taking an ordinary derivative. We could also take a t derivative
of the boundary conditions, obtaining

ou 9%u
E(t,a) =0, ——(tb)=0.

(2.5.3) i

Since w is twice continuously differentiable the mixed partial derivatives are
equal so we can replace §%u/dtdx with 0%u/dxdt. If we do so and then set
t = s then we get

(2.5.4) g(a) =0, 4¢'(b)=0.

There is one more restriction. Differentiating the Dirichlet condition once again
gives

0%u

but u satisfies the wave equation, so

0%u

2

(256) C W(t,a) = 0,
so ¢ f”(x) = 0 and therefore

(2.5.7) f"(a) =0.

There is no similar condition for g and there is no analogous condition at b. To
summarise, we’ve found that there can be no solution to the initial value problem
with these boundary conditions unless the initial data satisfy the constraints

(2.5.8) fla)=0, g(a)=0, f"(a)=0, f/(b)=0, g'(b)=0.

Before considering existence and uniqueness let’s examine energy conserva-
tion. It’s useful to prove the following lemma.

Lemma 2.5.A. Suppose p and q are continuously differentiable functions on
the rectangle [t1,ts] X [x1,22]. Then

To to T t1
/ p(t1, z) de + / q(t,x2) dt + / p(te, z) dx + / q(t,x1)dt
(25.9) '™ h 2 f2

Ox 319)
_ P ga.
//[tl,tg]x[xuw] (&E ot
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As usual we interpret integrals where the lower limit is greater than the
upper limit by swapping the limits and reversing the sign. We could, therefore,
rewrite the equation above as

To to To to
[ atiordes [Catande- [Cpttamyas - [Cawanar
(25.10) "™ h “ h

- / / (&1 - ap) dA.
[t1,t2] X [z1,22] Ox ot

and indeed for purposes of this section it would be simpler to do so, but the
lemma is stated in the way that it is so that we can see it in the next section as
a special case of a more general theorem which we will need repeatedly in these
notes.
The proof of the lemma is very simple. By the fundamental theorem of
calculus
T2 8(]

(2.5.11) q(t,xa) — q(t, 1) = %(t, x) dz.

x1
Integrating this equation over the interval [z1, z2] gives
t2 o tQ aq
(2.5.12) / lq(t, z2) — q(t,z1)] dt = / / —(t,x) dzx dt.
tl Ty tl ax

On the left hand side we write the integral of the difference as a difference of
integrals and on the right hand side we write the repeated integral as an area
integral, using Fubini’s theorem.

to to aq
o) [ et [ atayd= [[ 9 0.
t1 t1 [tl,tz]X[J)],l‘z] ax

Similarly,

T2 T2 ap
(2.5.14) / plta,z) d — / Pty x) dz = / / 9 4.
Z1 1 [t1,t2]><[w1,$2] 8t

Subtracting this from the previous equation and using again the fact that that
integral of a difference is the difference of the integrals we get |(2.5.10)|
Now that we’ve proved the lemma we can apply it to [z1, z2] = [a, b],

1 /ou\> & [ou)’ 5 0u Ou
and note that
o¢ o [(Pu 0%\ du
(25.16) ox ot <8t2 " 0a2) o

so the right hand side of the equation in the lemma is zero when u satisfies
the wave equation. The terms on the left hand side with a ¢ in them are also
zero if u satisfies the boundary conditions. When z = a this happens because
Ou/ot = 0 there and when x = b this happens because du/dz = 0 there. The
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only terms which are left then are the ones with a p, which is the same as F,
on the right hand side, so we have

(2.5.17) /b E(d,z)dx — /bE(c, z)dx = 0.

In other words, the energy in the interval [a, b] at time ¢5 is the same as the en-
ergy at time t;. We therefore have an energy conservation theorem for solutions
on a bounded interval, just as we did in the case of an infinite interval.

Theorem 2.5.B. Suppose u is a classical solution to the wave equation for x in
the interval [a,b] and that at each endpoint of this interval either the Dirichlet
or Neumann boundary condition is satisfied. If the total energy

(2.5.18) /b E(t,z)dx

is finite for some value of t then it is finite for all values of t and is independent
of t.

Note that previously we assumed a Dirichlet condition at the left endpoint
and a Neumann condition at the right endpoint but the argument works fine no
matter which condition is assumed at which endpoint.

We can use this energy conservation theorem to get a uniqueness theorem
even though we don’t yet have an explicit solution. Suppose that u; and wuq
are solutions of the initial value problem which satisfy the same boundary con-
ditions, either Dirichlet or Neumann at each endpoint. Then their difference
u = uj — ugy satisfies the initial value problem with the same boundary con-
ditions and zero initial data. It therefore has zero energy density everywhere.
Looking at the definition of the energy density we see this means that its partial
derivatives are everywhere zero. It must therefore be locally constant. Since
R X [a,b] is connected it follows that u is constant. It’s zero initial, since u has
zero initial data, and hence is zero everywhere. So we’ve proved the following
uniqueness theorem.

Theorem 2.5.C. For given f and g, defined on the interval [a,b], there is at
most one solution to the initial value problem in R X [a, b] with given boundary
conditions, Dirichlet or Neumann, at the endpoints.

2.6 Existence for Boundary Value Problems

We haven’t yet proved the existence of solutions. For the moment we’ll
return to the setting where we have a Dirichlet condition at x = ¢ and Neumann
at x = b. In this setting we saw that there can be no solution unless f is
twice continuously differentiable, g is continuously differentiable, and f(a), g(a),
f"(a), f'(b), and ¢’ (b) are all zero, so we’ll assume those conditions are satisfied.
We then extend f and g to functions on all of R as follows. Any real number
can be written uniquely as n 4+ r where n is an integer and r belongs to the
half-open interval [0,1) and every integer n can be written at 4m + | where m
is an integer and [ is 0, 1, 2, or 3. We use this to write

T—a

(2.6.1) e dm(z) + U(z) + r(z)
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and then define

flat (b—a)r(x))  ifl(z)=0,

s m—ape) e =1,

(262) /(@) —fla+ (b—a)r(z)) ifl(z)=2,
—f(b—((b—a)r(x)) ifl(x)=3.

The intended interpretation of this equation is that the f’s on the right hand
side refer to the function we were originally given, while the f on the left hand
side is the new function we are defining. We’ll also define an extension of g via
the same equation, except with all f’s replaced by g’s. Note that m(x) does not
appear in the equations above, which implies that the extended functions are
periodic of period 4(b — a).

There are a number of things to check. One is that these really are extensions
of the original functions, i.e. that they give the same values when evaluated at a
point in the original interval [a,b]. Suppose z € [a,b). Then m(x) =0, I(x) =0,
and r(xz) = (b—x)/(b— a) so the right hand side above gives the value

T—a
263) St =)= (at0-0F=L) = 1),
as it should. On the other hand, if x = b then m(xz) =0, l(x) = 1 and r(z) =0
and the right hand side gives

(2.6.4) fo=(b—a)r(z)) = f(b) = f(),

and we again get the correct value. So the new f is indeed an extension of the
old one, which is fortunate because otherwise we wouldn’t know whether f(x)
for z in [a, b] referred to the old function or the new one. Of course the same
argument works equally well for g.

We’d like to know, in addition, that the extended functions have the same
differentiability properties as the old functions, i.e. that the extended f is twice
continuously differentiable and the extended ¢ is continuously differentiable.
This might seem obvious from the definition since the various pieces of which
they are composed have this property, but there’s clearly something wrong with
that line of reasoning since it would imply that the absolute value function

T if z >0,
(2.6.5) |z =<0 ifx =0,

—x ifz <0,
which is also composed of continuous differentiable pieces, is continuously dif-
ferentiable, when it is in fact not differentiable at x = 0. We need a criterion
for a function defined by different expressions on the two different sides of a

point to have some number of continuous derivatives. This is supplied by the
following lemma.

Lemma 2.6.A. Suppose p, q are k times continuously differentiable functions
on the intervals (a, B) and (B,7). Suppose f is defined on (a,~) by

p(z) ifa<z<p,
(2.6.6) flx)=1<c if v =0,
q(z) ifB<x<y

21



for some c. Then f is k times continuously differentiable if and only if

2.6.7 li =c= li
(2.6.7) Jim p(r) == lim q(z)
and

2.6.8 lim pY(z) = lim ¢
(2.6.8) Jim p (z) Jim g (2)
for all j < k.

As usual, a parenthesised subscript indicates the number of derivatives, so
p O =p, pM =p', p@ =p”, ete.
To prove the lemma we first introduce the functions

pW(z) ifa<z<p,
(2.6.9) fi(x) =< ¢; if x =8,
¢ (x) if B<z <,

where ¢; is the common value of lim,,_, 5- pU)(z) and lim,_, g+ ¢ (z). Tt follows
immediately from the definition of continuity that f, is continuous. Also,

(2.6.10) fi(@) = fi4(2)

ifj<kanda<z < forf<z<vy Wewould like to know that this is true
also when z = 3. If 8 < z < -y then

(2.6.11) /BZ fit1(y)dy = /Bw fivi(y)dy + / fi+1(y) dy

for any w in the interval (8, z). Now

(2.6.12) lim /B fi+1(y)dy =0

w—L+

because integrals of continuous functions depend continuously on their limits of
integration and

(2:6.13) | iy = ) - 100)

w

by the fundamental theorem of calculus. So
eo1y) [ fady= Jim (70) - ) = £56) - 46

where we've used the continuity of f; to evaluate lim,_, s+ fj(w). Now the
change of variable r = (y — 8)/(z — B) gives

(2.6.15) /Bzfj+1(1/)dy=(z—ﬂ)/0 fit1(B+r(z—pB))dr
and so

R -5HB) _ [, r(x— B))dr
(2.6.16) W_A fj+1(/8+ ( B))d .
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This was proved for z in the interval (8,7) but an almost identical argument
gives the same equation when z is in the interval (o, ). Taking limits inside
the integral and using the continuity of f;;, gives

lim fi(z) = £i(B)
z—f z — ﬂ

(2.6.17) _ /01 fin (15% B+7r(z— 5))) dr.

1
= / lim fj1(B+1r(z—p))dr
0 #—B

1
:/O fiv1(B) dr = fj11(8).

Taking the limit inside the integral is justified in this case because we have
continuous integrands with uniform convergence on a bounded integral. The
equation above just says that

(2.6.18) fi(@) = firi(z)

when x = [ though. Since we already had the same equation for z in the
intervals (a, ) and (8, 7) we now have it in the full interval (o, v). Now f(©) =
f = fo so we see by induction on j that f() = fj for 7 < k. The f;’s are already
known to be continuous, so f is k times continuously differentiable.

Now that we have the lemma it’s straightforward, if slightly tedious, to check
that the extended f and g defined previously are twice and once continuously
differentiable, respectively. We’'ll do this just at the point b as an illustration.
To the left of b we have m(z) =0, I(z) = 0 and r(z) = (r — a)/(b — a) so

(2.6.19) f(@) = fla+ (b—a)r(z)) = f(z)
and to the right of b we have m(x) =0, [(x) =1 and r(z) = (x — b)/(b —a) so
(2.6.20) fl@)=fb—(b—a)r(z)) = f(2b—z).
The first and second derivatives to the left and right of b are
o (@) = f(=) ifa<az<b,
(2:6.21) f(x)_{f'(x)z—f’(%—x) ifb<zr<2b—a
and
woov ) (@) = f"(x) ifa<z<b,
(2:6.22) fi@) = {f”(m) =f"(2b—z) ifb<z<2b-—a.

