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Example (1/3)

Suppose A is an antisymmetric matrix, i.e. AT = �A, such as the

1� 1 matrix A =
[
0
]
or the 2� 2 matrix A =

[
0 �1
1 0

]
. Then
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for all x. Let

F(x) = Ax+ bx+ ckxk2x; V (x) = kxk2 = x
T
x:



Example (2/3)

V (x) = xTx is continuously di�erentiable and V 0(x) = 2xT .

V 0(x)F(x) = 2xTAx+ 2bxTx+ 2ckxk2xTx = 2bkxk2 + 2ckxk4:

V (x�) = 0 and V (x) = kxk2 > 0 for all x 2 B(x�; r)� fx�g if

x� = 0 and B(x�; r) is any subset of r > 0.

If b < 0 then V 0(x)F(x) < 0 for all x 2 B(x�; r)� fx�g, where
r =

√
�c=b if c > 0 and for any r > 0 if c � 0.

If b = 0 and c < 0 then V 0(x)F(x) < 0 for all x 2 B(x�; r)� fx�g
for any r > 0.

In either of these cases, V is a strict Lyapunov function for x� = 0

and hence 0 is a strictly stable equilibrium of x0(t) = F(x(t)).



Example (3/3)

A strict Lyapunov function is necesarily a Lyapunov function, but

a Lyapunov function needn't be a strict Lyapunov function. If

b = c = 0 then our V is a Lyapunov function, but not a strict

Lyapunov function. 0 is then a stable equilibrium. Is it strictly

stable? No. The theorem doesn't tell you, but the calculation

does.
d

dt
V (x(t)) = V 0(x(t))F(x(t)) = 0

so V (x(t)) = kx(t)k2 is constant, which prevents

limt!+1 x(t) = 0 for x0 6= 0.

The theorem tells us nothing about instability, but in fact 0 is an

unstable equilibrium if b > 0, or if b = 0 and c > 0.

The linearisation of x0(t) = Ax(t) + bx(t) + ckx(t)k2x(t) is
x0(t) = Ax(t) + bx(t). 0 is a strictly stable equilibrium if b < 0,

stable but not strictly stable if b = 0 and unstable if b > 0.



Example: Lotka-Volterra (1/6)

Consider the Lotka-Volterra system from the �rst set of practice

problems:

x 0(t) = ax(t)� bx(t)y(t) y 0(t) = �cy(t) + dx(t)y(t)

We take x =

[
x

y

]
. Our F is F

([
x

y

])
=

[
ax � bxy

�cy + dxy

]
. Then

F0

([
x�

y�

])
is the matrix whose columns are the partial derivatives

of F, evaluated at

[
x�

y�

]
: A = F0(x�) =

[
a � by� �bx�
dy� �c + dx�

]
To

determine stability we'll need tr(A) = a � c + dx� � by� and

det(A) = (a�by�)(�c+dx�)�(�bx�)(dy�) = �ac+adx�+bcy�.



Example: Lotka-Volterra (2/6)

We're only interested in linearising at equilibria. If

[
x�

y�

]
is an

equilibrium then our linearised system is

d

dt

[
x(t)� x�

y(t)� y�

]
= A

[
x(t)� x�

y(t)� y�

]
This is the system

x 0(t) = (a � by�)(x(t)� x�) + (�bx�)(y(t)� y�)(a � by�)

= (a � by�)x(t)� bx�y(t)� ax�

y 0(t) = dy�(x(t)� x�) + (�c + dx�)(y(t)� y�)

= dy�x(t) + (�c + dx�)y(t) + cy�



Example: Lotka-Volterra (3/6)

Where are the equilibria? F

([
x�

y�

])
=

[
ax� � bx�y�

�cy� + dx�y�

]
=

[
0

0

]
if

and only if ax� � bx�y� = 0 and �cy� + dx�y� = 0. The equation

ax� � bx�y� = 0 is satis�ed if x� = 0 or if a � by� = 0. The

equation �cy� + dx�y� = 0 is satis�ed if y� = 0 or if

�c + dx� = 0.

One possibility is x� = 0 and y� = 0. In that case

tr(A) = a � c + dx� � by� = a � c and

det(A) = �ac + adx� + bcy� = �ac . The characteristic

polynomial is pA(z) = z2� tr(A)z +det(A) = (z � a)(z + c). The
usual assumptions on a, b, c and d are that they are all positive,

so one root is positive and one is negative. This equilibrium

therefore has a linearisation whose equilibrium is unstable.



Example: Lotka-Volterra (4/6)

Another \possibility" is x� = 0 and �c + dx� = 0. Because of our

assumption that c > 0, this can't happen.

Similarly, because a > 0, we can't have a � by� = 0 and y� = 0.

The only remaining possibility is a � by� = 0 and �c + dx� = 0.

This happens if x� = c=d and y� = a=b. Then tr(A) = 0 and

det(A) = ac > 0. The roots of the characteristic polynomial are

purely imaginary. They're of multiplicity 1, so this equilibrium has

a linearisation whose equilibrium is stable, but not strictly stable.

So we know the character of the equilibria of the linearisations at

the two equilibria. What about the character of those equilibria

for the original, non-linear system?



Example: Lotka-Volterra (5/6)

V (x ; y) =

(
dx

c

)
�

p
c=a (

by

a

)
�

p
a=c

exp

(
dx + byp

ac

)
is a Lyapunov function for the equilibrium (c=d ; a=b). You can

check using the second derivative test that V has a strict local

minimum at (c=d ; a=b).

V 0(x ; y) =
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]
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]
V 0(c=d ; a=b) =

[
0 0

]
:
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(c=d ; a=b) =

1p
ac

exp

(√
a

c
+

√
c

a

)[
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]
:

V 0(x ; y)F(x ; y) =
V (x ; y)p

ac

[
dx�c
x

; by�a
y

] [(a � by)x
(dx � c)y

]
= 0:



Example: Lotka-Volterra (6/6)

So (c=d ; a=b) is a stable equilibrium for the non-linear system,

just as it is for the linearisation.

We can check by hand that (0; 0) is an unstable equilibrium for

the non-linear system, just as it is for the linear system.

x(t) =
�

2
exp(at); y(t) = 0

is a solution with k(x(0); y(0))� (0; 0)k < � but it is not true

that k(x(t); y(t))� (0; 0)k < � for all t � 0.


