MAU23205 Lecture 29

John Stalker

Trinity College Dublin

25 November 2021

Where we left off and what's next

Last time we defined

$$\zeta_{t_0,\mathsf{x}_0,\mathsf{z}}(\mathsf{y}) = \max_{u \in [0,\tau]} \| \mathsf{Z}_{t_0,\mathsf{x}_0,\mathsf{z}}(\mathsf{y}, u) \|$$

where

$$\mathbf{Z}_{t_0,\mathbf{x}_0,\mathbf{z}}(\mathbf{y},u) = \mathbf{y}(u) - \int_0^u \mathbf{F}(s+t_0,\mathbf{y}(s)+\mathbf{x}_0,\mathbf{z}) \, ds$$

and showed that it was continuous. We also showed that $\zeta_{t_0,x_0,z}(\mathbf{y}) = 0$ if and only if $\mathbf{x}_{t_0,x_0,z}(t) = \mathbf{y}_{t_0,x_0,z}(t-t_0) + \mathbf{x}_0$ is a solution of the initial value problem $\mathbf{x}_{t_0,x_0,z}(t_0) = \mathbf{x}_0$, $\mathbf{x}'_{t_0,x_0,z}(t) = \mathbf{F}(t, \mathbf{x}_{t_0,x_0,z}(t), \mathbf{z})$. $\zeta_{t_0,x_0,z}(\mathbf{y})$ is clearly non-negative for all \mathbf{y} . Our next task is to show that it can be made arbitrarily small, i.e. that for every $\epsilon > 0$ there is a $\mathbf{y} \in \mathcal{K}$ such that $\zeta_{t_0,x_0,z}(\mathbf{y}) < \epsilon$. For this we'll use the Euler scheme.

Euler scheme (1/5)

The Euler scheme with step size h > 0 is

$$\mathbf{y}_{t_0,\mathsf{x}_0,\mathsf{z}}(0) = \mathbf{0}$$

$$\mathbf{y}_{t_0,\mathsf{x}_0,\mathsf{z}}(jh+h) = \mathbf{y}_{t_0,\mathsf{x}_0,\mathsf{z}}(jh) + h\mathbf{F}(jh+t_0,\mathbf{y}_{t_0,\mathsf{x}_0,\mathsf{z}}(jh) + \mathbf{x}_0,\mathsf{z})$$

and linear in between. We want to show $\zeta_{t_0,x_0,z}(\mathbf{y}) < \epsilon$ for h small. Let $\delta = \frac{\delta_{\mathsf{F}}(\epsilon/\tau)}{\sqrt{L^2+1}}$ and suppose $h < \delta$. If $jh < s \leq \min(jh + h, \tau)$ then

$$\mathbf{y}_{t_0,x_0,z}(s) = \mathbf{y}_{t_0,x_0,z}(jh) + (s - jh)\mathbf{F}(jh + t_0, \mathbf{y}_{t_0,x_0,z}(jh) + \mathbf{x}_0, \mathbf{z})$$

For all such s we have $|s - jh| \le h$ so

$$\|\mathbf{y}_{t_0,x_0,z}(s) + \mathbf{x}_0, \mathbf{z}) - \mathbf{y}_{t_0,x_0,z}(jh) + \mathbf{x}_0, \mathbf{z})\| < Lh$$

and hence

$$\|(s + t_0, \mathbf{y}_{t_0, x_0, z}(s) + \mathbf{x}_0, \mathbf{z}) - (jh + t_0, \mathbf{y}_{t_0, x_0, z}(jh) + \mathbf{x}_0, \mathbf{z})\|$$

is less than $\sqrt{L^2 + 1}h$.

Euler scheme (2/5) Then $\sqrt{L^2 + 1}h \le \delta_F(\epsilon/\tau)$ so $\|\mathbf{F}(s + t_0, \mathbf{y}_{t_0, \mathbf{x}_0, \mathbf{z}}(s) + \mathbf{x}_0, \mathbf{z}) - \mathbf{F}(jh + t_0, \mathbf{y}_{t_0, \mathbf{x}_0, \mathbf{z}}(jh) + \mathbf{x}_0, \mathbf{z})\|$ is less than ϵ/τ .

