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Equilibria of linear systems

The simplest autonomous systems are the linear ones. x� is an

equilibrium of x0(t) = Ax(t) + g if and only if Ax� + g = 0.

A here is necessarily square. If A is invertible then there is exactly

one equilibrium. If A is not invertible then the will be equilibria

only for some g, those in the range of A, but if there is an

equilibrium then there are in�nitely many, di�ering by elements of

the nullspace (kernel) of A. If x� is an equilibrium then

d

dt
(x(t)� x�) = x0(t) = Ax(t) + g

= Ax(t)� Ax� = A (x(t)� x�)

So x� x� satis�es the corresponding homogeneous equation. In

particular, the equation it satis�es doesn't depend on which

equilibrium we're looking at. The stability properties are therefore

the same for all equilibria of a given linear system.



Stability of linear systems (1/3)

The following were shown to be equivalent in Lecture 17:

1. All solutions of x0(t) = Ax(t) are bounded as t ! +1.

2. The basic solutions of x0(t) = Ax(t) are bounded as

t ! +1.

3. exp(tA) is bounded as t ! +1.

4. All (complex) roots of the minimal polynomial of A either

have negative real part, or have zero real part and multiplicity

one.

If exp(tA) is bounded as t ! +1 then there is a C > 0 such that

k exp(tA)k < C for t 2 [0;+1). If � > 0, kx0� x�k < � = �

C
then

kx(t)� x�k = k exp(tA)(x0 � x�)k � k exp(tA)kkx0 � x�k < � for

all t 2 [0;+1). So for any � > 0 there is a � > 0 such that for

kx0� x�k < � the unique solution of x0(t) = Ax(t)+ g, x(0) = x0,

where g = �Ax�, satis�es kx(t)� x�k < � for all t 2 [0;+1). In
other words, x� is a stable equilibrium of x0(t) = Ax(t) + g.



Stability of linear systems (2/3)

Since all equilibria of x0(t) = Ax(t) + g are of the form x� where

g = �Ax�, all equilibria of x0(t) = Ax(t) + g are stable.

Conversely, suppose there is at least one stable equilibrium x� of

x0(t) = Ax(t) + g for some g. Taking any � > 0, there is a � > 0

such that kx0 � x�k < � the unique solution of x0(t) = Ax(t) + g,

x(0) = x0 satis�es kx(t)� x�k < � for all t 2 [0;+1). For any
solution y to y0(t) = Ay(t), set x(t) = x� + �

2ky(0)ky(t). Then x is

a solution to x0(t) = Ax(t) + g with kx(0)� x�k < �, so

kx(t)� x�k < �. Then ky(t)k < 2 �

�
ky(0)k for all t 2 [0;+1). So

all solutions to y0(t) = Ay(t) are bounded.



Stability of linear systems (3/3)

We can now extend the list from two slides ago. The following

are equivalent:

1. All solutions of x0(t) = Ax(t) are bounded as t ! +1.

2. The basic solutions of x0(t) = Ax(t) are bounded as

t ! +1.

3. exp(tA) is bounded as t ! +1.

4. All (complex) roots of the minimal polynomial of A either

have negative real part, or have zero real part and multiplicity

one.

5. For any g and any equilibrium x� of x0(t) = Ax(t) + g, x� is

stable.

6. For some g there is a stable equilibrium x� of

x0(t) = Ax(t) + g.



Asymptotic stability of linear systems (1/3)

We also saw in Lecture 17 that the following are equivalent:

1. All solutions of x0(t) = Ax(t) tend to 0 as t ! +1.

2. The basic solutions of x0(t) = Ax(t) tend to 0 as t ! +1.

3. exp(tA) tends to O as t ! +1.

4. All (complex) roots of the minimal polynomial of A have

negative real part.

5. All (complex) roots of the characteristic polynomial of A

have negative real part.

6. There are positive de�nite symmetric B and C such that

ATB + BA+ C = O.

7. For every positive de�nite symmetric C there is a positive

de�nite symmetric B such that ATB + BA+ C = O.

8. There is a quadratic polynomial V (x) = xTBx in the entries

of x such that V (x) > 0 for x 6= 0 and V (x(t)) is strictly
decreasing for all non-zero solutions of x0(t) = Ax(t).



Asymptotic stability of linear systems (2/3)

If all solutions tend to 0 then there is certainly a � > 0 such that

all solutions with kx0 � 0k < � tend to 0, so 0 is asymptotically

stable.

Conversely, if 0 is asymptotically stable there is a � > 0 such that

all solutions x with kx0 � 0k < � tend to 0, But for any

solution y, x = 1
2�ky(0)ky is a solution with kx(0)k < �, so x(t)

tends to 0, and hence so does y(t). So all solutions tend to 0. So

we can add \0 is an asymptotically stable equilibrium of

x0(t) = Ax(t)" to the list.

