MAU23205 Lecture 24

John Stalker

Trinity College Dublin

12 November 2021

Equilibria of linear systems

The simplest autonomous systems are the linear ones. \mathbf{x}^* is an equilibrium of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$ if and only if $A\mathbf{x}^* + \mathbf{g} = \mathbf{0}$. A here is necessarily square. If A is invertible then there is exactly one equilibrium. If A is not invertible then the will be equilibria only for some \mathbf{g} , those in the range of A, but if there is an equilibrium then there are infinitely many, differing by elements of the nullspace (kernel) of A. If \mathbf{x}^* is an equilibrium then

$$\frac{d}{dt} \left(\mathbf{x}(t) - \mathbf{x}^* \right) = \mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$$
$$= A\mathbf{x}(t) - A\mathbf{x}^* = A \left(\mathbf{x}(t) - \mathbf{x}^* \right)$$

So $\mathbf{x} - \mathbf{x}^*$ satisfies the corresponding homogeneous equation. In particular, the equation it satisfies doesn't depend on which equilibrium we're looking at. The stability properties are therefore the same for all equilibria of a given linear system.

Stability of linear systems (1/3)

The following were shown to be equivalent in Lecture 17:

- 1. All solutions of $\mathbf{x}'(t) = A\mathbf{x}(t)$ are bounded as $t \to +\infty$.
- 2. The basic solutions of $\mathbf{x}'(t) = A\mathbf{x}(t)$ are bounded as $t \to +\infty$.
- 3. $\exp(tA)$ is bounded as $t \to +\infty$.
- 4. All (complex) roots of the minimal polynomial of A either have negative real part, or have zero real part and multiplicity one.

If $\exp(tA)$ is bounded as $t \to +\infty$ then there is a C > 0 such that $\|\exp(tA)\| < C$ for $t \in [0, +\infty)$. If $\epsilon > 0$, $\|\mathbf{x}_0 - \mathbf{x}^*\| < \delta = \frac{\epsilon}{C}$ then $\|\mathbf{x}(t) - \mathbf{x}^*\| = \|\exp(tA)(\mathbf{x}_0 - \mathbf{x}^*)\| \le \|\exp(tA)\|\|\mathbf{x}_0 - \mathbf{x}^*\| < \epsilon$ for all $t \in [0, +\infty)$. So for any $\epsilon > 0$ there is a $\delta > 0$ such that for $\|\mathbf{x}_0 - \mathbf{x}^*\| < \delta$ the unique solution of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$, $\mathbf{x}(0) = \mathbf{x}_0$, where $\mathbf{g} = -A\mathbf{x}^*$, satisfies $\|\mathbf{x}(t) - \mathbf{x}^*\| < \epsilon$ for all $t \in [0, +\infty)$. In other words, \mathbf{x}^* is a stable equilibrium of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$.

Stability of linear systems (2/3)

Since all equilibria of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$ are of the form \mathbf{x}^* where $\mathbf{g} = -A\mathbf{x}^*$, all equilibria of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$ are stable. Conversely, suppose there is at least one stable equilibrium \mathbf{x}^* of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$ for some \mathbf{g} . Taking any $\epsilon > 0$, there is a $\delta > 0$ such that $\|\mathbf{x}_0 - \mathbf{x}^*\| < \delta$ the unique solution of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$, $\mathbf{x}(0) = \mathbf{x}_0$ satisfies $\|\mathbf{x}(t) - \mathbf{x}^*\| < \epsilon$ for all $t \in [0, +\infty)$. For any solution \mathbf{y} to $\mathbf{y}'(t) = A\mathbf{y}(t)$, set $\mathbf{x}(t) = \mathbf{x}^* + \frac{\delta}{2\|\mathbf{y}(0)\|}\mathbf{y}(t)$. Then \mathbf{x} is a solution to $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$ with $\|\mathbf{x}(0) - \mathbf{x}^*\| < \delta$, so $\|\mathbf{x}(t) - \mathbf{x}^*\| < \epsilon$. Then $\|\mathbf{y}(t)\| < 2\frac{\epsilon}{\delta}\|\mathbf{y}(0)\|$ for all $t \in [0, +\infty)$. So all solutions to $\mathbf{y}'(t) = A\mathbf{y}(t)$ are bounded.

