MAU23205 2021-2022 Practice Problem Set 2

1. The existence and uniqueness theorem shows that the initial value problem

$$x(t_0) = x_0$$
 $y(t_0) = y_0$ $z(t_0) = z_0$

for the system

$$x'(t) = y(t)z(t)$$
 $y'(t) = -x(t)z(t)$ $z'(t) = -k^2x(t)z(t)$

has, for each k, a unique solution which depends continuously not only on t but also on the initial values t_0 , x_0 , y_0 and z_0 . Explain how to use the existence and uniqueness theorem to get continuous dependence on k as well.

Hint: Apply it to a larger system.

2. Find numerical approximations to the system

$$x'(t) = -y(t)$$
 $y'(t) = x(t)$

using the second order predictor-corrector method instead of Euler. Do the approximate solutions remain bounded at t tends to infinity for a fixed step size h?

- 3. Suppose that A is an $n \times n$ matrix.
 - (a) Show that A and A^T have the same characteristic polynomial.
 - (b) Show that A and A^T have the same minimal polynomial.