Just as with stability, we can go from the behaviour of 0 as an

equilibrium of x0(t) = Ax(t) to the behaviour of x� as an

equilibrium of x0(t) = Ax(t) + g and back again.



Asymptotic stability of linear systems (3/3)

The following can be added to our list of equivalent conditions

from two slides ago:

9. For some g there is an asymptotically stable equilibrium x� of

x0(t) = Ax(t) + g.

10. For any g and any equilibrium x� of x0(t) = Ax(t) + g, x� is

asymptotically stable.

11. For every equilibrium x� of x0(t) = Ax(t) + g there is a

quadratic polynomial V (x) = (x� x�)TB(x� x�) in the

entries of x such that V (x) > 0 for x 6= x� and V (x(t)) is
strictly decreasing for all solutions of x0(t) = Ax(t) + g.

12. For any g and any equilibrium x� of x0(t) = Ax(t) + g, x� is

strictly stable.

13. For some g there is an strictly stable equilibrium x� of

x0(t) = Ax(t) + g.



Strict stability and exponential stability (1/5)
We saw in Lecture 23 that every exponentially stable equilibrium

is strictly stable. I also gave an example of a strictly stable

equilibrium which is not exponentially stable. That can't happen

for linear autonomous systems.

Suppose x� is a strictly stable equilibrium of x0(t) = Ax(t) + g.

As we saw last time, that implies that there are positive de�nite

symmetric matrices B and C such that ATB + BA+ C = O.

De�ne U;V : Rn ! R and S � Rn by U(x) = (x� x�)TC (x� x�)
V (x) = (x� x�)TB(x� x�) and S = fx 2 Rn : U(x) = 1g. Then
S is compact, V is continuously di�erentiable, and

d

dt
V (x(t)) = (x0(t)� x�)TB(x(t)� x�)

+ (x(t)� x�)TB(x0(t)� x�)

= (x(t)� x�)TATB(x(t)� x�)

+ (x(t)� x�)TBA(x(t)� x�)

= �(x(t)� x�)TC (x(t)� x�) = �U(x(t)):



Strict stability and exponential stability (2/5)
V restricted to the compact set S is continuous, and so has a

minimum and maximum there. In other words, there are

xmin; xmax 2 S such that for all y 2 S

V (xmin) � V (y) � V (xmax):

xmin 2 S so U(xmin) = (xmin � x�)TC (xmin � x�) = 1 and

xmin � x� 6= 0. B is positive de�nite, so

V (xmin) = (xmin � x�)TB(xmin � x�) > 0:

For any x 6= x�, U(x) > 0, so y = x� + 1p
U(x)

(x� x�) satis�es

U(y) = (y � x�)TC (y � x�) = (x� x�)T
1√
U(x)

C
1√
U(x)

(x� x�)

=
1

U(x)
(x� x�)TC (x� x�) =

U(x)

U(x)
= 1:



Strict stability and exponential stability (3/5)

We've just seen that U(y) = 1, so y 2 S and hence

0 < V (xmin) � V (y) � V (xmax):

V (y) = (y � x�)TB(y � x�) = (x� x�)T
1√
U(x)

B
1√
U(x)

(x� x�)

=
1

U(x)
(x� x�)TB(x� x�) =

V (x)

U(x)
:

So

V (xmin)U(x) � V (x) � V (xmax)U(x)

for all x 6= x�. The same inequalities hold, trivially, for x = x�. So,

for any solution x to x0(t) = Ax(t) + g,

d

dt
V (x(t)) = �U(x(t)) � � V (x(t))

V (xmax)



Strict stability and exponential stability (4/5)

From d

dt
V (x(t)) = �U(x(t)) � � V (x(t))

V (xmax)
it follows that

V (x(t)) exp
(

t

V (xmax)

)
is decreasing, and so

V (x(t)) � V (x(0)) exp

(
� t

V (xmax)

)
for all t 2 [0;+1). Then

U(x(t)) � V (x(t))

V (xmin)
� V (x(0))

V (xmin)
exp

(
� t

V (xmax)

)
� V (xmax)

V (xmin)
U(x(0)) exp

(
� t

V (xmax)

)



Strict stability and exponential stability (5/5)
We get to choose C . Choose C = I , so that

U(x) = (x� x�)TC (x� x�) = kx� x�k2:

With this choice of C ,

U(x(t)) � V (xmax)

V (xmin)
U(x(0)) exp

(
� t

V (xmax)

)
becomes

kx(t)� x�k �
√
V (xmax)

V (xmin)
kx(0)� x�k exp

(
� t

2V (xmax)

)

Choosing any � > 0, C =
√

V (xmax)
V (xmin)

, and � = 1
2V (xmax)

, if

kx0 � x�k < � then the unique solution to x0(t) = Ax(t) + g,

x(0) = x0 satis�es kx(t)� x�k � Ckx0 � x�k exp (��t) for all
t 2 [0;+1). So x� is an exponentially stable equilibrium.


