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Autonomous systems

A �rst order system where the derivatives of the dependent

variables are expressed in terms of the dependent variables and

the parameters, if any, but not the independent variable, is called

autonomous.

I was careful not to say \a system where the derivatives are

independent of the independent variable", because that could be

confusing. A simple example, from Lecture 1, is

dx

dt
= �x � y

dy

dt
= +x � y

The right hand sides of these equations are expressions in x and

y , not involving t. We've solved this system, and every solution is

of the form [
x

y

]
= exp(�t)

[
cos(t) � sin(t)
sin(t) cos(t)

] [
x0

y0

]



Autonomous systems

The derivatives are[
dx=dt

dy=dt

]
= exp(�t)

[
� cos(t)� sin(t) � cos(t) + sin(t)
cos(t)� sin(t) � cos(t)� sin(t)

] [
x0

y0

]
:

Unless x0 = y0 = 0, the derivatives dx=dt and dy=dt are not

independent of t.

This is one of those things which is clearer in abstract form. The

general �rst order system is one of the form

x0(t) = F(t; x(t); z)

where z are the parameters. This system is autonomous if and

only if F(t; x; z) is independent of t. That's quite di�erent from
saying that x0(t) is independent of t.



Linear systems

The example above was a linear homogeneous constant

coe�cient system. Such systems are always autonomous.

Conversely, a linear system which is autonomous is necessarily

constant coe�cient. It isn't necessarily homogeneous, but the

inhomogeneous term, if it's present, has to be constant.

The general �rst order linear system is

x0(t) = F(t; x(t); z)

with F(t; x) = A(t)x+ g(t). A necessary and su�cient condition

for F to be independent of t is for A and g to be independent of t.

Not all autonomous systems are linear. A non-linear example, also

from Lecture 1 is

x 0(t) = y(t)z(t) y 0(t) = �x(t)z(t) z 0(t) = �k2x(t)y(t)



Equilibria

x� is called an equilibrium of the autonomous system

x0(t) = F(x(t); z)

for the parameter value z if F(x�; z) = 0. If this is the case then

x(t) = x� is a solution, and in fact is a constant solution.

Conversely, the value of any constant solution is an equilibrium.

So equilibria and constant solutions are nearly the same thing, but

strictly speaking the former are vectors while the latter are vector

valued functions. The unique equilibrium of the system

x 0 + x + y = 0, y 0 � x + y = 0 is (0; 0). The system

x 0(t) = y(t)z(t) y 0(t) = �x(t)z(t) z 0(t) = �k2x(t)y(t)

has many equilibria. Every point the x axis y axis or z axis is an

equilibrium. If k = 0 then every point on the xy plane is also an

equilibrium.



A topical example

Another autonomous system is the SIR model from epidemiology.

s 0(t) = �bs(t)i(t); i 0(t) = bs(t)i(t)� ki(t) r 0(t) = ki(t):

s, i and r represent the susceptible, infected and \recovered"

proportions of the population. Some people use \removed" in

place of \recovered". s + i + r is an invariant, as it should be. b

represents the transmission rate and k the recovery rate. It

makes sense to assume both are positive. What are the equilibria?

�bs�i� = 0; bs�i� � ki� = 0 ki� = 0:

A necessary and su�cient condition for these to be satis�ed is

i� = 0. Not all of these equilibria are stable though.



Stability
There are a number of di�erent, related, notions of stability.

Suppose x� is an equilibrium of x0(t) = F(x). x� is called

I stable if for all � > 0 there is a � > 0 such that if

kx0 � x�k < � then the initial value problem x0(t) = F(x),
x(0) = x0 has a solution and every solution can be extended

to a solution on [0;1), and for all such solutions

kx(t)� x�k < � for all t 2 [0;1),

I unstable if it is not stable,

I asymptotically stable if there is a � > 0 such that if

kx0 � x�k < � then the initial value problem x0(t) = F(x),
x(0) = x0 has a solution and every solution can be extended

to a solution on [0;1), and for all such solutions

limt!+1 x(t) = x�,

I strictly stable if it is stable and asymptotically stable,

I exponentially stable if there are a � > 0, a C > 0 and a

� > 0 such if kx0 � x�k < � then

kx(t)� x�k � Ckx0 � x�k exp(��t) for all t 2 [0;1),



Comments

If F is even vaguely reasonable then some of the statements on

the previous solution can be simpli�ed. If F is continuous then the

condition that the IVP has a solution follows from the existence

part of the existence and uniqueness theorem. If F is continuously

di�erentiable then we can replace references to \every solution"

and \all such solutions" with \that solution", by the uniqueness

part of the existence and uniqueness theorem.

Warning: Not everyone uses these terms in precisely the same

way. Most people use \asymptotically stable" to refer to what

I've called \strictly stable" and have no term for what I've called

\asymptotically" stable. That's mostly �ne, because because

systems which are asymptotically stable but not strictly stable

rarely come up, and aren't very useful.

Some people use \stable" to refer to what I've called \strictly

stable" or even for what I've called \exponentially stable". They

have no terms for weaker notions of stability. Those people are

best avoided.



Linearisation
The linearisation of the autonomous system x0(t) = F(x) at the
equilibrium x� is the system

x0(t) = F (x�) + F0 (x�) (x(t)� x�) :

Here F0 is the matrix valued derivative of a vector valued function

of a vector argument, as in Lecture 7. I'm assuming here that it

exists and is continuous near x�. It's the matrix whose j 'th row,

k 'th column is @Fk=@xj , where Fk is the k 'th column of F. Since

x� is an equilibrium of x0(t) = F(x) the term F(x�) on the right is

zero. The only reason I've written it at all is so that you can

recognise F(x�) + F0(x�)(x(t)� x�) as the �rst order Taylor
expansion of F about x� evaluated at x(t). Two alternate ways to

write the linearisation are

x0(t) = F0 (x�) x(t)� F0 (x�) x�

d

dt
(x(t)� x�) = F0 (x�) (x(t)� x�) :



Intuitive meaning

An equilibrium is stable if all solutions which start out su�ciently

close to equilibrium stay close to equilibrium. How close they need

to start out is determined by how close you want them to stay.

It's strictly stable if solutions which start out su�ciently close to

equilibrium also tend to equilibrium.

The other notions of stability, and the linearisation, are mostly

useful for providing necessary or su�cient conditions either for

stability or for strict stability.

The physical example to keep in mind is a pendulum. There are

two equilibria. One with the weight below the pivot point and one

with the weight above the pivot point. The �rst should be stable

and the second should be unstable. The stable equilibrium should

be strictly stable if there are dissipative forces, like air friction, but

should not be strictly stable if there are no such forces.


