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Stability comparison with linearisation

Theorem A: Suppose F is continuous in B(x�; r) for some r > 0,

F(x�) = 0 and F is di�erentiable at x�. If all eigenvalues of

F0(x�), i.e. roots of its characteristic or minimal polynomial, have

negative real part then x� is a strictly stable equilibrium of

x0(t) = F(x(t)).
I'll prove this in a moment.

Theorem B: Suppose F is continuous in B(x�; r) for some r > 0,

F(x�) = 0 and F is di�erentiable at x�. If some eigenvalue of

F0(x�) has positive real part then x� is an unstable equilibrium of

x0(t) = F(x(t)).
I won't prove this, but you are allowed to assume it when doing

problems.

The case where no eigenvalue has positive real part but some

eigenvalue is purely imaginary is not addressed by either theorem.

In this case knowledge of F0(x�) is not enough to determine

stability, as the example F(x) = Ax+ bx+ ckxk2x from last

lecture shows.



Proof of Theorem A (1/4)

Set A = F0(x�) and C = I . All the eigenvalues of A have negative

real part so there is a symmetric positive de�nite B such that

ATB + BA+ C = O. De�ne

V (x) = (x� x
�)TB(x� x

�):

V (x) > V (x�) = 0 if x 6= x� because B is positive de�nite.

V 0(x) = 2(x� x
�)TB:

F is di�erentiable at x�, i.e. for every � > 0 there is a � > 0 such

that if kx� x�k < � then

F(x)� F(x�)� F
0(x�)(x� x

�) � �kx� x
�k:

F(x)� A(x� x
�) � �kx� x

�k:

V 0(x)F(x) = 2(x� x
�)TB (A(x� x

�) + F(x)� A(x� x
�)) :



Proof of Theorem A (2/4)

V 0(x)F(x) = 2(x�x�)TBA(x�x�)+2(x�x�)TB (F(x)� A(x� x
�)) :

2(x� x
�)TBA(x� x

�) = (x� x
�)TBA(x� x

�)

+ (x� x
�)TBA(x� x

�)

= ((x� x
�)TBA(x� x

�))T

+ (x� x
�)TBA(x� x

�)

= (x� x
�)TATB(x� x

�)

+ (x� x
�)TBA(x� x

�)

= (x� x
�)T (ATB + BA)(x� x

�)

= �(x� x
�)TC (x� x

�)

= �(x� x
�)T (x� x

�) = �kx� x
�k2



Proof of Theorem A (3/4)

V 0(x)F(x) = 2(x�x�)TBA(x�x�)+2(x�x�)TB (F(x)� A(x� x
�)) :

2(x� x
�)TBA(x� x

�) = �kx� x
�k2

∥∥2(x� x
�)TB (F(x)� A(x� x

�))
∥∥ � 2kx� x

�kkF(x)� A(x� x
�)k

� 2�kx� x
�k2

�2�kx� x
�k2 � 2(x� x

�)TB (F(x)� A(x� x
�)) � 2�kx� x

�k2

�(1+ 2�)kx� x
�k2 � V 0(x)F(x) � �(1� 2�)kx� x

�k2



Proof of Theorem A (4/4)

�(1+ 2�)kx� x
�k2 � V 0(x)F(x) � �(1� 2�)kx� x

�k2

We get to choose � so choose � = 1=3 so

V 0(x)F(x) � �
1

3
kx� x

�k2 < 0

if x 6= x�. We also needed kx� x�k < � . V 0(x)F(x) < 0 for

x 2 B(x�; r)� fx�g where r = �. Also V (x) > V (x�) for
x 2 B(x�; r)� fx�g. V is therefore a strict Lyapunov function.

By the Lyapunov Theorem then x� is a strictly stable equilibrium.