It’s clear that the second derivatives approach a common limit as x tends to b
from either side. It’s less clear that the first derivatives do but here we have to
remember that our original f was assumed to satisfy f/(b) = 0. Without this
assumption the extended f would not be continuously differentiable. The argu-
ment for g at b is similar, but we only need to worry about the first derivative.
Let u be the solution to the initial value problem in R to the wave equation
with initial data given by the extended f and g. We can check directly that

(2.6.23) (Oqu)(t,x) = —u(t,2a — x)

23



and
(2.6.24) (Epu)(t,x) = u(t,2b — x)

are symmetries of the wave equation, or we can note that O, = M_1T, 0RT_40
and Ey = Ty, oRT_ o so each of these is a composition of symmetries and hence
a symmetry. Indeed O, and FE} are symmetries not just of the wave equation
in general but of our particular solution. To see this it suffices to check that
the initial data is unchanged by each of these and then apply the uniqueness
theorem. Then we note that

(2.6.25) u(t,a) = (Oqu)(t,a) = —u(t,a)
so u(t,a) = 0 and u satisfies the Dirichlet boundary condition at the left end-
point. Similarly

ou ~ 00pu
(2.6.26) %(t,b) =5

00pu ou

e (t,b) = —%(t,b)

(tv b) =

so Ou/0xz(t,b) = 0. and u satisfies the Neumann boundary condition at the left
endpoint.

We now have a solution to our initial value problem with the given boundary
conditions. We did this with a Dirichlet condition at the left endpoint and a
Neumann condition at the right endpoint but the same technique works for any
of the other three combinations of boundary conditions—we just need to choose
the appropriate extension of the initial data f and g, which will be the one
which has the correct symmetry properties on spatial reflection through a and b
to ensure the boundary conditions are satisfied. We therefore have the following
complement to our earlier uniqueness theorem.

Theorem 2.6.B. For given f and g, defined on the interval [a,b], there is at
least one solution to the initial value problem in R x [a,b] with given boundary
conditions, Dirichlet or Neumann, at the endpoints.

The solution we found above has two interesting properties. First, it is
periodic in the spatial variable, with period 4(b — a). To see this, recall that
that E, and Oy are symmetries of u and note that
(2.6.27)

(EoOpu)(t,z) = (Opu)(t,20 — x) = —u(t,2a — (2b — z) = —u(t,z — 2(b — a))

S0
(2.6.28) (EaOvE,Opu)(t, ) = u(t,z — 4(b — a)) = Ty ap—a)ult, ).

Similar arguments apply to the other three combinations of boundary condi-
tions. With a Neumann condition at the left endpoint and a Dirichlet condition
at the right endpoint we again get a solution which is periodic with period
4(b — a). If have Dirichlet conditions at both endpoints or Neumann conditions
at both endpoint then we get solutions which are periodic with period 2(b— a).
Of course the original problem was to solve the initial value problem in R x [a, b],
so when we say that the solution is spatially periodic what we really mean is
that the natural extension of the solution to R? is periodic.
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The second interesting property of our solution is that it is periodic in time,
with period 4(b — a)/c. To see this, note that in terms of our extended initial
data the solution is given by the D’Alembert formula Substituting
t+4(b—a)/c for t in this formula gives

u(t+4(b—a)/c,x) = %f(x—i—cs—ct—él(b—a))

(2.6.29) + %f(x —cs+ct+4(b—a))

1 r—cs+ct+4(b—a)

+ 9(y) dy.

2¢ z+cs—ct—4(b—a)
Adding or subtracting 4(b — a) from the argument of f has no effect, as we just
saw when we discussed spatial periodicity, so the first two terms are equal to
the corresponding terms in the formula for u(t,z). For the last term we split
the integral into five pieces, corresponding to the subintervals

(2.6.30) [x+cs—ct—4(b—a),x+cs—ct—2(b—a)]
(2.6.31) [x+es—ct—2(b—a),x + cs— ct]
(2.6.32) [+ cs —ct,x — cs + ct]

(2.6.33) [x —es+ct,x —cs+ct +2(b—a))

, and

(2.6.34) [x—es+ct+2(b—a),x —cs+ ct +4(b— a)]

. The middle one corresponds to the corresponding terms in the formula for
u(t,x). The first two cancel each other out because translation by 2(b — a)
changes the sign of g, and the last two cancel for the same reason. So we find
that u(t +4(b —a)/c,x) and u(t, x) are equal, as claimed.

The argument above works without changes in the case of a Neumann left
endpoint and Dirichlet right endpoint. It also works when both endpoints satisfy
Dirichlet boundary conditions. In fact a somewhat more careful argument gives
periodicity with period 2(b — a)/c in that case. No variant of the argument
above can prove periodicity in time in the case of Neumann conditions at both
endpoints though, because this is not true in general. Indeed the wave equation
on any interval with Neumann conditions at both endpoints and initial data
f(z) =0, g(z) = 1 has as its solution u(t, x) = ¢, which is not periodic in t.

2.7 Green’s Theorem
A number of results in earlier sections of this chapter are proved by evalu-

ating double integrals by repeated integration. A more systematic approach is
to use Green’s theorem, which is the following generalisation of Lemma
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Theorem 2.7.A. Suppose the boundary of the closed bounded region R in R?
consists of a sequence of finitely many continuously differentiable curves C1, Cs,
., Ck. Suppose that p and q are continuous differentiable functions on R. Then

(2.7.1) .ilﬁwmmwm@mmzé<$—%)m,

where the curves C; are traversed in such a direction that that the region R is
on our left.

For simple regions, those without holes, the condition that the region is
on our left means the anticlockwise direction around R. The anticlockwise
orientation of the curves is linked to our choice to make the ¢ variable the
vertical and the x variable the horizontal. With the reverse convention the
orientation of the curves would need to be clockwise. If there are holes then
boundary curves around the holes have the opposite orientation, but it will be
quite a while before we need to consider such a region.

In most applications of the theorem the functions p and ¢ are chosen so as
to make the integrand 9p/0t — dq/0x on the right hand side equal to zero. As
a particular example, consider

w0
P=% 17 o
where u is a classical solution of the wave equation. Then
dqg Op

(2.7.3) a5 =0

is just the wave equation with the signs reversed. In addition to the functions p
and ¢ we also need to choose a region R. In this case we’ll choose the triangle
with vertices (t2,x2), (t1,22 — c(t2 — t1)), and (t1,22 + c(t2 — t1)). Let Ci,
Cy and C3 be the edges from (t1, 2z + c(ta — t1)) to (t2,x2), from (t3,22) to
(t1,$2 — C(tQ — tl)), and from (tl,l'g — C(tQ — tl)) to (tl,ZQ + C(tg — tl))

(2.7.2)

t

to 1

CQ CVl

ty T

Cs

} } } T
To + ct1 — cto T2 T9 — ct1 + cto

Figure 2.7.1 Triangle for proof of D’Alembert

We have, by Green’s theorem,
3
ou 5 0u
(2.7.4) > /Cj (m do — ¢ = dt) = 0.
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We can parameterise C; by
(275) t:t1+7’(t2 7t1), Tr =T +C(1*T’)(t2 7t1).

With this parameterisation the integral over C; becomes

L/ ou dx Ou dt
2.7. —_—— 2222
(2.7.6) /0 <8tdr+c 8xdr)
Since
dx dt
(2.7.7) i —c(ty —t1) = —c

we can rewrite the integral as

1
Judt Oudx

2.7.8 — ——+=—— .

( ) C/O <3tdr+3xdr)

By the fundamental theorem of calculus the integral above is just the value of

u at the upper endpoint minus the value at the lower endpoint, so

(2.7.9) /C1 (?;Z dx — 02% dt> = —clu(ta, z2) — u(t1,x2 + c(ta — t1))] .

A similar calculation shows that

(2.7.10) /02 ((?;; dx — 02% dt) = —clu(ta, x2) — u(ty,xo — c(ta — t1))] .

For C3, which is horizontal, we just use x as the parameter, finding

za+c(ta—t1)
(2.7.11) / (8u dx—czaudt) :/ %(thx) dx.
CS 8t ax wz—c(tz—tl) at

Adding the three together we find that

—2cu(te, xa) + culty, xa — c(ta — t1)) + cu(ty, z2 + c(ta — t1))

2.7.12 z2tc(ta—t1) 9
( ) +/ —u(tl,x)dajzo
J)Q—C(tg—tl) 8t
or
1 1
U(t27$2) = §u(t1, T — C(tz — tl)) =+ gcu(tl,xg —+ C(tg — tl))

(2713) 1 za+c(ta—t1) ou

— (1, 2) dz = 0.

2 gt (o) de =0

$2—C(t2—t1)

Taking t; = s, to = t, x3 = = we get
1 1
u(t,x) = iu(s, x—c(t—3s))+ icu(s, x4 c(t—s))

(2714) 1 erc(tfs) au

- —(s,y)dy = 0.
+ 2 iy O (s,y)dy
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Here we needed to rename the variable of integration to avoid a clash with the
variable x we substituted for x5. For a solution of the initial value problem the
equation above is just D’Alembert’s formula [(2.1.25)]

We can also get energy conservation from Green’s theorem using the pair of
functions

2 2 2
(2.7.15) pl(&ﬁ +C(&v, g= 2o
2\ Ot 2 \ Oz ot Ox

In fact this is essentially how we proved in the case of a bounded interval, with
R chosen to be a rectangle. We could also reprove the original version by the
same method, taking R to be a trapezoid. Here, instead, we’ll prove energy
conservation for a semi-infinite interval, which we haven’t treated yet.

Suppose then that u is a classical solution of the wave equation on R X
[a, +00) which satisfies either the Dirichlet or Neumann boundary condition at
a. The region R we will choose is a quadrilateral with four sides, C; from (t1, a)
to (tl,xl), 02 from (tl,l‘l) to (t2,$2), 03 from (tz,l‘g) to (tg,a), and 04 from
(t2,a) back to (t1,a), where

(2716) T2 = X1 + C(tz — tl).

Cs

C
4 o,

t +
Gy

} } } x
a T )

Figure 2.7.2 Quadrilateral for Energy Conservation

Then
dqg Op
(2.7.17) 3 B

since u satisfies the wave equation and so Green’s theorem gives

4

(2.7.18) 2:/ (pdt + qdzx) = 0.
j=17Ci

The integrals over C, C'5 and Cy are straightforward.

(pdm—l—th):/ p(ty,x) dz,

1

ta
(2.7.19) (pdx + qdt) = / q(t,x)dt =0,

3 t1

(pdx + qdt) = —/ p(t,x) dx.

S~ o

4
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Note that on C5 the integrand ¢ vanishes identically because of the boundary
conditions and note the negative sign in the integral for Cy, coming from the
fact that Cy is traversed from right to left. The interesting integral is the one
over Cy. There dx = Fedt so

¢ [Ou ou\?

