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Equilibria of linear systems

The simplest autonomous systems are the linear ones. x* is an

equilibrium of x'(t) = Ax(t) + g if and only if Ax* + g =0.

A here is necessarily square. If A is invertible then there is exactly
one equilibrium. If A is not invertible then the will be equilibria
only for some ¢, those in the range of A, but if there is an
equilibrium then there are infinitely many, differing by elements of
the nullspace (kernel) of A. If x* is an equilibrium then

d ¥\ )
a(x(t)—x ) =x(t) =Ax(t)+g

= Ax(t) — Ax* = A(x(t) — x)

So x — x* satisfies the corresponding homogeneous equation. In
particular, the equation it satisfies doesn’'t depend on which
equilibrium we're looking at. The stability properties are therefore
the same for all equilibria of a given linear system.



Stability of linear systems (1/3)

The following were shown to be equivalent in Lecture 17:
1. All solutions of x/(t) = Ax(t) are bounded as t — +o0.

2. The basic solutions of x(t) = Ax(t) are bounded as
t — t+oc.

3. exp(tA) is bounded as t — +oc.

4. All (complex) roots of the minimal polynomial of A either
have negative real part, or have zero real part and multiplicity
one.

If exp(tA) is bounded as t — +o0 then there is a C > 0 such that
| exp(tA)|| < C for t € [0, +00). If € >0, |[xo —x*|| < & = & then
Ix(£) = x'I| = [l exp(£4) (x0 — x*)]| < [l exp(tA)xo — x'|| < € for
all t € [0, 4+00). So for any € > 0 there is a § > 0 such that for
Ixo — x*|| < & the unique solution of X'(t) = Ax(t) + g, x(0) = xo,
where g = —Ax*, satisfies ||x(t) — x*|| < € for all t € [0, +00). In
other words, x* is a stable equilibrium of X'(t) = Ax(t) + g.



Stability of linear systems (2/3)

Since all equilibria of x'(t) = Ax(t) + g are of the form x* where
g = —Ax*, all equilibria of x'(t) = Ax(t) + g are stable.
Conversely, suppose there is at least one stable equilibrium x* of
x'(t) = Ax(t) + g for some g. Taking any € > 0, thereisa § >0
such that |jxg — x*|| < & the unique solution of X'(t) = Ax(t) + g,
x(0) = xo satisfies ||x(t) — x*|| < € forall t € [O +00). For any
solution y to y'(t) = Ay(t) set x(t) = x* + 2Hy( Y y(t). Then x is
a solution to X/(t) = Ax(t) + g with ||x(0) — x*|| < 4, so

Ix(t) —x*|| < e. Then ||y(t)|| < 2¢]ly(0)]| for all t € [0, +00). So
all solutions to y'(t) = Ay(t) are bounded.



Stability of linear systems (3/3)

We can now extend the list from two slides ago. The following
are equivalent:

1. All solutions of x'(t) = Ax(t) are bounded as t — +cc.

2. The basic solutions of x(t) = Ax(t) are bounded as
t — 4o00.

3. exp(tA) is bounded as t — +o0.

4. All (complex) roots of the minimal polynomial of A either
have negative real part, or have zero real part and multiplicity
one.

5. For any g and any equilibrium x* of x'(t) = Ax(t) +g, x* is
stable.

6. For some g there is a stable equilibrium x* of
X'(t) = Ax(t) +g.



Asymptotic stability of linear systems (1/3)

We also saw in Lecture 17 that the following are equivalent:

1.

All solutions of x'(t) = Ax(t) tend to 0 as t — +o0.

2. The basic solutions of x'(t) = Ax(t) tend to 0 as t — +oo0.
3.
4. All (complex) roots of the minimal polynomial of A have

exp(tA) tends to O as t — +o0.

negative real part.

All (complex) roots of the characteristic polynomial of A
have negative real part.

. There are positive definite symmetric B and C such that

ATB+BA+ C=0.
For every positive definite symmetric C there is a positive
definite symmetric B such that ATB+ BA+ C = O.

There is a quadratic polynomial V(x) = x” Bx in the entries
of x such that V/(x) > 0 for x # 0 and V/(x(t)) is strictly
decreasing for all non-zero solutions of x'(t) = Ax(t).



Asymptotic stability of linear systems (2/3)

If all solutions tend to 0 then there is certainly a 6 > 0 such that
all solutions with ||xo — 0]| < ¢ tend to 0, so 0 is asymptotically
stable.

