MAU23205 2021-2022 Practice Problem Set 1
Solutions

1. Assume that «, 3,7, > 0. Show that
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Solution: Differentiating,
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2. The differential equation

dy  6x+2y+5
dr  2x+4+2y+4

has a quadratic invariant, i.e. an invariant of the form
I=ax? +bry+cy’ +de+ey+ f.

(a) In fact there are infinitely many quadratic invariants, but find at
least one non-zero invariant.
Solution: By the usual rules for differentiation,
dI d d d d
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This will clearly be zero if

dy  2ax+by+d
der  br+2cy+e’

Examining the differential equation, we see that choosing
a=3 b=2 d=5 c=1 e=4

accomplishes this. Any multiple of these values would work equally
well, provided the same multiple is chosen for all of them. There are
no restrictions on f so we might as well choose f = 0. This leads to
the invariant

I(z,y) = 322 4 22y + 4> + bz + 4y.
Use this invariant to solve the initial value problem
y(0) = —4.
Solution: Since I is invariant
Iz, y(x)) = 1(0,5(0)) = 1(0, ~4) = 0.
So y(x) satisfies the quadratic equation
32 4 2xy(z) + y(z)? + 5z + 4y(x) = 0.
A better way to write this equation is by grouping the powers of y(z):
y(x)* 4+ (22 + 4)y(z) + 32 + 5z = 0.

You can solve this by the quadratic formula or by completing the
square. Completing the square gives

[y(z) +x+2° +222 + 2 —4=0
or
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(y(x)+z+2)2+2(x+4) +a— =0

This has a solution only when
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In that case

y(x)+x+2=+v4—x— 222



The initial conditions force us to choose the minus sign, so

y(x) = —x—2 -4 —x — 222

This solution is only valid for

because the function fails to be differentiable at the endpoints of the
interval.