One more stability example: the pendulum (1/5)

The behaviour of a pendulum is described by the second order

di�erential equation

m`�00(t) +mg sin(�(t)) = '(�(t); �0(t)):

� is the angular displacement from the downward vertical

position, m > 0 is the mass, ` > 0 is the length of the arm, g > 0

is the acceleration of gravity and ' is the sum of all forces other

than gravity, e.g. friction, air resistance, etc. Two common

approximations are sin � = �, the small amplitude assumption, and

' = 0, the no dissipation assumption. I want to avoid making

either assumption, although I still want to allow ' = 0.

As usual, we'll reduce to a �rst order system, by taking ! = �0.

�0(t) = !(t) !0(t) = �
g

`
sin(�(t)) +

1

m`
'(�(t); !(t)):



One more stability example: the pendulum (2/5)

If ' = 0 then energy is conserved, i.e.

E (�; !) =
m`2

2
!2 �mg`(cos �)

is an invariant.

We now drop the assumption that ' = 0. ' is meant to describe

forces like friction, which reduce the energy of the system, or at

least don't increase it, so the natural assumption is

!'(�; !) � 0

for all � and !. E is now no longer an invariant but it is a

Lyapunov function. It has a strict local minimum at (0; 0) and

E 0(�; !)F(�; !) = �mg`!(t) sin(�(t)) + `!(t)'(�(t); !(t))

+mg`!(t) sin(�(t)) = `!(t)'(�(t); !(t)) � 0



One more stability example: the pendulum (3/5)

I'll assume that ' is di�erentiable. From !'(�; !) � 0 it follows

that '(�; !) � 0 for ! < 0 and '(�; !) � 0 for ! > 0. It follows

that '(�; 0) = 0. Also @'(�; 0)=@� = 0 and @'(�; 0)=@! � 0

The equilibria are the points (��; !�) where

!� = 0 �
g

`
sin(��) +

1

m`
'(��; !�) = 0

The points (��; !�) = (0; 0) and (��; !�) = (�; 0) clearly satisfy

those conditions. Conversely, if !� = 0 and

�g
`
sin(��) + 1

m`
'(��; !�) = 0 then �g

`
sin(��) = 0 and hence

(��; !�) = (n�; 0), where n is an integer. There's no meaningful

distinction between angles which di�er by an integer multiple of

2�, so (0; 0) and (�; 0) are the only equilibria we need to consider.



One more stability example: the pendulum (4/5)

We now linearise the equations. With x =

[
�

!

]
, x� =

[
��

!�

]
and

F(x) =

[
!

�g
`
sin(�) + 1

m`
'(�; !)

]
our equation is x0(t) = F(x(t))

and our equliibrium is x�.

A = F
0(x�) =

[
0 1

�g
`
cos(��) + 1

2m`
@'
@�

(��; !�) 1
2m`

@'
@!

(��; !�)

]
=

[
0 1

(�1)n+1 g
`

1
2m`

@'
@!

(n�; 0)

]
at (��; !�) = (n�; 0).
pA(z) = z2 � 1

2m`
@'
@!

(n�; 0)z + (�1)n g
`
. For n = 1 this has two

real roots, one of which is negative, so the equilibrium (�; 0) is
unstable, as expected. For n = 0 and @'

@!
(0; 0) < 0 this has roots

with negative real part, so the equilibrium (0; 0) is strictly stable

by Theorem A.



One more stability example: the pendulum (5/5)

For n = 0 and @'
@!

(0; 0) = 0 this has two distinct purely imaginary

roots, so Theorems A and B tell us nothing. We can still use

Lyapunov's theorem, with V = E , to get stability. E isn't a strict

Lyapunov function so we don't get strict stability. We shouldn't

expect it because the case ' = 0 is compatible with @'
@!

(0; 0) = 0.

The idea of using V = E comes from the physics of the problem.

It works as well as we can expect for @'
@!

(0; 0) = 0. It does not

work very well for @'
@!

(0; 0) < 0. It's still only a Lyapunov

function, not a strict Lyapunov function. We proved Theorem A

by �nding a strict Lyapunov function, but that function was a

quadratic polynomial with no relation to the energy and no

particular physical meaning. If I make the usual choice of C = I

then even the units don't make sense!