Conversely, if 0 is asymptotically stable there is a 6 > 0 such that
all solutions x with ||xo — 0]| < ¢ tend to 0, But for any

solution y, X = 5zgypY is a solution with [[x(0)[| < &, so x(t)
tends to 0, and hence so does y(t). So all solutions tend to 0. So
we can add “0 is an asymptotically stable equilibrium of

x'(t) = Ax(t)" to the list.

Just as with stability, we can go from the behaviour of 0 as an
equilibrium of x'(t) = Ax(t) to the behaviour of x* as an
equilibrium of x'(t) = Ax(t) + g and back again.



Asymptotic stability of linear systems (3/3)

The following can be added to our list of equivalent conditions

from two slides ago:

9. For some g there is an asymptotically stable equilibrium x* of
X'(t) = Ax(t) +g.

10. For any g and any equilibrium x* of x'(t) = Ax(t) + g, x* is
asymptotically stable.

11. For every equilibrium x* of x'(t) = Ax(t) + g there is a
quadratic polynomial V/(x) = (x — x*)7 B(x — x*) in the
entries of x such that V(x) > 0 for x # x* and V/(x(t)) is
strictly decreasing for all solutions of x'(t) = Ax(t) +g.

12. For any g and any equilibrium x* of x'(t) = Ax(t) + g, x* is
strictly stable.

13. For some g there is an strictly stable equilibrium x* of
x'(t) = Ax(t) + 9.



Strict stability and exponential stability (1/5)
We saw in Lecture 23 that every exponentially stable equilibrium
is strictly stable. | also gave an example of a strictly stable
equilibrium which is not exponentially stable. That can't happen
for linear autonomous systems.
Suppose x* is a strictly stable equilibrium of x'(t) = Ax(t) + g.
As we saw last time, that implies that there are positive definite
symmetric matrices B and C such that ATB+ BA+ C = O.
Define U, V: R" - Rand S C R" by U(x) = (x —x*) " C(x — x*)
V(x) = (x—x*)"B(x—x*) and S = {x € R”: U(x) = 1}. Then
S is compact, V is continuously differentiable, and

V() = (1) ~x') B(x(t) ~x)
+ ()~ x)TB(1) ~ x°)
= (x(t) = x*)TATB(x(t) — x*)
+ (x(t) — x*)TBA(x(t)—x*)



Strict stability and exponential stability (2/5)

V restricted to the compact set S is continuous, and so has a
minimum and maximum there. In other words, there are
Xmin. Xmax € S such that forally € S

V(Xmin) S V(Y) S V(Xmax)-

Xmin € S 80 U(Xmin) = (Xmin — X*) " C(Xmin — x*) = 1 and
Xmin — X* # 0. B is positive definite, so

V (Xmin) = (Xmin — x"‘)TB(xmin —x*) > 0.

1

For any x # x*, U(x) > 0, soy = x* + (x — x*) satisfies

e
U(y)z(y—x*WC(y—x*)=(x—x*)7@cﬁ<x—x*)
1 * o URX)
= U(x)(x—x )TC(x—x ) = ux) ~ b



Strict stability and exponential stability (3/5)
We've just seen that U(y) =1, soy € S and hence

0 < V(Xmin) < V(y) < V(Xmax)-

V(y)—(y—x*)TB(y—x*)—(x—x*)TﬁB@(x—x*)
_LX—X*T X—X* :V(X)

So

V (Xmin) U(X) < V(X) < V(Xmax) U(X)
for all x # x*. The same inequalities hold, trivially, for x = x*. So,
for any solution x to x'(t) = Ax(t) + g,

d V(x(t))

S Vx(1) = —Ux(t) < - V (Xmax)




Strict stability and exponential stability (4/5)

From £ V/(x(t)) = —U(x(t)) < — 72 it follows that

V(x(t))exp (V(anax)) is decreasing, and so

V(x(1)) < V(x(0)) exp (‘ V(Xinax)>

for all t € [0, +00). Then

x(t) _V(x(©) [ ¢
S exP( V(xmax>>

ijax) U(x(0)) exp <_\/(t>

Xmax)




Strict stability and exponential stability (5/5)
We get to choose C. Choose C =/, so that

U(x) = (x —x*) T Clx = x") = [lx = x"|1*.

With this choice of C,

) < o es (- )
becomes
Ix(t) - x°| < K((j)) x(0) = x| exp <‘2V(xtm)>

Choosing any § > 0, C = \\ﬁ(&;a:)) and K = gy if

Ixo — x*|| < & then the unique solution to x'(t) = Ax(t) + g,
x(0) = xg satisfies [|x(t) — x*|| < C|xo — x*|| exp (—kt) for all
t € [0, +00). So x* is an exponentially stable equilibrium.