$$\mathbf{y}_{t_{0},x_{0},z}(s) = \mathbf{y}_{t_{0},x_{0},z}(jh) + (s - jh)\mathbf{F}(jh + t_{0}, \mathbf{y}_{t_{0},x_{0},z}(jh) + \mathbf{x}_{0}, \mathbf{z})$$

$$\begin{aligned} \mathbf{Z}_{t_{0},x_{0},z}(\mathbf{y}_{t_{0},x_{0},z},u) &= \mathbf{Z}_{t_{0},x_{0},z}(\mathbf{y}_{t_{0},x_{0},z},jh) \\ &+ \int_{jh}^{u} \mathbf{F}(s+t_{0},\mathbf{y}_{t_{0},x_{0},z}(s)+\mathbf{x}_{0},z) \, ds \\ &- \int_{jh}^{u} \mathbf{F}(jh+t_{0},\mathbf{y}_{t_{0},x_{0},z}(jh)+\mathbf{x}_{0},z) \, ds \end{aligned}$$

Therefore $\|\mathbf{Z}_{t_0,x_0,z}(u) - \mathbf{Z}_{t_0,x_0,z}(jh)\| < \frac{\epsilon}{\tau}(u - jh)$ when $jh < u \le \min(jh + h, \tau)$. By induction on j we have $\|\mathbf{Z}_{t_0,x_0,z}(u) - \mathbf{Z}_{t_0,x_0,z}(0)\| < \frac{\epsilon}{\tau}u$

Euler scheme (3/5)

 $\|\mathbf{Z}_{t_0,x_0,z}(u) - \mathbf{Z}_{t_0,x_0,z}(0)\| < \frac{\epsilon}{\tau}u. \text{ But } \mathbf{Z}_{t_0,x_0,z}(0) = \mathbf{0} \text{ and } u \leq \tau \text{ so} \\ \|\mathbf{Z}_{t_0,x_0,z}(u)\| < \epsilon \text{ for all } u \in [0,\tau] \text{ and } (t_0,\mathbf{x}_0,\mathbf{z}) \in D. \text{ Therefore } \\ \zeta_{t_0,x_0,z}(\mathbf{y}) < \epsilon, \text{ as promised.} \\ \mathbb{W}_{0}(\mathbf{x}_0,\mathbf{z}) \in \mathbf{U} \text{ for all } u \in [0,\tau] \text{ and } t_0 \text{ so that } \mathbf{x} \in \mathcal{L}.$

We're not done yet! We still need to show that $\mathbf{y}_{t_0,x_0,z} \in \mathcal{K}$.

$$\begin{aligned} \mathbf{y}_{t_0,x_0,z}(s) &= \mathbf{y}_{t_0,x_0,z}(jh) + (s - jh)\mathbf{F}(jh + t_0, \mathbf{y}_{t_0,x_0,z}(jh) + \mathbf{x}_0, \mathbf{z}) \\ \text{for } jh < s \le jh + h \text{ and } \|\mathbf{F}(jh + t_0, \mathbf{y}_{t_0,x_0,z}(jh) + \mathbf{x}_0, \mathbf{z})\| \le L \text{ so} \\ \|\mathbf{y}_{t_0,x_0,z}(s) - \mathbf{y}_{t_0,x_0,z}(jh)\| \le L(s - jh) \end{aligned}$$

and, by induction on j

$$\|\mathbf{y}_{t_0,x_0,z}(s) - \mathbf{y}_{t_0,x_0,z}(0)\| \le Ls.$$

But $\mathbf{y}_{t_0,\mathsf{x}_0,\mathsf{z}}(0)$ and $s \leq au$ so

 $\|\mathbf{y}_{t_0,\mathbf{x}_0,\mathbf{z}}(s)\| \leq L\tau \leq \delta_x.$

Euler scheme (4/5)

 $\|\mathbf{y}_{t_0,x_0,z}(s)\| \leq L\tau \leq \delta_x.$

This means that $\mathbf{y}_{t_0,x_0,z}$ is a function from $[0, \tau]$ to $\overline{B}(\mathbf{0}, \delta_x)$, which is one of the requirements for $\mathbf{y}_{t_0,x_0,z}$ to belong to \mathcal{K} . We need it to be a *continuous* function as well, but this is clear from the definition.

