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Where we left o� and what's next

Last time we de�ned

�t0;x0;z(y) = max
u2[0;� ]

kZt0;x0;z(y; u)k

where

Zt0;x0;z(y; u) = y(u)�
∫ u

0

F(s + t0; y(s) + x0; z) ds

and showed that it was continuous. We also showed that

�t0;x0;z(y) = 0 if and only if xt0;x0;z(t) = yt0;x0;z(t � t0) + x0 is a

solution of the initial value problem xt0;x0;z(t0) = x0,

x0t0;x0;z(t) = F(t; xt0;x0;z(t); z).
�t0;x0;z(y) is clearly non-negative for all y. Our next task is to

show that it can be made arbitrarily small, i.e. that for every

� > 0 there is a y 2 K such that �t0;x0;z(y) < �. For this we'll use

the Euler scheme.



Euler scheme (1/5)
The Euler scheme with step size h > 0 is

yt0;x0;z(0) = 0

yt0;x0;z(jh + h) = yt0;x0;z(jh) + hF(jh + t0; yt0;x0;z(jh) + x0; z)

and linear in between. We want to show �t0;x0;z(y) < � for h

small. Let � =
�F(�=�)p
L2+1

and suppose h < �.

If jh < s � min(jh + h; �) then

yt0;x0;z(s) = yt0;x0;z(jh) + (s � jh)F(jh + t0; yt0;x0;z(jh) + x0; z)

For all such s we have js � jhj � h so

kyt0;x0;z(s) + x0; z)� yt0;x0;z(jh) + x0; z)k < Lh

and hence

k(s + t0; yt0;x0;z(s) + x0; z)� (jh + t0; yt0;x0;z(jh) + x0; z)k
is less than

p
L2 + 1h.



Euler scheme (2/5)
Then

p
L2 + 1h � �F(�=�) so

kF(s + t0; yt0;x0;z(s) + x0; z)� F(jh + t0; yt0;x0;z(jh) + x0; z)k

is less than �=� .

yt0;x0;z(s) = yt0;x0;z(jh) + (s � jh)F(jh + t0; yt0;x0;z(jh) + x0; z)

so

Zt0;x0;z(yt0;x0;z; u) = Zt0;x0;z(yt0;x0;z; jh)

+

∫ u

jh

F(s + t0; yt0;x0;z(s) + x0; z) ds

�
∫ u

jh

F(jh + t0; yt0;x0;z(jh) + x0; z) ds

Therefore kZt0;x0;z(u)� Zt0;x0;z(jh)k < �
� (u � jh) when

jh < u � min(jh + h; �). By induction on j we have

kZt0;x0;z(u)� Zt0;x0;z(0)k < �
� u



Euler scheme (3/5)
kZt0;x0;z(u)� Zt0;x0;z(0)k < �

� u. But Zt0;x0;z(0) = 0 and u � � so

kZt0;x0;z(u)k < � for all u 2 [0; � ] and (t0; x0; z) 2 D. Therefore

�t0;x0;z(y) < �, as promised.

We're not done yet! We still need to show that yt0;x0;z 2 K.

yt0;x0;z(s) = yt0;x0;z(jh) + (s � jh)F(jh + t0; yt0;x0;z(jh) + x0; z)

for jh < s � jh + h and kF(jh + t0; yt0;x0;z(jh) + x0; z)k � L so

kyt0;x0;z(s)� yt0;x0;z(jh)k � L(s � jh)

and, by induction on j

kyt0;x0;z(s)� yt0;x0;z(0)k � Ls:

But yt0;x0;z(0) and s � � so

kyt0;x0;z(s)k � L� � �x :



Euler scheme (4/5)

kyt0;x0;z(s)k � L� � �x:

This means that yt0;x0;z is a function from [0; � ] to B̄(0; �x ),
which is one of the requirements for yt0;x0;z to belong to K. We

need it to be a continuous function as well, but this is clear from

the de�nition.

Also, we de�ne yt0;x0;z only for s 2 [0; � ] and (t0; x0; z) 2 D, so

0 � s � � � �t , jt0 � tj � �t , kx0 � xk � �x and kz� zk � �z.