So the sign of the integrand, and hence the sign of the integral, is the opposite
one from the sign in zo = x14c(ta—1t1). Since the sum of the four integrals is zero
the sum of the remaining three has the same sign as that in xo = x1 £c(to — 7).
In other words,

z24-c(ta—t1) T2
(2.7.21) / p(t1, z)dx — / p(ta,x)dz >0
while

.'L'2—C(t2—t1) T2
(2.7.22) / p(t1,x) dx — / p(ta, x) dx <0.

We can combine these into

xz—C(tQ —tl) ) 1‘2-‘1—C(t2—t1)
(2.7.23) / p(ty,x) dx < / p(ta, x) dx < / p(t1, ) dz.
a a

a

Now we can use the squeeze principle in the same way we did previously to
conclude that if

(2.7.24) /+°° E(t,x)dr = /+OO p(t,x) dx

converges for ¢ = t1 then it also converges for t = t5 and has the same value
there. Unlike the earlier argument t; and to are not arbitrary here but have
been assumed to satisfy t; < to. To treat the case t; > t3 we could use a similar
argument but it’s simpler to note that the wave equation is symmetric under
temporal reflections and apply the result we already have to

(2.7.25) u(t, ) = u(ty +ta — t,x),

which has the same energy at t = t; as u does at t = to and vice versa.
Thus we’ve proved the following energy conservation theorem for a semi-infinite
interval.

Theorem 2.7.B. Suppose u is a classical solution to the wave equation on R x
[a, +00) satisfying either the Dirichlet or Neumann condition at the boundary.
If the total energy

(2.7.26) /+0° E(t,z)dx

is finite for some value of t then it is finite for all values of t and is independent

of t.
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2.8 Klein-Gordon and Sine-Gordon Equations

One reason for developing multiple techniques for proving results about the
wave equation in one spatial dimension is that some generalise better to higher
dimensions or related equations than others. We won’t consider higher dimen-
sions here but we will briefly consider two related equations, the Klein-Gordon
and Sine-Gordon equations.

The Klein-Gordon equation
0%u 0%u
o 62@ +m?u=0
plays a fundamental result in relativistic quantum mechanics. It shares some,
but not all, of the symmetries of the wave equation. Of the ones we considered
earlier it has the spatial reflection symmetry, spacetime translational symmetry
and Lorentz symmetry and scaling symmetry in the dependent variable, but
not the scaling symmetry in the independent variable or the spacetime inversion
symmetry. It also has temporal reflection symmetry. In the case of the wave
equation we got this from spatial reflection symmetry and scaling symmetry
in the independent variables but for Klein-Gordon this needs to be checked
separately because we don’t have scaling symmetry in the independent variables.

We can still prove energy conservation, but with the energy density

1 /ou\? 2 [fou\> m?

(2.8.2) E_2(8t> +2 (3:17) + 5 U

The first argument we used for the wave equation, using the auxiliary functions
v and w, does not generalise but the argument using Green’s theorem does. A
solution with zero initial data has zero initial energy and so has zero energy
for all time. Looking at the form of the energy density this means the solution
can only be the zero solution. The equation is linear, so the difference of two
solutions is also a solution. If the two solutions have the same initial data then
the difference has zero initial data and hence is zero, so the two solutions are
the same. Thus we see that analogues of the uniqueness theorems for the wave
equation also hold for the Klein-Gordon equation. The technique above is the
one we used for boundary value problems for the wave equation, but not the one
we originally used in R?, which relied on having an explicit solution. Here we
haven’t used an explicit solution. There is one, but it involves special functions
and isn’t nearly as convenient to work with as the D’Alembert formula.

The sine-Gordon equation

(2.8.1)

ot2  0z2

arises in a variety of geometric and physical contexts. It is reasonable to guess
that small solutions should behave like solutions of the Klein-Gordon equation
with ¢ = m = 1 because sinu = u for small u, and this is at least somewhat
correct, but it has many peculiarities of its own.

The sine-Gordon equation shares most, but not all, of the symmetries of the
Klein-Gordon equation. Of the ones we’ve considered it has spatial and temporal
reflection symmetry, spacetime translation symmetry, and Lorentz symmetry,
but not scaling symmetry in the dependent variable.

(2.8.3) +sinu =10

30



Energy conservation also holds for the sine-Gordon equation, with energy
density

1 /ou\> 1 [0u\’
(2.8.4) EZQ(EH) +2<8x> +1 —cosu.

As for Klein-Gordon, any solution with zero initial data must be zero for all
time, but sine-Gordon is non-linear, so the difference of two solutions is not, in
general, a solution, and so we can’t obtain a uniqueness theorem in the same
way. Perhaps unsurprisingly there is also no explicit solution formula for sine-
Gordon.
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Chapter 3

Diffusion Equation

3.1 Symmetries

We met the diffusion equation |(1.0.4)]

Ou 0%u

(3.1.1) E - @

=0
earlier. The natural differentiability assumption is that v is continuously differ-
entiable in ¢ and twice continuously differentiable in x.

Like the wave equation, the diffusion equation has a spatial reflection symme-
try, but unlike the wave equation it does not have temporal reflection symmetry,
and indeed behaves very differently in the positive and negative time directions.
It’s also symmetric under spatial and temporal translation. It also has a scaling
symmetry, in both the dependent and independent variables, but the scaling in
the independent variables is different from the one we had for the wave equation.
Let

(3.1.2) (Sau)(t,z) = Au(t/aZ,x/a),

where a and \ are non-zero. A simple calculation shows that

8Sa U 823a u
e CEOR e e (8D

A [Ou 0%u

(3.1.3)
=5 {at(t/az,x/a) - kaxQ(t/oﬂ,:p/a)}

S0 Sq, zu satisfies the diffusion equation if and only u does. The diffusion equa-
tion also has some less obvious symmetries. Let

(3.1.4) (Gyu)(t,x) = exp (— + ) u(t,x — vt).

Then G, is a symmetry for any value of v. To verify this we set u = G,u and
compute partial derivatives.
o1 vr 0%\ [Ou ou  v?
3.1.5 —(t,x) = ——+— | |=—v=—+4+ —
(3.1.5) ot b) eXp( 2k+4k)[8t U8x+4k:u}’
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o0u vr V3t ou v
1 it x) = LA N
(3.1.6) gz ) eXp( % 4k) [ax QkU] ’
and
0%u ve 0%t [0%u v ou v2
(3.1.7) @—exp (—%4-4:]{) {3262_]@'61'+4k2u:| .

On the right hand side u and its various derivatives are always evaluated at
(t,z —vt) but this has not been written explicitly to prevent the equations from
becoming too long. The same will be done in the next equation,

ou R ve 02t [Ou 0%u
(318) E(th) - k@(tﬂlﬁ) = exp <_2]€ + 4]€> |:(9t — kal'Q:| R

which follows immediately from the preceding equations. The left hand side
is zero if and only if the right hand side is zero and the exponential factor is
non-zero so 4 satisfies the diffusion equation if and only if u does.

3.2 Special Solutions

One thing we can do with symmetries of a differential equation is to look
for solutions invariant under the symmetry. We may or may not get something
interesting, depending on the equation and the symmetry. Spatial and temporal
translations don’t give very interesting solutions of the diffusion equation, for
example. A function which is invariant under spatial translations, for example,
is just a u(t, z) which is independent of z, but then 9*u/0z? = 0 and so if u is
a solution of the diffusion equation then du/dt = 0 as well, so u is independent
of t as well, and hence constant. So the only solutions of the diffusion equation
invariant under spatial translations are the constant solutions. The solutions
which are invariant under temporal translations are just the linear functions of
x.

The only solution to the diffusion equation which is invariant under scaling
in the dependent variable is the zero solution, which is also not very interesting.
Scaling in the dependent variables is more interesting. A scale invariant solution
is one which satisfies S, ou = u for all o. In other words

(3.2.1) u(t,z) = u(t/a? z/a).

Since this holds for all o it must hold in particular for o = V&t , so
(3.2.2) u(t, ) = (z/Vkt),

where

(3.2.3) e(y) = u(l/k,y).

Here we’ve implicitly assumed that ¢t > 0, so we can only expect this procedure
to give us an invariant solution defined there. Of course we also need u to satisfy
the diffusion equation. Taking partial derivatives,

ou 1 =z

= QOI(‘T/\/E)?

(3.2.4) G0 =5 7=
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(3.2.5) @(t,x) L "(z/Vkt),

Ox \/Egp
and
(3.2.6) Ot 2) = o (w/VRD),
ou 0%u 1 " Iz /
(327) S (ha) —kgg(ta) =~ ¢ (x/\/E)+§ﬁ@ (z/VEt)| .

The right hand side is zero for all £ > 0 and all z if and only if ¢ satisfies the
ordinary differential equation

(3.28) @ (y) + 3¢ () = 0.

This can be solved as follows. Let

(3.2.9) U(y) = exp(y? /¢ (y).
Then
(3.2.10) W(y) = exp(y?/4) |9 (4) + 59/ W)

so ¢ satisfies the differential equation above if and only if ¢ is constant. Calling
that constant ¢; we then have

(3.2.11) ¢ (y) = c1exp(—y*/4)
and so
(3.2.12) oly) = /Oy exp(—22/4)dz + co

for some other constant co. The integral above can’t be expressed in terms of
elementary functions. It can be expressed in terms of what’s called the error
function, named because of its interpretation in probability theory, but the error
function is defined in terms of this integral so that doesn’t really provide any
new information. In any case, we conclude that the scale invariant solutions to
the diffusion are the two parameter family given by the equation above.

Next we look for solutions of the diffusion equation which are invariant under
the transformations G, defined earlier, i.e. those that satisfy

2t
(3.2.13) ult, ) = exp (—;’z + Zk) ult, @ — vt)

for all v. Again we’ll look for solutions valid for ¢ > 0. Since the equation above
holds for all v it holds in particular for v = x/t, which gives

22
(3.2.14) u(t,x) = exp (4kt> o(t)
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where op(t) = u(t,0). We still need to impose the condition that u satisfies the
diffusion equation. Computing partial derivatives,

(3.2.15) %(t,x) = exp (—i) {gp’(t) + 42;@(1?)] :

(3.2.16) gZ(t,x)—eXP( Iz)[ - (t)},

Takt ) U okt”
and
8%u x? 2 1
(3.2.17) @(tax) = exp <_4kt> {4/{2152(’0(25) - Mﬂt)} )
)
ou 0%u x? , 1
219 G -kl — e~ ) [0+ o]

and u satisfies the diffusion equation if and only if ¢ satisfies the ordinary
differential equation

(3.2.19) P(1) + (t) = .

The solutions of this equation are precisely the constant multiples of t—1/2. In
this way we see that every solution of the diffusion equation invariant under the
transformations G, is a constant multiple of

1 x?
3.2.20 K(t,x)= exp (—) .
( ) (t2) = 77— pi
This solution turns out to be so important to the theory of the the diffusion
equation that it is know as the fundamental solution. The extra factor 1/v4mk
is chosen to simplify the form of various equations which will appear later in
the chapter.

3.3 Positivity

For the diffusion equation we will consider the initial value problem

(3.3.1) u(s,x) = f(s).

Note that unlike the case of the wave equation, for the diffusion we only specify
the initial value and not the initial time derivative as data. One other difference
is that we will only look for a solution for t > s.