Also, we define $\mathbf{y}_{t_0,\mathbf{x}_0,\mathbf{z}}$ only for $s \in [0, \tau]$ and $(t_0, \mathbf{x}_0, \mathbf{z}) \in D$, so $0 \leq s \leq \tau \leq \delta_t$, $|t_0 - \underline{t}| \leq \delta_t$, $||\mathbf{x}_0 - \underline{\mathbf{x}}|| \leq \delta_x$ and $||\mathbf{z} - \underline{\mathbf{z}}|| \leq \delta_z$. This means that

$$(s+t_0, \mathbf{y}_{t_0, \mathbf{x}_0, \mathbf{z}}(s+t_0, t_0, \mathbf{x}_0) + \mathbf{x}_0, \mathbf{z}) \in \overline{B}(\underline{t}, 2\delta) \times \overline{B}(\underline{\mathbf{x}}, 2\delta_{\mathbf{x}}) \times \overline{B}(\underline{\mathbf{z}}, \delta_{\mathbf{z}}) = K$$

This is important because that's where we have quantitative information on ${\bf F}.$

Strictly speaking, this part of the argument should be moved into the induction on j and checked at every step.

Euler scheme (5/5)

Also from

$$\mathbf{y}_{t_0,\mathsf{x}_0,\mathsf{z}}(s) = \mathbf{y}_{t_0,\mathsf{x}_0,\mathsf{z}}(jh) + (s - jh)\mathbf{F}(jh + t_0, \mathbf{y}_{t_0,\mathsf{x}_0,\mathsf{z}}(jh) + \mathbf{x}_0, \mathbf{z})$$

and

$$\begin{aligned} \mathbf{y}_{t_0, x_0, z}(s) &= \mathbf{y}_{t_0, x_0, z}(jh+h) \\ &- (jh+h-s)\mathbf{F}(jh+t_0, \mathbf{y}_{t_0, x_0, z}(jh) + \mathbf{x}_0, \mathbf{z}) \end{aligned}$$

it follows that $\|\mathbf{y}_{t_0,x_0,z}(s^{\flat}) - \mathbf{y}_{t_0,x_0,z}(s^{\sharp})\| \leq L|s^{\flat} - s^{\sharp}|$. So $\mathbf{y}_{t_0,x_0,z} \in \mathcal{K}$ and $\zeta_{t_0,x_0,z}(\mathbf{y}_{t_0,x_0,z}) < \epsilon$ for all $h < \delta$.

Arzelà-Ascoli

The Arzelà-Ascoli Theorem gives necessary and sufficient conditions for a space of continuous functions to be compact. There are many versions but the one we want is

Suppose X and Y are compact metric spaces and A is a subset of the metric space of functions from X to Y. Then A is compact if and only if A is closed and (uniformly) equicontinuous.

Y is compact so all functions from X to Y are bounded. So the set of functions is indeed a metric space with metric

$$d(f,g) = \sup_{x \in X} d_Y(f(x),g(x)).$$

For continuous functions the supremum is actually a maximum since X is compact and d is continuous. The word "uniformly" is redundant, but sometimes useful.

\mathcal{K} is compact (1/2)

We defined \mathcal{K} to be the space of continuous functions **y** from $[0, \tau]$ to $\overline{B}(\mathbf{x}, \delta_x)$ such that

$$\|\mathbf{y}(s^{\flat}) - \mathbf{y}(s^{\sharp})\| \leq L|s^{\flat} - s^{\sharp}|$$

for all $s^{\flat}, s^{\sharp} \in [0, \tau]$. The condition that **y** is continuous is redundant since it follows from the inequality. Take $\delta = \epsilon/(L+1)$. \mathcal{K} is a closed subset. If $\mathbf{y} \notin \mathcal{K}$ then there are $s^{\flat}, s^{\sharp} \in [0, \tau]$ such that

$$\|\mathbf{y}(s^{\flat}) - \mathbf{y}(s^{\sharp})\| > L|s^{\flat} - s^{\sharp}|.$$

Let

$$r=\frac{\|\mathbf{y}(s^{\flat})-\mathbf{y}(s^{\sharp})\|-L|s^{\flat}-s^{\sharp}|}{2}.$$

If $\tilde{\mathbf{y}} \in B(\mathbf{y}, r)$ then $\|\tilde{\mathbf{y}}(s^{\flat}) - \mathbf{y}(s^{\flat})\| < r$ and $\|\tilde{\mathbf{y}}(s^{\sharp}) - \mathbf{y}(s^{\sharp})\| < r$.