This means that

(s+t0; yt0;x0;z(s+t0; t0; x0)+x0; z) 2 B̄(t; 2�)�B̄(x; 2�x)�B̄(z; �z) = K

This is important because that's where we have quantitative

information on F.

Strictly speaking, this part of the argument should be moved into

the induction on j and checked at every step.



Euler scheme (5/5)

Also from

yt0;x0;z(s) = yt0;x0;z(jh) + (s � jh)F(jh + t0; yt0;x0;z(jh) + x0; z)

and

yt0;x0;z(s) = yt0;x0;z(jh + h)

� (jh + h � s)F(jh + t0; yt0;x0;z(jh) + x0; z)

it follows that kyt0;x0;z(s[)� yt0;x0;z(s
])k � Ljs[ � s]j.

So yt0;x0;z 2 K and �t0;x0;z(yt0;x0;z) < � for all h < �.



Arzel�a-Ascoli

The Arzel�a-Ascoli Theorem gives necessary and su�cient

conditions for a space of continuous functions to be compact.

There are many versions but the one we want is

Suppose X and Y are compact metric spaces and A is

a subset of the metric space of functions from X to Y .

Then A is compact if and only if A is closed and (uni-

formly) equicontinuous.

Y is compact so all functions from X to Y are bounded. So the

set of functions is indeed a metric space with metric

d(f ; g) = sup
x2X

dY (f (x); g(x)):

For continuous functions the supremum is actually a maximum

since X is compact and d is continuous. The word \uniformly" is

redundant, but sometimes useful.



K is compact (1/2)

We de�ned K to be the space of continuous functions y from

[0; � ] to B̄(x; �x ) such that

ky(s[)� y(s])k � Ljs[ � s]j

for all s[; s] 2 [0; � ]. The condition that y is continuous is

redundant since it follows from the inequality. Take � = �=(L+ 1).
K is a closed subset. If y =2 K then there are s[; s] 2 [0; � ] such
that

ky(s[)� y(s])k > Ljs[ � s]j:
Let

r =
ky(s[)� y(s])k � Ljs[ � s]j

2
:

If ỹ 2 B(y; r) then kỹ(s[)� y(s[)k < r and kỹ(s])� y(s])k < r .



K is compact (2/2)

ky(s[)� y(s])k � kỹ(s[)� ỹ(s])k+ kỹ(s[)� y(s[)k+ kỹ(s])� y(s])k
< kỹ(s[)� ỹ(s])k+ 2r

< kỹ(s[)� ỹ(s])k+ ky(s[)� y(s])k � Ljs[ � s]j

So kỹ(s[)� ỹ(s])k > Ljs[ � s]j. In other words, if y =2 K then

there is an r > 0 such that if ỹ 2 B(y; r) then ỹ =2 K. So the

complement of K is open and K is closed.

For and �, let � = �=(L + 1). If y 2 K, s[; s] 2 [0; � ] and
d[0;� ] = (s[; s])js[ � s]j < � then

dB̄(0;�x)(y(s[); y(s])) =
∥∥∥y(s[)� y(s])

∥∥∥ � Ljs[ � s]j � L� < �:

So K is uniformly equicontinuous and hence compact.



The existence theorem

For every (t0; x0; z) 2 D we have that �t0;x0;z is continuous on the

compact metric space K and therefore has a minimum. This

minimum is non-negative, but also non-positive, so must be zero.

In other words, there is a yt0;x0;z 2 K such that

�t0;x0;z(yt0;x0;z) = 0. We've already seen that if

�t0;x0;z(yt0;x0;z) = 0 and xt0;x0;z is de�ned by

xt0;x0;z(t) = yt0;x0;z(t � t0) + x0

then xt0;x0;z(t) solves the initial value problem

x0t0;x0;z(t) = F(t; xt0;x0;z(t); z); xt0;x0;z(t0) = x0:

This solution is valid at least for t � t0 2 [0; � ], i.e. for
t 2 [t0; t0 + � ]. This � is the same for all (t0; x0; z) 2 D, i.e. for

all (t0; x0; z) su�ciently close to (t; x; z).