The diffusion equation is called the diffusion equation because it describes
various diffusion processes, for chemicals, heat, etc. The last of these also ex-
plains why it is often also called the heat equation. This physical origin suggests
a conjecture about the initial value problem, namely that if f is positive, or non-
negative, then u should be as well. This conjecture is, unfortunately, false but
it is true for bounded solutions. In fact most things we want to prove about
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the diffusion equation turn out to be false in general but true when we restrict
our attention to bounded solutions and initial data. In fact it’s possible to re-
place boundedness with considerably weaker growth conditions but we won’t
bother doing this. Of course there is no hope of u being bounded unless f is
so for the remainder of the chapter every time u and f appear there will be
an implicit assumption that both are bounded. That assumption will be made
explicit though in the statements of theorems or in those parts of their proofs
where we use it.

Suppose u is a bounded solution of the initial value problem for the diffusion
equation with non-negative initial data. For ¢ > 0 define w by

(3.3.2) w(t,xz) = u(t,x) + 3ket + ex?.

Note that w doesn’t satisfy the diffusion equation, but instead satisfies the
related equation

Ow O%w

T k2 ke
ot Ox? ¢

(3.3.3)
Since w is a continuous function it must have a minimum on the rectangle
[s,T] x [-L,L] for any T" > s and L > 0. It does not have a minimum in
the interior (s,T) x (—L, L) of the rectangle. If it did then the first partial
derivatives would be zero there, which would then imply that 0%w/0x? = —e¢
there, but the second partial derivative can’t be negative at an interior minimum.
A similar, but more careful, argument shows that there is also no minimum on
{T} x (—L, L), the interior of the top of the rectangle. At such a minimum
the Ow/dt would have to be non-negative, since otherwise we would have points
just below it where the value is smaller. Similarly, dw/dz would have to be
non-negative since otherwise we’d have points just to its left where the value
is smaller. But dw/dz would also have to be non-positive or we’d have points
to its right where the value is smaller, so in fact dw/Jdz must be zero. It then
follows that Ow?/d2% must be non-negative at the minimum, because otherwise
we’d have points on either side where the value is smaller. So dw /9t —kow?/dx?
would be non-positive at the minimum. But we’ve already seen that this is equal
to ke, the product of two positive numbers, so the assumption that there is a
minimum on the interior of the top of the rectangle leads to a contradiction.
On the sides [s,T] x {—L} and [s,T] x {L} we have

(3.34) w(t,z) = u(t,x) + 3ket + eL? > inf u + 3kes + eL? > 3kes
if

(3.3.5) L> M
Here we’ve used our boundedness assumption u.

The only possibility not considered so far is that the minimum of w is lo-
cated on {s} x (=L, L), the interior of the bottom of the rectangle. If so then
the definition of w and our assumption that f is non-negative imply that this
minimum value of w is at least 3kes.

What we have shown is that the minimum of w in the rectangle is attained
at a point on the sides or bottom and is at least 3kes, at least provided L is
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sufficiently large. In particular,

(3.3.6) w(t,x) > 3kes
for any (t,x) in the rectangle, and therefore
(3.3.7) u(t,z) > —kex?.
For any ¢t > s there is a 7" >t and an

max(0, — inf u)

(3.3.8) L > max(|z|, ; ),
so we have
(3.3.9) u(t, ) > —kex?.

No assumptions other than positivity were made on € so this inequality holds
for all positive € and therefore . This then gives

(3.3.10) u(t,z) > —kex?.
In other words we’ve proved the following theorem.

Theorem 3.3.A. Suppose u is a bounded classical solution of the initial value
problem for the diffusion equation with initial data f which is non-negative.
Then u is non-negative.

In fact we proved something slightly stronger since we only used the fact
that v has a lower bound, not that it has an upper bound. A more precise
result is that if the initial data is non-negative and is positive at least one point
then the solution is positive for all later times. We will prove this in the next
section.

3.4 Uniqueness

If u is a solution of the diffusion equation then so is —u so the positivity
theorem at the end of the last section also shows that if the initial data for the
initial problem are non-positive then the solution is non-positive. Combining
this with the original version we see that if the initial data are zero then the
solution is also zero. The equation is linear so the difference of two solutions
is also a solution. Considering the difference of two solutions then we see that
if the difference of their initial data is zero then the difference of the solutions
is zero. Put more simply, if they have the same initial data then they are the
same solution. In this way we obtain the following uniqueness theorem.

Theorem 3.4.A. There is at most one bounded classical solution to the initial
value problem for the diffusion equation in the region [s,+00) x R.

The method of proof we’ve used unfortunately gives no information about
what this solution might be.

We had several different proofs of uniqueness for the wave equation. There
was a more or less direct proof based on a pair of auxiliary functions we defined

37



there, there was a proof based on Green’s theorem, and there was a proof
using energy conservation and linearity. The first two both led to D’Alembert’s
formula while the last one didn’t give any explicit form for the solution. The
first of these didn’t generalise even to closely related equations like Klein-Gordon
and so we can’t expect to find anything similar for the diffusion equation. The
last does have a generalisation to the diffusion equation, which we’ll see later,
but it gives us a pure uniqueness theorem, not an explicit formula, and we
already have that, so it seems natural to look for an alternate uniqueness proof
for the diffusion equation using Green’s theorem. This works, but the choice of
functions to apply Green’s theorem to is much less obvious than it was for the
wave equation.

We apply Green’s function with
(3.4.1) p=-uv, q= kv% — ku%,
where v and v are to be chosen later. The integrand on the right hand side in
Green’s theorem is then

dqg  Op ou 0%u ov 0%v
(3.4.2) ax_at—v<at—kax2)+u(at+k‘ax2 .

The first term on the right hand side will vanish if u satisfies the diffusion
equation. The second term will vanish if v satisfies the time reversed version
of the diffusion equation. Roughly the idea will be to let w be an arbitrary
solution of the diffusion equation and let v be a particular solution of the time
reversed equation, chosen so as to provide useful information about uw. In the
end this isn’t quite what we want, but for the moment it’s a useful guide. Which
particular solution should we take? We have a variety of particular solutions
to the diffusion equation which we found earlier when we looked for solutions
symmetric under particular symmetries and we can get a solution to the time
reversed diffusion equation simply by reversing time in one of those. The most
interesting of the solutions there was the fundamental solution, so we’ll choose
that one. We can get a bit more information though by applying an arbitrary
space-time translation to the fundamental solution and then reversing time, so
we’ll choose

(3.4.3) v(t,x) = K(tg — t,x — x3)

for some point (t3,x3). Eventually we will need to modify this choice but first
let’s see what happens when we choose this v.

Now that we have our functions p and ¢ we need to choose a region R. We
will choose a strip [t1, 2] X R, where t; < t3 < t3. Unfortunately this region
is not bounded, so the hypotheses of Green’s theorem are not satisfied, but
we will temporarily ignore this problem and see what happens. The boundary
of the strip consists of the line {¢;} x R, traversed from left to right and the
line {t2} x R, traversed from right to left. On each of these dt = 0 so we are
integrating pdzx, i.e. —uvdz. So Green’s theorem, if it applied, would give

—+oo
K(tg — tQ, T — Ig)u(tg, {13) dx
(3.4.4) o oo
- K(ts — t1,z — z3)u(ty, z) dx = 0.

— 00
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The two integrals are both of the form

+oo
K(ts —t;,x — xz3)u(ty, x) dx

— 00

(345) /+oo exp ( :E—xg)2> u(t. x) "
,/47rk (ts — ;) 4k(ts —t;) 7 '

Making the change of variable

(3.4.6) y=

converts this integral to

(3.4.7) /+C>o exp(—my*)u <t3, w3+ yr/ ATk (ts — tj)) dy.

— 00

We want to make this change of variable in the integral with j = 2 but not the
one with 7 = 1. This gives us the equation

/Jm exp(—7y”)u (xg - y\/M) dy

~ T = T3) ) u(ty, z) da.

m/m <4k(t3—tl)

Next we take limits as t3 tends to t5 from above, simply taking the limit inside
the integral without worrying for the moment whether this is justified. On
the left hand side the argument of u tends to (t3,23) and u is continuous so
the integral tends to exp(—my?)u(ts,r3). We can pull the constant outside the
integral and the remaining integral is a well known definite integral with value 1
so on the left hand side of the equation we just get u(ts, z3). One the right hand
side, using the continuity of u again, we just get the result of substituting ¢o for
t3 in the integral we had previously. In other words, the limit of the equation
above is

(3.4.8)

(3.4.9)  u(ts,xs) = (z = 75)" ) u(ty, z) dz.

“+o0
ex -
\/477]6 tg—t / p( 4k(t2—t1)
Changing the names of various variables we see that if s < ¢ then
/+<>c exp ( y _ )2
Vark(t — s) 4k(t — s)

In other words, if u satisfies the initial value problem for the diffusion equation
then

(3.4.10) u(t,z) = ) u(s,y) dy.

+o00o _ LL‘)2

ex
\/47rkt75 / p( 4k(t — s)
for all ¢ > s and all . This formula, if correct, gives us an alternate proof of

the uniqueness of solutions to the initial value problem, one which gives us an
idea for how to prove existence as well: we just check that the formula above

(3.4.11) u(t,z) = ) f(y)dy
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does indeed give a solution to the initial value problem. Unfortunately there are
two gaps in the proof above. We applied Green’s theorem improperly and we
exchanged limits and integrals without justification. We need to fix that, but
in fact the equation above is correct.

Usually the way to prove anything involving integrals over an infinite interval
is to take limits in a finite interval. This nearly works in our current situation,
but as we’ll see it doesn’t quite do everything we want. Let’s see what happens
if we apply Green’s theorem with p and ¢ as before to the rectangle [t1,ta] X
[x3 — L, x5 + L]. This region does, of course, satisfy the hypotheses of Green’s
theorem. Its boundary consists of four straight segments: Cy from (to, x3 + L)
to (t2,z3 — L), C from (t2,23 — L) to (t1,23 — L), C3 from (t1,23 — L) to
(t1,23+ L), and Cy from (t1,x3+ L) to (t2,23+ L). As before the integrand in
the area integral is zero so we have

(3.4.12) Z /C‘(pdm +qdt) = 0.

On the first and third boundary curves we have

x3+L
(3.4.13) / (pdx+qdt) = / u(te, x)v(te, x) dx
Cl Z37L
and
(3.4.14) / (pdx +qdt) = —/ u(ty, z)v(ty, z) de.
C3 :L‘37L

When we take limits as L goes to infinity these will just tend to the correspond-
ing integrals over (—oo,400), which is what we want. The integral over the
right side of the rectangle is

ou

to
/ (pdx+th):k/ v(t,xs + L)—(t,x3 + L) dt
(3.4.15) i h o

b2 v
_ k:/ wlt,zs+ D)2 (4 2 + L) dt.
t Or
The second of these integrals will tend to zero as L tends to infinity, a fact which
we will now prove.