Stability of linear systems (3/3)

We can now extend the list from two slides ago. The following are equivalent:

- 1. All solutions of $\mathbf{x}'(t) = A\mathbf{x}(t)$ are bounded as $t \to +\infty$.
- 2. The basic solutions of $\mathbf{x}'(t) = A\mathbf{x}(t)$ are bounded as $t \to +\infty$.
- 3. $\exp(tA)$ is bounded as $t \to +\infty$.
- 4. All (complex) roots of the minimal polynomial of A either have negative real part, or have zero real part and multiplicity one.
- 5. For any **g** and any equilibrium \mathbf{x}^* of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$, \mathbf{x}^* is stable.
- 6. For some **g** there is a stable equilibrium \mathbf{x}^* of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$.

Asymptotic stability of linear systems (1/3)

We also saw in Lecture 17 that the following are equivalent:

- 1. All solutions of $\mathbf{x}'(t) = A\mathbf{x}(t)$ tend to $\mathbf{0}$ as $t \to +\infty$.
- 2. The basic solutions of $\mathbf{x}'(t) = A\mathbf{x}(t)$ tend to $\mathbf{0}$ as $t \to +\infty$.
- 3. $\exp(tA)$ tends to O as $t \to +\infty$.
- 4. All (complex) roots of the minimal polynomial of A have negative real part.
- 5. All (complex) roots of the characteristic polynomial of A have negative real part.
- 6. There are positive definite symmetric *B* and *C* such that $A^T B + BA + C = O$.
- 7. For every positive definite symmetric C there is a positive definite symmetric B such that $A^TB + BA + C = O$.
- 8. There is a quadratic polynomial $V(\mathbf{x}) = \mathbf{x}^T B \mathbf{x}$ in the entries of \mathbf{x} such that $V(\mathbf{x}) > 0$ for $\mathbf{x} \neq \mathbf{0}$ and $V(\mathbf{x}(t))$ is strictly decreasing for all non-zero solutions of $\mathbf{x}'(t) = A\mathbf{x}(t)$.

Asymptotic stability of linear systems (2/3)

If all solutions tend to **0** then there is certainly a $\delta > 0$ such that all solutions with $\|\mathbf{x}_0 - \mathbf{0}\| < \delta$ tend to **0**, so **0** is asymptotically stable.

Conversely, if **0** is asymptotically stable there is a $\delta > 0$ such that all solutions **x** with $||\mathbf{x}_0 - \mathbf{0}|| < \delta$ tend to **0**, But for any solution **y**, $\mathbf{x} = \frac{1}{2\delta ||\mathbf{y}(0)||} \mathbf{y}$ is a solution with $||\mathbf{x}(0)|| < \delta$, so $\mathbf{x}(t)$ tends to **0**, and hence so does $\mathbf{y}(t)$. So all solutions tend to **0**. So we can add "**0** is an asymptotically stable equilibrium of $\mathbf{x}'(t) = A\mathbf{x}(t)$ " to the list.

Just as with stability, we can go from the behaviour of **0** as an equilibrium of $\mathbf{x}'(t) = A\mathbf{x}(t)$ to the behaviour of \mathbf{x}^* as an equilibrium of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$ and back again.

Asymptotic stability of linear systems (3/3)

The following can be added to our list of equivalent conditions from two slides ago:

- 9. For some **g** there is an asymptotically stable equilibrium \mathbf{x}^* of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$.
- 10. For any **g** and any equilibrium \mathbf{x}^* of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$, \mathbf{x}^* is asymptotically stable.
- 11. For every equilibrium \mathbf{x}^* of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$ there is a quadratic polynomial $V(\mathbf{x}) = (\mathbf{x} \mathbf{x}^*)^T B(\mathbf{x} \mathbf{x}^*)$ in the entries of \mathbf{x} such that $V(\mathbf{x}) > 0$ for $\mathbf{x} \neq \mathbf{x}^*$ and $V(\mathbf{x}(t))$ is strictly decreasing for all solutions of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$.
- 12. For any **g** and any equilibrium \mathbf{x}^* of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$, \mathbf{x}^* is strictly stable.
- 13. For some **g** there is an strictly stable equilibrium \mathbf{x}^* of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$.