\mathcal{K} is compact (2/2)

$$\begin{split} \|\mathbf{y}(s^{\flat}) - \mathbf{y}(s^{\sharp})\| &\leq \|\mathbf{\tilde{y}}(s^{\flat}) - \mathbf{\tilde{y}}(s^{\sharp})\| + \|\mathbf{\tilde{y}}(s^{\flat}) - \mathbf{y}(s^{\flat})\| + \|\mathbf{\tilde{y}}(s^{\sharp}) - \mathbf{y}(s^{\sharp})\| \\ &< \|\mathbf{\tilde{y}}(s^{\flat}) - \mathbf{\tilde{y}}(s^{\sharp})\| + 2r \\ &< \|\mathbf{\tilde{y}}(s^{\flat}) - \mathbf{\tilde{y}}(s^{\sharp})\| + \|\mathbf{y}(s^{\flat}) - \mathbf{y}(s^{\sharp})\| - L|s^{\flat} - s^{\sharp}| \end{split}$$

So $\|\tilde{\mathbf{y}}(s^{\flat}) - \tilde{\mathbf{y}}(s^{\sharp})\| > L|s^{\flat} - s^{\sharp}|$. In other words, if $\mathbf{y} \notin \mathcal{K}$ then there is an r > 0 such that if $\tilde{\mathbf{y}} \in B(\mathbf{y}, r)$ then $\tilde{\mathbf{y}} \notin \mathcal{K}$. So the complement of \mathcal{K} is open and \mathcal{K} is closed. For and ϵ , let $\delta = \epsilon/(L+1)$. If $\mathbf{y} \in \mathcal{K}$, s^{\flat} , $s^{\sharp} \in [0, \tau]$ and $d_{[0,\tau]} = (s^{\flat}, s^{\sharp})|s^{\flat} - s^{\sharp}| < \delta$ then

$$d_{\bar{B}(0,\delta_{\mathsf{X}})}(\mathbf{y}(s^{\flat}),\mathbf{y}(s^{\sharp})) = \left\|\mathbf{y}(s^{\flat}) - \mathbf{y}(s^{\sharp})\right\| \leq L|s^{\flat} - s^{\sharp}| \leq L\delta < \epsilon.$$

So \mathcal{K} is uniformly equicontinuous and hence compact.

The existence theorem

For every $(t_0, \mathbf{x}_0, \mathbf{z}) \in D$ we have that $\zeta_{t_0, \mathbf{x}_0, \mathbf{z}}$ is continuous on the compact metric space \mathcal{K} and therefore has a minimum. This minimum is non-negative, but also non-positive, so must be zero. In other words, there is a $\mathbf{y}_{t_0, \mathbf{x}_0, \mathbf{z}} \in \mathcal{K}$ such that $\zeta_{t_0, \mathbf{x}_0, \mathbf{z}}(\mathbf{y}_{t_0, \mathbf{x}_0, \mathbf{z}}) = 0$. We've already seen that if $\zeta_{t_0, \mathbf{x}_0, \mathbf{z}}(\mathbf{y}_{t_0, \mathbf{x}_0, \mathbf{z}}) = 0$ and $\mathbf{x}_{t_0, \mathbf{x}_0, \mathbf{z}}$ is defined by

$$\mathbf{x}_{t_0,\mathsf{x}_0,\mathsf{z}}(t) = \mathbf{y}_{t_0,\mathsf{x}_0,\mathsf{z}}(t-t_0) + \mathbf{x}_0$$

then $\mathbf{x}_{t_0,x_0,z}(t)$ solves the initial value problem

$$\mathbf{x}'_{t_0,\mathsf{x}_0,\mathsf{z}}(t) = \mathbf{F}(t, \mathbf{x}_{t_0,\mathsf{x}_0,\mathsf{z}}(t), \mathsf{z}), \quad \mathbf{x}_{t_0,\mathsf{x}_0,\mathsf{z}}(t_0) = \mathbf{x}_0$$

This solution is valid at least for $t - t_0 \in [0, \tau]$, i.e. for $t \in [t_0, t_0 + \tau]$. This τ is the same for all $(t_0, \mathbf{x}_0, \mathbf{z}) \in D$, i.e. for all $(t_0, \mathbf{x}_0, \mathbf{z})$ sufficiently close to $(\underline{t}, \underline{\mathbf{x}}, \underline{\mathbf{z}})$.