Our v was defined in terms of the fundamental solution K so we need an x
derivative of K. In fact for later purposes we will need higher order derivatives
in both = and ¢ so we go ahead and compute them now. Let

, ‘W—K(t x)
3.4.16 (t,m) = (—2kt)T 222"
(3.4.16) wy(t,2) = (~2kt)) 0
Then wg = 1 and
K L) 0 3jK(t )
——(t,x) = ———(t,z
Oxit1 V7 Ox OxJ

0
= % [wj (t, ZE)K(ta (E)]

(3.4.17) |
= K(t,x)%(t,x) + wj(t,x)%—f(t,m)
= K (1) G (1,2) — wy t,2) o K (,2)
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and so
(3.4.18) wjt1(t, ) = zw;(t,z) — 2]{16%@7 x).
x

We can use this to compute successively

(3.4.19)
wo(t,z) =1, wi(t,x) =z, wo(t,z)=2a>—2kt, ws(t,z)=21>— 6kt

and so forth. These are the only ones we’ll actually need though. You’ll notice,
and can easily prove by induction, that w; is always a polynomial of degree j.
Once we have the w’s we can easily get the x derivatives of K,

K

(3.4.20) o (

t,x) = (—2kt) Jw;(t,z)K(t, x).

We could get t derivatives by a similar method but it’s simpler just to note
that K satisfies the diffusion equation so one ¢ derivative is the same as two x
derivatives and a factor of k. In this way we find that

O K

4.21 _—
(3 ) ottoxd

(t,z) = (—1)727 2T I~ 2 0, (t, 2) K (L, x).

The preceding calculation gives us various useful properties of 0K /0x(t,x).
First of all, it always has the opposite sign to that of z. Second, by looking at
its t derivative we see that as a function of ¢ for fixed negative x it increases
until it reaches a maximum at ¢ = 22/6k and then decreases again, while for
fixed positive x it decreases until it reaches a minimum at ¢+ = 22/6k and then
increases again. What this tells us about v(t3—t, x3+L) is that Ov/0x is negative
for all ¢ in the interval [t1,?2] and that its minimum in that interval is attained
when ¢ = to provided that L is sufficiently large, specifically L > +/6k(t3 — t2).
At the maximum Ov/0x is equal to

L . 2
— xXp| ———— | -
AT 272ty — 15)372 O P\ 4k(ts — t2)

(3.4.22)

The integral

to
(3.4.23) / w(t,ms + L) 2 (1 wy + L) dt
t Ox

which we met earlier has an absolute value less than or equal to the integral of
the absolute value of the integrand, which in turn is less than or equal to the
length of the interval, to — ¢; times the maximum value of the absolute value of
the integral. This in turn is bounded by the supremum of the absolute value of
u, which exists by our assumption that u is bounded, times the maximum value
the absolute value of dv/dx, which we just computed. This is the only factor
which depends on L and it clearly tends to zero as L tends to infinity, so the
integral tends to zero, as promised.

We've now treated one of the two terms in the integral over C4y. The other
term is the one involving the integral

ta
(3.4.24) / otz + L) 2 (4 as + 1) dt
t ox
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If we try to apply a similar argument to this integral then we run into a problem.
We assumed u was bounded so we had an upper bound for the absolute value of
the factor u(t,x3 + L) which was independent of L. We haven’t assumed that
Ou/0x is bounded though, so we don’t have a an upper bound for the absolute
value of the factor Ou/dz(t,x3 + L) in the integral above, or at least not one
which is independent of L. At this point there are two options. One is just
to add the boundedness of du/dx as an additional hypothesis and the other is
to look for a cleverer argument. Adding an additional hypothesis might seem
reasonable. After all, we already added the hypothesis that u is bounded so why
not just add another hypothesis? The situation here is different though. There
are known counter-examples to the uniqueness theorem with the boundedness
assumption removed so we had to add it, or possibly some weaker version of
it. There are no counter-examples to the version uniqueness theorem which
assumes boundedness of u but not of du/0x. We know that because gave a
proof of that theorem at the start of this section! So this is an assumption
made purely for convenience, not from logical necessity. Mathematicians do
sometimes make unnecessary hypotheses in order to simplify proofs but it’s
something we generally prefer to avoid so in this case we will not make any
additional hypothesis and will instead look for a cleverer argument.

The problem came from the vOu/Ox term so that is what we somehow have
to eliminate. A simple way to kill this term is to choose a v which is zero on the
left and right sides of the rectangle. The v we chose previously did not have this
property. Indeed that v is positive everywhere on the boundary of the rectangle.
It’s easy to find v’s which are zero on the left and right sides but the trick is
to find which which doesn’t spoil the rest of the argument. It’s reasonable to
try multiplying our previous v by a factor which vanishes on the left and right
sides, for example

(3.4.25) o(t,z) = p (”” _L“””3> K(ts —t,x — x3),
where
(3.4.26)
0 if v < -1,
19215 + 720r* 4 104073 4 72072 + 240 + 32 if —1 <7 < —1/2,
p(r) =41 if —1/2 <z <1/2,
—192r° + 720r* — 104073 + 720r2 — 240r +32  if1/2<r <1,
0 if x> 1.

This is not the only choice we could have made for p but it is relatively straight-
forward to check, using Lemma that it is twice continuously differentiable.
This implies in particular that it and its first two derivatives are zero at r = +1.
These properties ensure that our v is twice continuously differentiable and that
our ¢ is zero when x = z3 + L, which includes the boundary segments Cs and
Cy, so the corresponding integrals in Green’s theorem are zero.

Modifying v as we did above fixes one problem but creates another. Our
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new v no longer satisfies the time reversed diffusion equation. Instead

v 0%v kE , (x—x3

42k (s a—K(t—t — 23)
P\ "L ) et

(3.4.27)

This means the right hand side in Green’s identity is no longer zero. It is
important to note though that all of the terms on the right hand side of the
equation above have at least one derivative of p and p is constant in the interval
[-1/2,1/2] so the right hand side is zero for z in the interval [x5—L/2, x5+ L/2].
So Green’s Theorem now gives us

r3+L r3+L
/ u(te, z)v(te, z) de = / u(ty, Do(ty, z) do
$3—L I3—L

v 0%
(3.4.28) + /R_ U <8t + k8m2> dA
2
+ u(&wka”) 04,
R ot Ox?
where R_ is the rectangle [t1,t9] X [£3 — L,x3 — L/2] and R, is the rectangle
[t1,t2] X [£3+ L/2, x5+ L]. Compared to our previous calculation we’ve lost the
line integrals over C5 and C4 and gained two area integrals over the rectangles
R_ and R;. These are what remain of the original integral over the full rectangle
when we remove the part over the rectangle [t1,to] X [x3—L/2, x34+L/2], where, as
we’ve seen, v satisfies the time reversed diffusion equation and so the integrand
vanishes there.

We need to show that the area integrals above are harmless, i.e. that they
tend to zero as L tends to infinity. The two are similar so here we’ll only consider
the integral over R_. The u factor has upper and lower bounds independent of
L by assumption. We've computed dv/dt + kd%v/dz? in terms of derivatives of
p and K. The derivatives p must be bounded in the interval [—1, —1/2] because
polynomials are continuous functions. We don’t really care what the precise
bounds are but they’re not hard to obtain. The minimum and maximum of
p' are —40/ V3 and 40 / v/3 while the minimum and maximum of p’ are 0 and
15/4. Bounding K and its = derivative is more interesting, but we already
have experience with this problem from our earlier attempt. As long as L is
sufficiently large, which in this case means L > 2./6k(t3 — t2), both terms will

be positive in R_ and their ¢t and x derivatives will be as well so the values in
the rectangle lie between zero and the values in the upper right hand corner:

0 § K(tg 7t71’7$3) S K(tg 7t277L/2)
(3.4.29) 1 ( (L/2)? )
T XD TR}

Skt —t3) P\ 4k(ts — t2)
and
0< a—K(tg —t,x—x3) < %—K(tg —t9,—L/2)
(3.4.30) v R (L/2)?
T Unk(ts — )2 T (flk(tg—ta)> '
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These bounds are quite messy but the important point is that our integrand is
bounded from above and below by factors independent of L times

1 (L/2)?
(3.4.31) 7 &P <_4]€(tgt2)>

and so our integral, which is over a rectangle of area L(to — t1)/2, is bounded
by factors independent of L times

L2y,

(3.4.32) exp <_4k(tg—tg)

and so tends to zero as L tends to infinity, as we wanted.

There are still the integrals over C7 and C5 to be dealt with but these
are the same integrals as before except for an extra factor of p((x — x3)/L in
the integrands, which tends to 1 as L tends to infinity, and so is harmless. Of
course we glossed over the interchange of the limits and integrals in our previous,
unsuccessful, argument and we are still doing so here but other than that we
have a new proof of our earlier uniqueness theorem and this one gives an actual
solution formula. From this formula we can extract a lot of useful information.
For example, if f is non-negative everywhere and positive somewhere then the
same will be true of the integrand in the integral formula for u(t, z) for t > s and
so u(t, x) will be positive. This is the strengthened version of the non-negativity
theorem mentioned earlier.

3.5 Regularity

What we have shown above is that if there is a classical solution to the initial
value problem for the diffusion equation then it must be

R S (W
—oo ATk(t —s) 4k(t — s)
We haven’t yet shown that this is a solution though. The first thing we’ll show is
that it does indeed satisfy the diffusion equation, at least when ¢ > s. For this,
and to fill a gap in our earlier proof of uniqueness, we need some multivariable
calculus.

We have the following standard theorems from multivariable calculus.

(3.5.1) u(t, ) = > f(y)dy.

Theorem 3.5.A. Suppose that f is continuous on the product of closed intervals

(352) R = [ah bl] X e X [am, bm]
in R™ and o is a permutation of 1,...,m. Then
bo(m) bs (1) L
/ / fxy,. .. zm) de®@ o dgo ™)
(353) Ao (m) Ao (1)

bon by
:/ / f(xy,... o) det - da™.
QAm, al

The cleanest way to prove this is to define integration over sufficiently general
sets in R™, for example over polyhedral regions, and then show that each of the
repeated integrals above is equal to the integral over the whole region.
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Theorem 3.5.B. Suppose that f is continuous on the product of closed intervals
(3.5.4) R =ay,b1] X -+ X [am, bim] X [c1,d1] X -+ X [Cn, dy)
in R™™, Then

n d1
(355) g(xla"'7xm):/ f(xlw"7$may17~-~>yn)dy1"'dyn

is continuous on a1, bi] X -+ X [am, bm]-

Theorem can be combined with the fundamental theorem of calculus
to give a criterion for differentiation under the integral sign. Suppose that f is
continuously differentiable in R. Then the difference quotient

g(xr,.. xj+hyooxy) —g(T, g, T)

(3.5.6) .

is equal to

(3.5.7)

/ dlfxla" $]+h xrrmyla"'vyn)_f(xla"'7xja"'7x’r‘rwy17"'7yn)d
h

and this, by the fundamental theorem of calculus, is equal to the integral

dy
(3.5.8) / / / (1, zj+rh, o T, Y1, Yn) drdyr - - dYn,.
856]

It doesn’t matter in which order we perform the integrals so we can also write
this as

dy
(3.5.9) / / / xl,...,mj—I—Th,...,xm,yl,...,yn)dyl~-~dyndr.

The integrand is a continuous function on a product of closed intervals so the
limit of the integral as h tends to zero exists and is equal to the integral of the
limit, i.e.