Strict stability and exponential stability (1/5)

We saw in Lecture 23 that every exponentially stable equilibrium is strictly stable. I also gave an example of a strictly stable equilibrium which is not exponentially stable. That can't happen for linear autonomous systems.

Suppose \mathbf{x}^* is a strictly stable equilibrium of $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$. As we saw last time, that implies that there are positive definite symmetric matrices B and C such that $A^TB + BA + C = O$. Define $U, V : \mathbf{R}^n \to \mathbf{R}$ and $S \subseteq \mathbf{R}^n$ by $U(\mathbf{x}) = (\mathbf{x} - \mathbf{x}^*)^T C(\mathbf{x} - \mathbf{x}^*)$ $V(\mathbf{x}) = (\mathbf{x} - \mathbf{x}^*)^T B(\mathbf{x} - \mathbf{x}^*)$ and $S = \{\mathbf{x} \in \mathbf{R}^n : U(\mathbf{x}) = 1\}$. Then S is compact, V is continuously differentiable, and

$$\frac{d}{dt}V(\mathbf{x}(t)) = (\mathbf{x}'(t) - \mathbf{x}^*)^T B(\mathbf{x}(t) - \mathbf{x}^*) + (\mathbf{x}(t) - \mathbf{x}^*)^T B(\mathbf{x}'(t) - \mathbf{x}^*) = (\mathbf{x}(t) - \mathbf{x}^*)^T A^T B(\mathbf{x}(t) - \mathbf{x}^*) + (\mathbf{x}(t) - \mathbf{x}^*)^T BA(\mathbf{x}(t) - \mathbf{x}^*) = -(\mathbf{x}(t) - \mathbf{x}^*)^T C(\mathbf{x}(t) - \mathbf{x}^*) = -U(\mathbf{x}(t)).$$

Strict stability and exponential stability (2/5)

V restricted to the compact set *S* is continuous, and so has a minimum and maximum there. In other words, there are $\mathbf{x}_{\min}, \mathbf{x}_{\max} \in S$ such that for all $\mathbf{y} \in S$

$$V(\mathbf{x}_{\min}) \leq V(\mathbf{y}) \leq V(\mathbf{x}_{\max}).$$

 $\mathbf{x}_{\min} \in S$ so $U(\mathbf{x}_{\min}) = (\mathbf{x}_{\min} - \mathbf{x}^*)^T C(\mathbf{x}_{\min} - \mathbf{x}^*) = 1$ and $\mathbf{x}_{\min} - \mathbf{x}^* \neq \mathbf{0}$. *B* is positive definite, so

$$V(\mathbf{x}_{\min}) = (\mathbf{x}_{\min} - \mathbf{x}^*)^T B(\mathbf{x}_{\min} - \mathbf{x}^*) > 0.$$

For any $\mathbf{x} \neq \mathbf{x}^*$, $U(\mathbf{x}) > 0$, so $\mathbf{y} = \mathbf{x}^* + \frac{1}{\sqrt{U(\mathbf{x})}}(\mathbf{x} - \mathbf{x}^*)$ satisfies

$$U(\mathbf{y}) = (\mathbf{y} - \mathbf{x}^*)^T C(\mathbf{y} - \mathbf{x}^*) = (\mathbf{x} - \mathbf{x}^*)^T \frac{1}{\sqrt{U(\mathbf{x})}} C \frac{1}{\sqrt{U(\mathbf{x})}} (\mathbf{x} - \mathbf{x}^*)$$
$$= \frac{1}{U(\mathbf{x})} (\mathbf{x} - \mathbf{x}^*)^T C(\mathbf{x} - \mathbf{x}^*) = \frac{U(\mathbf{x})}{U(\mathbf{x})} = 1.$$