1 dn dy af
(3.5.10) / / / e (@1, Ty Ty Y1 - Yn) A1 - dyy dr
0 Cn c1 Lj

which is the same as

dy
(3.5.11) / / xl,...,xm,yl,...,yn)dyl~--dyn.

The j’'th partial derivative of g is defined as the limit of this difference quotient
so what we’ve just found is that dg/0z; exists and
(3.5.12)

dg dn d1 of
7(I17 """ 7Im)/cn /Cl %j(ajla"'axmvyla"'vyn)dyl"'dyna

which is just what we would get by formally differentiating under the integral
sign. From Theorem we see that this partial derivative is in fact contin-
uous. So we have the following theorem.
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Theorem 3.5.C. Suppose that f is continuously differentiable on the product
of intervals

(3.5.13) R =1a1,b1] X -+« X [am, bm] X [c1,d1] X -+ X [en, dy]

in R™t™. Then

dn dy
(3.5.14) g(a:l,...,zm):/ / f@r, o oy Y1y ey Yn) Ay - - dyn.
Cn c1

is continuously differentiable on [a1,b1] X - -+ X [am, bym] and its partial derivatives
can be obtained by formally exchanging the partial derivative and integral.

Without additional hypotheses none of these theorems are valid if the closed
intervals are replaced by open or half-open intervals. For example,

8zy(z? — y?)

(3.5.15) flz,y) = (22 + y2)2

is continuous on the product of open intervals (0,1) x (0,1) but

1,1
5. drdy =
(3.5.16) /O/Of(x,y) rdy =1
while

1,1
(3.5.17) /O/Of(m,y)dydm:—l,

which would be a counter-example to if it applied to products of open
intervals. This example has the property that

1 1
(3.5.18) / ()| dady = oo.
0 0

This is not an accident. One can, in fact, show the following.

Theorem 3.5.D. Suppose that f is continuous on the product of intervals
(3.5.19) R=05L x---x1I,
in R™, and let a; = inf I; and b; =supl;. If
bm by
(3.5.20) / fx1, . am)dat - da™ < oo
am a

then

bo(m) bo(1)
/ / fl@1,. .. ) de®D - dzo ™)
(3.5.21) Gotm) o)

bm b1
:/ flzy, ...z dat - dz™.
am ai

for every permutation o of 1,...,m.
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The proof is fairly simple. Both integrals in the equation above are defined
by a limit of integrals over products of closed intervals J; X ---J,, where J; =
[, B5] with a; < a; < B; < by, the limit being taken o — o and §; — a} so
what we need to do is to show that these limits for the two integrals exist and
are equal. We do this by noting that the integral of the absolute value, defined
by a similar limit of integrals, is assumed to be convergent and hence Cauchy.
Using the fact that absolute value of an integral is less than or equal to the
integral of the absolute values we can then show that the other two limits are
also Cauchy and hence convergent. Theorem applies to the integrals over
Ji x -+ Jp, so those are independent of the order of integration and therefore
the same applies to their limit.

If you remember the proof that the limit of an absolutely convergent double
sum is independent of the order of summation you may notice that it follows
exactly the same lines, just with finite sums in place of integrals over finite
intervals.

There was no assumption, either in the statement of the theorem above or
in its proof, that a; or b; is finite. The theorem applies to finite intervals,
semi-infinite intervals, infinite intervals, or any combination of them.

The same approach, using an integrable upper bound to relate write an inte-
gral over a product of intervals to an integral over a product of closed intervals
plus a small error and then using the corresponding theorem for products of
closed intervals, also applies to give analogues of the other two theorems for the
other two theorems as well.

Theorem 3.5.E. Suppose that [ is continuous on the product of intervals
(3522) R:I1X"’XIm><J1X"'XJn

in R™T™ and let ¢, = inf J, and dj, = supJ,. Suppose also that there is a
non-negative continuous h on Jy X --- x J, such that

(3523) |f(xla sy Tmy Y1y - - 7y7l)| < h(yh s ayn)
and
dn di
(3.5.24) / / h(y1, -y Yn)dyr - - dyn < 0.
Cn, C1
Then

dn dy
(3.5.25) g(xl,...,:ﬁm):/ / flx1, o Ty Y1y Yn) dyr - - dyp,
Cn C1

is continuous on Iy X -+ X Ip,.

Theorem 3.5.F. Suppose that f is continuously differentiable on the product
of intervals

(3.5.26) R=I1x - XIpxJ X xJy

in R™t" and let ¢, = inf J, and dj, = supJ,. Suppose also that there are
non-negative continuous functions h; on Jy x --- x Jy, such that

0
(3.5.27) a—f(xl,...,a:m,yl,...,yn) <hj(y1,---,Yn)
Lj
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and

dn d
(3.5.28) / / hi(yr, . yn) dyr - - dyn < 00.

Then
dn dl

(3.5.29) g(xl,...,xm):/ f@r, o Ty y1y ey Yn) Ay - - dyn.
Cn cy

is continuously differentiable on [a1,b1] X+« - X [am, by] and its partial derivatives
can be obtained by formally exchanging the partial derivative and integral.

Once we have these theorems it’s easy to see that Theorem is exactly
what we need to justify the exchange of limits and integrals in the proof of the
integral representation above. There we had an integral of the form

+00
(3.5.30) / exp(—my?)u (xg, + y\/m> dy

— 00

and we wanted to take the limit as ¢3 tended to ¢ from above. The theorem
says we can do that if we can find an integrable non-negative function h such
that

(3.5.31) exp(—my2)u (m oy Ak (ts — tg)) < h(y)

for all y and it’s clear that h(y) = M exp(—ny?) works, where M is a uniform
bound on |u|, which we assumed to be uniformly bounded.

We can also use Theorem to show that that the required derivatives
of u exist and are continuous for ¢ > s. Formal differentiation of the solution
formula gives

du Y ) 1 (y —x)?
(3.5.32) 5 (h2) = /_OO Tz oy <_4k(te~7)> fly)dy

and

w +oo —r 2
(3.5.33) %(t,x) = [ imm’ (Z&'@_l)) f(y)dy

The partial derivatives in question were computed earlier. For example,
(3.5.34)

0 1 ( (y—x)Q) T —y ( (y—x)Q)
——F———e€exp | — = exp| —————=].
0x \[Amk(t — s) 4k(t — s) V167E3(t — 5)3 4k(t — s)

Differentiating, we see that as a function of ¢ for fixed values of the other vari-

ables the absolute value of the right hand side increases from zero to a maximum
of

(3.5.35) \/Zexp(—3/2)

at

(3.5.36) t=s4 2L



and then decreases to zero again. If we restrict our attention to ¢ € [t1,t2] for
some ty > t1 > s then there are three different cases, depending on the size of
|z — y|. For small values of |z — y|, specifically when

(3.5.37) |z —y| < \/6k(t1 — )

the maximum occurs when ¢ = t1, so we have

(3.5.38)

0 1 (y —x)? |z —y| (y —x)?
0o \amk(i—s) S = V6w =5 T ()

For large values of |z — y|, specifically when

(3.5.39) |z —y| > /6k(t2 — s)

the maximum occurs when t = t5, so we have

(3.5.40)

0 1 ( w—wf) e lz—yl ( (y—@2>
————exp| ————= || < exp | ——— .
Ox \/Amk(t — s) 4k(t — ) \V16mk3(t2 — 5)3 4k(t2 — s)
For values in between those ranges the maximum occurs inside the interval
(t1,t2) and so we have

o 1 (v—=2\|_ [2
o A=) (‘4k<t—)>‘ <\ ta)

The bounds above on the absolute value of the partial derivative are ugly, but
they combine to give an integrable function because of the exponential decay at
infinity. It’s still bounded when we multiply by M, the uniform bound for |u|
which we’ve assumed exists, so the theorem applies and differentiation under
the integral sign is justified by Theorem It may seem that we've proved
differentiability at ¢ in the interval (¢1,t2) but for any ¢ > s we can choose t;
and to such that to >t > t; > s so in fact we've proved it for all ¢ > s.

An argument similar to the one we just applied to the x derivative also
applies to the ¢ derivative as well. Furthermore we can apply our argument for
the z derivative to du/dz instead of u to get the second derivative 9%u/dx?,
which is seen to be equal to the result of formally differentiating under the
integral in the solution formula. Combining this with the result already obtained
for Ou/0t we see that we can apply the differential operator

2
9 .9
ot Ox?

(3.5.41)

(3.5.42)

to the integral

oo 1 (y —x)*
(3.5.43) i \/m exp (_4]@(155)) f(y)dy

by formally bringing it inside the integral, where it will just hit the fundamental
solution since the f factor is constant as far as the integration is concerned. Since
the fundamental solution is a solution we find that our solution formula does
indeed give a solution. We suspected this to be the case, and wouldn’t have
gone to all of this effort in analysing it if we didn’t, but we didn’t have any
certainty until now. It’s worth expressing this as a theorem.
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Theorem 3.5.G. Suppose f is a bounded continuous function on R and

oo L o <_ (y—=)°
e VARG 4k(t— s)

Then u is continuously differentiable in t and twice continuously differentiable
in x fort>s and is a solution of the diffusion equation there.

(3.5.44) u(t, x) = ) f(y) dy.

We don’t need to stop after taking one ¢ derivative or two space derivatives.
We can take any number of derivatives of either type. The result will be the
same as taking those derivatives inside the integral where they will hit the
fundamental solution.

Theorem 3.5.H. Suppose f is a bounded continuous function on R and

+oo — )2
(3.5.45) u(t,z) = n mekﬁp <—iz(t)5)> f(y) dy.

Then u is infinitely differentiable in t and x for t > s.

We’ve only ever considered solving the diffusion equation forward in time.
This was largely motivated by applications but the preceding theorem shows
that there are deeper reasons why we shouldn’t try to solve the diffusion equa-
tion backward in time. If for some initial data f we can solve the diffusion
backwards from ¢ = s to some ¢t = r then solving the initial value problem
forward from ¢ = r with initial data u(t,r) would give us back f and by the
preceding theorem this f would be infinitely differentiable. Most functions, even
most twice continuously differentiable functions, are not infinitely differentiable.
The function p we met earlier is an example of a function which it twice contin-
uously differentiable but not thrice differentiable. By what we’ve just shown the
backwards initial value problem for this function, or any other function which
is not infinitely differentiable, cannot have a solution. A more careful argument
would show that even among infinitely differentiable functions the ones which
can be evolved backwards in time by the diffusion equation are highly unusual.

3.6 Existence

We’ve now filled the gap in our earlier uniqueness proof and partially proved
existence of solutions to the initial value problem. More precisely, we’ve proved
that the equation

(3.6.1) u(t,z) = +°° ! (_ (y —x)?

/= e G TR

gives a solution to the diffusion equation for ¢ > s. We haven’t shown that it
satisfies the initial conditions though.

Normally the easiest part of proving that an explicit solution to an initial
value problem is valid is checking the initial conditions, but if we do this in the
naive way here we are in for a shock. First of all, the factor \/47k(t — s) in
the denominator means the integrand can’t even be evaluated at ¢t = s. Taking
limits doesn’t help much.

)f(y) dy

(3.6.2) M) =0

lim ————=exp | —
t—=st \/Ak(t — s) P ( 4k(t — s)
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so if we just exchange the limit and integral we appear to get the integral of
zero, which is zero. If we're slightly more careful then we might note that the
limit above only works when = # y, but changing the integrand at a single point
has no effect on the integral, so we appear to have a problem.

When you first see theorems about interchanging limits and integrals it’s
easy to get the impression formal calculations generally give correct results
and proving the correctness of those results is simply a matter of selecting an
appropriate theorem to justify the calculation. Here we see a practical example
where the formal calculation definitely gives the wrong result. We can verify
that it’s wrong by considering, for example, the constant initial data f(y) =
1, for which the solution formula correctly gives us the solution u(t,z) = 1,
for which the argument above incorrectly suggests should give us the equation
lim;_, ¢+ 1 = 0. So what we need to do is not to find a convergence theorem to
justify the formal calculation above, because there can be no such argument,
but rather to find a different formal calculation, giving a different result, and
find a convergence theorem to justify that calculation.

We've actually seen a variant of the formal argument we require once before.
The way we got the left hand side of our solution formula was to perform a
change of variable before taking a limit. We do the same thing here, with a very
similar change of variable,

_ y—-=
(3.6.3) z= ik =s)
This gives
+oo
(3.6.4) u(t,x) = [ exp(—7m22) f(x + 2\/4mk(t — 5)) dz.

This now does give the correct value when ¢ = s. Furthermore, Theorem [3.5.E]
shows that this function is continuous for all ¢ > s. This is more important than
it might seem. Indeed if the goal were simply to find a function which matches
the initial data at t = s and solves the diffusion equation for ¢ > s then we could
simply have chosen the function which is equal to f for ¢t = s and 0 for ¢ > s.
Continuity is the condition which prevents us from doing this and forces us to
find a solution whose values for t > s are related to the values at t = s.

We have an unfortunate mismatch between our uniqueness results and our
existence results. In proving uniqueness we assumed that w, du/dt, Ou/Ox and
0?u/0z? are all continuous in the region ¢t > s. We now have existence of a
solution for which u is continuous for ¢t > s but its various partial derivatives
are only known to be continuous, or indeed to exist, for ¢ > s. We’d like the
differentiability conditions in our existence and uniqueness theorem to be the
same. To accomplish this we need to weaken the hypotheses of our uniqueness
theorem or strengthen the conclusion of our existence theorem. In fact both of
these are possible.

The option of weakening the hypotheses in the uniqueness theorem turns
out to be both easier and more useful in applications. We had two proofs of
the uniqueness theorem. The first one was relatively simple but didn’t give us
an explicit solution formula. Supposing there were two solutions with the name
initial data and looked at their difference, which is still a solution, by linearity,
and has zero initial data. Our non-negativity result, Theorem then shows
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that the difference remains non-negative. By taking the difference in the oppo-
site order we see that it also remains non-positive, so it’s zero everywhere. In
other words any two solutions with the same initial data are the same solution.
This was for classical solutions, but if we can prove the following variant then
we can use it to get a uniqueness theorem whose differentiability assumptions
match those of our existence theorem.

Theorem 3.6.A. Suppose u is a bounded continuous function on [s,+00) x R
and on (s,+00) x R it is continuously differentiable in t and twice continuously
differentiable in x and satisfies the diffusion equation there. Suppose also

(3.6.5) u(s,z) = f(x)
for all x, where f is a non-negative continuous function. Then u is non-negative.

In fact a careful examination of the proof given for Theorem shows
that the only places where we used the differentiability of w or the diffusion
equation were in the region ¢ > s, so exactly the same proof gives Theorem
B.6.Al

As explained earlier, from Theorem we get an analogue of

Theorem 3.6.B. There is at most one bounded continuous function u on
[s,+00) X R which is continuously differentiable in t and twice continuously
differentiable in x and on (s,+00) X R satisfies the diffusion equation there and
also satisfies the initial condition

(3.6.6) u(s,z) = f(x)
for all x.

As before, this only gives uniqueness, not a solution formula, but since we
already have an existence theorem under the same conditions which does feature
an explicit solution formula it follows from the theorem above that any solution
must be given by that formula.

We won’t pursue the other option, showing that when f is twice continuously
differentiable the solution formula gives a classical solution for ¢ > s, here but I
will give a quick sketch of the argument. One needs to start from the alternate
form of the solution formula,

+oo
(3.6.7) u(t,x) = / exp(—m2?) f(x + 2\/47k(t — 5)) dz.

— 00

If f" and f” are bounded then our theorem on differentiation under the integral
sign shows that v is twice continuously differentiable in x and that the deriva-
tives are obtained by formal differentiation under the integral sign. This doesn’t
quite work for the ¢ derivative but there is a variant of our theorem on differen-
tiation under the integral which does work. We still have the problem though
that this requires f’ and f” to be bounded, while we’ve only assumed that f
itself is bounded. We met this problem once before, when deriving the solu-
tion formula from Green’s theorem, and the solution here is similar. We need
to multiply our initial data by p(z/L), where p is the function defined there.
The new function will have derivatives which are non-zero only in the interval
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[-L, L] and continuous functions on a closed interval are always bounded so the
argument described above applies to the modified initial data. Of course we
want a solution with the original initial data. The modified initial data agree
with the original initial data in the interval (—L/2,L/2) though. Using the
usual form of the solution formula we can show that when the initial data is
zero in an open interval the solution is a classical one for ¢t > s, not just ¢t > s,
and z in that interval. Combining this with what we already have gives the
improved existence theorem.

3.7 Boundary Value Problems

The same method we used for the wave equation, the method of reflection,
can be used to treat boundary value problems for the diffusion equation, pro-
vided the boundary conditions are of Dirichlet or Neumann type. Suppose, for
example, that we are given data f which are continuous on the closed interval
[a,b] and are looking for a solution to the initial value problem in the region
[s,00) x [a, b] satisfying a Dirichlet condition at the left endpoint and a Neumann
condition at the right endpoint,

Ju
a (t7 b) - 03

(3.7.1) u(t,a) =0, —
x

just as we did for the wave equation. We’'ll need f(a) = 0 in order to have a
chance of solving this equation. As long as we’re looking for a solution which is
merely continuous for ¢ > s and not one which is continously differentiable in
t and twice continuously differentiable in x there we don’t need to impose the
conditions f/(b) = 0 or f”(a) = 0 which we imposed for the wave equation, and
indeed it wouldn’t make sense to impose them since we’re merely assuming that
f is continuous.

We can extend f to all of R in the same way as we did for the wave equation,
namely

fla+ (b—a)r(x)) if i(x) =0,
2) = f(b—(b—a)r(x)) if i(x) =1,
(3.7.2) @) —fla+ (b—a)r(z)) ifl(z) =2,
—fo—(b—a)r(z)) ifl(x)=3,
where
(3.7.3) ”; :Z = dm(z) + U(z) + ()

and r(x) € [0,1), and m(z) and I(z) both integers with 0 < I(x) < 4. We then
define

+o0 —x 2
(3.7.4) u(t, z) = N \/4771:(75——3) exp (‘4(?2(15—)50 f(y) dy,

where the f in the integrand is this extended f. To prevent subsequent equations
from getting very messy we will write this in terms of the fundamental solution:

“+o00o
(3.7.5) u(t,x) = K(t—s,z—1y)f(y)dy,

— 00
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The argument that this is a solution to the initial value problem with the given
boundary conditions, and is the only solution, is essentially the same as for the
wave equation.

It’s also possible to write the solution in terms of the original, unextended,
f as follows. We split first split the integral into pieces:

3  +oo b+(4m+1)(b—a)
B1o e => > [ K(t— 8,2 —3)f(y) dy,

1—0 m=—oo ¥ at+(4m+1)(b—a)

or, after a linear change of variable,

ern b
atn =3 % /K(t—s,x—y—(4m+1)(b—a))f(y+(4m+l)(b—a))dy.
=0 m=—oc0 @
Now
f(y) if1=0,
) fla+b—y) ifl=1,
678 S+ mene-a) =170 .

—fla+b—y) ifl=3

We make a further change of variable in the odd cases, replacing y by a +b — v,
obtaining

+oo
u(t,z) = K(t—s,z—y—4m(b—a))f(y)dy
+oo
1)t o2 Kl-szty—2—(m+2)(0-a)-a-b)f(y)dy

+oo
- Y K(t—se—y—(4dm+2)(b—a))f(y)dy

“+o0
— > K(t-sz+y—2a—@Am+4)(b—a)—a—Db)f(y)dy.

m=—0o0

Here the f’s in the integrands all refer to the original, unextended, f.

3.8 Conservation and Monotonicity
The diffusion equation has a conservation law which applies when either

there is no boundary or the boundary conditions are all Neumann conditions.
First we consider the case without boundary. Suppose that

(35.1) [ Twia=o

—0o0
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Then

+oo +oo +oo
/ u(tx)dx:/ K(t—s,z—vy)f(y)dydx

+oo +oo
| s niw sy

(3.8.2) = .
:[ f(y) 3 K(t—s,z—y)drdy
oo -
= [ f(y) dy.

The interchange of the two integrals is justified by Theorem So the quan-
tity

(3.8.3) /+00 u(t, z) dx

—0o0

is independent of ¢.
Next we consider the case of a finite interval [a, b] with Neumann conditions
at both endpoints. We apply Green’s theorem with

ou
3.84 = — =—k—.
(3.8.4) p=-u, ¢ e
For the region we take the rectangle R = [t1,12] X [a,b], where t3 > 1 > s.
Green’s theorem gives

4
_ [ 92 _9p
(3.8.5) ;/C] (p(t,z)dx +q(t,x)dt) = /R 9 Bt dA.

The curves Cy, Co, C3 and Cy will be the line segments from (¢1,a) to (¢1,0),
(t1,b) to (t2,b), (t2,d) to (t2,a), and (ta,a) to (t1,a), respectively. The integrals
along C5 and Cj are zero because of the Neumann condition. The right hand
side will be zero for solutions of the diffusion equation. What we are left with
is

(3.8.6) /abu(tz,x) dz — /abu(tl,x) dz =0,

So

(3.8.7) /b u(t, z) dz

is independent of ¢. This argument doesn’t work for ¢ = s because Green’s
theorem requires p and ¢ to be continuously differentiable in all of R but we
can take the limit as ¢; tends to s from above since the hypotheses of Theorem
are satisfied.

In the original application of the diffusion equation to heat conduction
Dirichlet boundary conditions correspond to conducting boundaries and Neu-
mann boundary conditions correspond to insulating boundary conditions. The
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integral of uw corresponds to the total energy. The theorem we’ve just proved is
then conservation of energy for a thermally isolated system. We can’t expect
the theorem to apply with Dirichlet boundary conditions because energy can
enter or leave the system through the conducting boundary.

Another important physical quantity in the original physical application is
entropy, given by the integral

(3.8.8) —/u(t,a:) log u(t, x) dz.

Of course this only makes sense if u is positive, which it always is in the study of
heat conduction. We’ve already seen that if the initial data are positive then the
solution will remain positive forever. Unlike energy, we don’t expect entropy
to be conserved. The second law of thermodynamics says that it should be
increasing, or at least non-decreasing. Again, we expect this only for isolated
systems, so it should hold either when there is no boundary or when all boundary
conditions are of Neumann type.