Strict stability and exponential stability (3/5)We've just seen that $U(\mathbf{y}) = 1$, so $\mathbf{y} \in S$ and hence

$$0 < V(\mathbf{x}_{\min}) \leq V(\mathbf{y}) \leq V(\mathbf{x}_{\max})$$

$$V(\mathbf{y}) = (\mathbf{y} - \mathbf{x}^*)^T B(\mathbf{y} - \mathbf{x}^*) = (\mathbf{x} - \mathbf{x}^*)^T \frac{1}{\sqrt{U(\mathbf{x})}} B \frac{1}{\sqrt{U(\mathbf{x})}} (\mathbf{x} - \mathbf{x}^*)$$
$$= \frac{1}{U(\mathbf{x})} (\mathbf{x} - \mathbf{x}^*)^T B(\mathbf{x} - \mathbf{x}^*) = \frac{V(\mathbf{x})}{U(\mathbf{x})}.$$

So

$$V(\mathbf{x}_{\min})U(\mathbf{x}) \leq V(\mathbf{x}) \leq V(\mathbf{x}_{\max})U(\mathbf{x})$$

for all $\mathbf{x} \neq \mathbf{x}^*$. The same inequalities hold, trivially, for $\mathbf{x} = \mathbf{x}^*$. So, for any solution \mathbf{x} to $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$,

$$\frac{d}{dt}V(\mathbf{x}(t)) = -U(\mathbf{x}(t)) \leq -\frac{V(\mathbf{x}(t))}{V(\mathbf{x}_{\max})}$$

Strict stability and exponential stability (4/5)

From
$$\frac{d}{dt}V(\mathbf{x}(t)) = -U(\mathbf{x}(t)) \leq -\frac{V(\mathbf{x}(t))}{V(\mathbf{x}_{\max})}$$
 it follows that $V(\mathbf{x}(t))\exp\left(\frac{t}{V(\mathbf{x}_{\max})}\right)$ is decreasing, and so

$$V(\mathbf{x}(t)) \leq V(\mathbf{x}(0)) \exp\left(-\frac{t}{V(\mathbf{x}_{\max})}\right)$$

for all $t \in [0, +\infty)$. Then

$$egin{aligned} U(\mathbf{x}(t)) &\leq rac{V(\mathbf{x}(t))}{V(\mathbf{x}_{\min})} \leq rac{V(\mathbf{x}(0))}{V(\mathbf{x}_{\min})} \exp\left(-rac{t}{V(\mathbf{x}_{\max})}
ight) \ &\leq rac{V(\mathbf{x}_{\max})}{V(\mathbf{x}_{\min})} U(\mathbf{x}(0)) \exp\left(-rac{t}{V(\mathbf{x}_{\max})}
ight) \end{aligned}$$

Strict stability and exponential stability (5/5)We get to choose C. Choose C = I, so that

$$U(\mathbf{x}) = (\mathbf{x} - \mathbf{x}^*)^T C(\mathbf{x} - \mathbf{x}^*) = \|\mathbf{x} - \mathbf{x}^*\|^2.$$

With this choice of C,

$$U(\mathbf{x}(t)) \leq \frac{V(\mathbf{x}_{\max})}{V(\mathbf{x}_{\min})} U(\mathbf{x}(0)) \exp\left(-\frac{t}{V(\mathbf{x}_{\max})}\right)$$

becomes

$$\|\mathbf{x}(t) - \mathbf{x}^*\| \leq \sqrt{\frac{V(\mathbf{x}_{\max})}{V(\mathbf{x}_{\min})}} \|\mathbf{x}(0) - \mathbf{x}^*\| \exp\left(-\frac{t}{2V(\mathbf{x}_{\max})}\right)$$

Choosing any $\delta > 0$, $C = \sqrt{\frac{V(\mathbf{x}_{\max})}{V(\mathbf{x}_{\min})}}$, and $\kappa = \frac{1}{2V(\mathbf{x}_{\max})}$, if $\|\mathbf{x}_0 - \mathbf{x}^*\| < \delta$ then the unique solution to $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}$, $\mathbf{x}(0) = \mathbf{x}_0$ satisfies $\|\mathbf{x}(t) - \mathbf{x}^*\| \le C \|\mathbf{x}_0 - \mathbf{x}^*\| \exp(-\kappa t)$ for all $t \in [0, +\infty)$. So \mathbf{x}^* is an exponentially stable equilibrium.