This time we’ll treat the case of a finite interval first. Taking R as before we
set

(3.8.9) p=ulogu, q= k% log u.
Then

dqg Op ku ou 0%u
(3.8.10) ol v (Gu/on)? (815 k@a:Q) log u.

The second term on the right hand side is zero for solutions of the diffusion
equation. As with our proof of energy conservation, the integrals over Cy and
Cy vanish because of the Neumann boundary condition are we are left with

(3.8.11) /abu(tg,x)da:—/abu(tl,x)dx:/R((auljgx)QdA

Since u is positive the integrand on the right hand side is positive everywhere
and so the integral is positive. It follows that

(3.8.12) /abu(tg,z) o > /abu(tl,x) da.

As before, the use of Green’s theorem presupposes to > t; > s but we can use
continuity to get the same result for ¢t > t; > s.
The argument for the case without boundaries is more subtle. Let

(3.8.13) p(z) = zlog z

and

(38.14)  w(t,x,y) = o(f(v) — p(ult, ) = " (u(t,2))(f(y) - ult,z)).
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Multiplying by K (t — s, —y) and integrating with respect to both x and y we
get

+oo +oo
/ K(t—s,z—yw(t,z,y)dedy

o0

+oo +oo
N [ , K(t—s,z—y)p(f(y))dedy

o0

+oo +oo
(3.8.15) - [ 3 K(t—s,z—y)p(u(t,z))dyde

o0

+oo +oo
—/[ K(t— 5,2 — y)¢/ (u(t, 2)) f(y) dy de

— 00

+oo +oo
+ /_ 3 K(t— s,z —y)¢ (u(t,z))u(t,z)) dy dz.

[ee]

Here we’ve used Theorem to change the order of integration in some, but
not all cases. Performing the inner integration in each of the integrals on the
right we have

“+o00 +oo +oo
[ ] Ke-so-putamday= [ ew)dy

oo

(3.8.16) - x))dx
+ u(t,x))u(t, x)) dz.

_/_+: plult,))
/_:o ¢’ (ult, z))u(t, ) do
[jwut»

The last two cancel so we are left with

+oo “+o0 “+o0
/ K= so-yultaydedy= [ o(fw)dy
(3.8.17) 7 o e
- [ o(u(t,z)) d.

The fundamental solution is positive everywhere and w(t, z,y) is non-negative
everywhere as a result of the convexity of ¢ so the integrand on the left hand
side is non-negative and therefore so is its integral. It follows that

+oo +oo
(3.8.18) | etnas [ et
or, equivalently,
+o0 +oo
(3.8.19) [ ety [ etutee) s

In other words, the entropy at later times is always greater than or equal to
the initial entropy. Of course if we have t5 > t; > s then we can just view the
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solution restricted to [t1,00) as the solution to an initial value problem with
data prescribed at time ¢1, so we find that the entropy at time ¢5 is greater than
or equal the entropy at time ¢1, so entropy is non-decreasing.

We can sharpen the result above by noting that ¢ is strictly convex, so if
w(t,z,y) is positive except when u(t,x) = f(y) and both w and K are con-
tinuous so if Kw is positive anywhere then it’s positive on an open set and
so the integral is positive. It follows that entropy is strictly decreasing unless
u(t,z) = f(y) for all ¢, z and y, which happens only if u is constant.

The argument we used for entropy applies to prove monotonicity of other
interesting integrals. If ¢ is convex and differentiable then

(3.8.20) / o(u(t, z)) dx

is a decreasing function of ¢, and strictly decreasing if ¢ is strictly convex and
u is not constant. This applies, for example to

(3.8.21) /u(t,x)2 dz

or, more generally, to

(3.8.22) / |u(t, z)|P dx

for p > 1. A slight variant of the argument applies when ¢ is convex but not
necessarily differentiable, and so includes the case p = 1 above.

3.9 Black-Scholes Equation

The Black-Scholes equation, we mentioned in the introduction. As

a reminder, it was
2

(3.9.1) % + %0252% + rs% —rv=0.
It describes the evolution of the value of a derivative, although neither value
nor derivative mean what they usual do in mathematics. Value means what you
would expect in a financial context: the price at which an asset can be bought
or sold. Derivative means an asset whose value depends on the value of some
other asset. Usually this means an option on a stock, i.e. a contract giving one
the right to buy or sell a stock at a given price on a given date. In the equation
above v is the value of the derived asset, s is the price of the underlying asset,
r is the rate of return on a risk free asset, o is the volatility of the price of the
underlying asset, and T is time.

The change of variable For now let’s assume the derivative is an option on
a stock which allows us to buy or sell it at a given price K, usually called the
strike price, at time 7', usually called the expiry date of the option. If make the
changes of variable

1
(39.2) t=T—7, u=wvexp(rt), leog(s/K)—l—(r—202>t7azv2k
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in the Black-Scholes equation we get the diffusion equation. of ¢t and s. Note
that t is the time remaining until expiry, so ¢t = 0 corresponds to expiry and
positive values of ¢ correspond to times before the option expires, which are the
times at which we’d like to compute its value. The value at expiry is a known
function of s and therefore of s. The specific function depends on whether our
option is an option to sell, usually called a put, or an option to buy, usually
called a call. So the problem of computing the value of the option at earlier
times is an initial value problem for the diffusion equation, although it’s really
a final value problem for the Black-Scholes equation due to the time reversal in
our change of variables.

While the Black-Scholes equation applies to the value of any option the ex-
ample described above, an option which can be exercised only at expiry, is only
one particular type of option, usually called a European option. The more com-
mon type of option, even in Europe, is what’s called an American option, where
the option can be exercised at any time. The effect of this is to convert our pure
initial value problem into a boundary value problem, but this boundary value
problem is of a very different type from the ones we’ve considered previously.
The boundary conditions, in terms of the original variables, are

(3.9:3) v(7,9(7)) = max(0, v(T, g(7)))
and
(3.9.4) %(7,9(7’)) =1.

What is g(7)? It is the price at which one should choose to exercise the option
early at time 7. This is not a given function. Rather, finding this function
is part of solving the problem. So, unlike the boundary value problems we’ve
considered previously, the location of the boundary is not known in advance
but rather has to be solved for. In some sense the lack of information about
the location of the boundary is compensated for by the fact that we have two
boundary conditions to be satisfied on the boundary rather than one.

Boundaries whose location is not known in advance are called free bound-
aries. They don’t just arise in financial mathematics and indeed didn’t first
arise there. The classical example of a free boundary problem is fluid flow with
a fluid which has a boundary, for example a bubble within the fluid region or
the top surface of a water wave. The peculiarity of free boundary problems is
that even when the equation is linear, as the Black-Scholes equation and the
equations for irrotational incompressible fluid flow are, the methods needed to
study them look much more like those of the theory of nonlinear differential
equations.
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Chapter 4
Burgers’ Equation

We've already seen Burgers’ equation

ou Ju
(4.0.1) B —i—uaz =0
Burgers’ equation is a vastly simplified model of the evolution of the free bound-
ary for fluid flow without viscosity.
There is a general theory which applies to first order scalar differential equa-
tions, of which this is one, but here we’ll just do everything by hand in this
special case.

4.1 Explicit Solution

Suppose u is a continuously differentiable solution to this equation in a
neighbourhood of the point (g, o) and set

(4.1.1) p(t) = u(t,zo + vt —vtg) — v
where v = u(tg, o). Then p(tp) = 0 and the chain rule gives

0 0
(4.1.2) p(t) = 8—?(75, xo + vt — vtp) + va—z(t, xo + vt — vtp)

or, using the fact that u satisfies the differential equation,

(4.1.3) p(t) = —p(t)%(t, xo + vt — vtp).
Defining
" ou
(4.1.4) q(t) = p(t) exp (/ ——(t,xo +vs — vtp) ds)
1, O

we find ¢(to) = 0 and using the product rule and the fundamental theorem of
calculus we find that

(4.1.5) q(t)=0
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S0 ¢ is zero everywhere. It follows that p is also zero everywhere and
(4.1.6) u(t, xo + vt — vtg) = v.

In other words, u is constant on the line x — vt = x¢ — vtg. So to solve the initial
value problem

(4.1.7) u(to, ) = f(x)
it suffices to solve eliminate xo from the system of equations
(4.1.8) x —ut =1x9 —uty, u= f(zg).

As a simple example consider linear initial conditions
(4.1.9) u(to, x) = cz.

Eliminating x( from

(4.1.10) T —ut = xg — uty, U= CIg.
gives

cx
4.1.11 t =
(4.1.11) wh ) = T e =)

That this satisfies the differential equation and initial conditions is easy to check
directly. The behaviour depends on the sign of c¢. If ¢ nonnegative then the
solution exists for all nonnegative values of ¢ while if ¢ is negative the solution
exists up until ¢ = ¢y — 1/¢ but there is no continuously differentiable solution
afterwards. Unlike the wave or diffusion equations we can therefore not expect
global solutions for Burgers’ equation, even for very nice initial data.

4.2 Shock Formation

If you know something about the existence and uniqueness theorems for or-
dinary differential equations this should not surprise you. The existence results
for linear ordinary differential equations give global existence, while the ones
for nonlinear ordinary differential equations only give existence in a finite time
interval, whose length depends on the choice of initial data. Since the wave and
diffusion equations are linear while Burgers’ is nonlinear it isn’t particularly
unexpected that we get global existence for the first two and only existence in a
finite interval for the last one. In fact the situation is worse than that though.
Consider the initial conditions

(4.2.1) u(0,z) = cos (1z?) .
The solution, for as long as it exists, should be equal to (—1)* on the lines
(4.2.2) z=Vk+ (-1)kt,

where k is a nonnegative integer. Considering the cases k = 2j and k = 2j + 1,
where j is a positive integer, we see that at the point

(VIFI- VT VIFIVE
(t,z) = 2 : 2

(4.2.3)
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u(t, ) should be equal to both +1 and —1, so the solution cannot extend as far
forward in time as

(4.2.4) t:—M
2. 5 .

Similarly, considering the cases k = 25 — 1 and k = 2j we see that at the point

(4.2.5) @JﬁZ(—wz_gw_l,ﬂU_;+¢%)

u(t, z) should again be equal to both +1 and —1, so the solution cannot extend
as far backward in time as

(4.2.6) po YA ZVH T
2

But these remarks apply to all integers 7, and both /27 +1 — 1/2j and /2] —
V27 — 1 tend to zero as j tends to infinity, so there is no time interval of positive
length on which we have a continuously differentiable solution to this initial value
problem, even though the initial data is bounded and infinitely differentiable!

There is much more to be said about Burgers’ equation. It was originally
introduce to model fluid flow and, in particular, shock formation. There is
a natural way to extend solutions beyond the singularities we’ve seen above,
although not as a continuously differentiable, or even continuous function. This
is true also for the more complicated, but also more physically relevant, Fuler
equations. That is a topic for a more advanced text though.
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Chapter 5

Laplace Equation

5.1 Symmetries

5.2 Poisson Solution in Half-plane
5.3 Regularity

5.4 Harmonic Conjugate

5.5 More Symmetries

5.6 Poisson Solution in Disc

5.7 Mean Value Property

5.8 Bounded Regions
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