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When do all solutions to " a;x() = 0 tend to 07?

The general solution to 327 a;x()(t) = 0 is

x(t) = Zj’lo ¢;x;j(t), where x; are the basic solutions. By

Lecture 11 these are gy «(t) = % exp(At),

Few k() = & exp(kt) cos(wt), and Seux(t) = L exp(kt) sin(wt).
A and Kk + iw range over the real and complex roots of

p(z) =311, a;z', respectively, and k is less that the multiplicity
of the corresponding root.

Under what conditions do all solutions to >/ a;x{)(t) = 0 tend
to 0 as t — +oo? If and only if all the basic solutions tend to 0
as t — —+o0, which happens if and only if all roots of p have
negative real part.

Can we test this? Yes, if we can factor p. We can also do it
without factoring p, using the Routh-Hurwitz Criterion.



Routh-Hurwitz examples (1/2)
Take the polynomial p(z) = >, a;z' and form the
(m+1) x (2m+3£1)/4 matrix S

X2k 42 ifj=1
Sik = § Am—2k+1 ifj=2
Si—1.15— —S5j_215j— oo
j—1,19 2.k+51. j—2,12j—1,k+1 |f_] > 2
j—1,1

The real parts of the roots of p are all negative if and only if all
the entries in the first column are of the same sign.
For example, take p(z) =1 +z+ 322+ 228+ Lz* S'is
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So all roots of p have negative real part.



Routh-Hurwitz examples (2/2)

Indeed the roots of 1+ z + 322 + 2% + 2 are —1.729 £ 0.889/
and —0.271 = 2.505/
Ortake p(z) =1+ 2z + 322 + 223+ L 2% + 3525 The first four

rows are
11y
120 6
1 19
%
5 5 0
0 1 0

We can’t fill in the fifth row because we'd have to divide by 0!
This failure tells you that there's a root whose real part is not
negative. 1+ z + 222 + £2% + Lz* + 1352° Indeed the roots of
1+z+ 322+ 123+ 5 2% + 352° are —2.181, —1.650 & 1.694,
and 0.240 + 3.128i.



When are all solutions to >/, a;x{) = 0 bounded?

Under what conditions are all solutions to 3.7, a;x()(t) = 0
bounded as t — 4007 If and only if all the basic solutions are
bounded t — 400, Which happens if and only if all roots of p
have non-positive real part and any purely imaginary roots are
simple.

Can we test this? Yes, but it’'s more complicated. Finding
repeated roots is easy. They're the roots of ged(p, p’). We can
find and remove purely imaginary roots. p(iy) = 0 if and only if p
is a common zero of ZT:/(QJ(—l)kagkyQ" and
Zgal)/z(—l)kazkﬂyzkﬂ. After removing any simple purely
imaginary roots we can apply Routh-Hurwitz to check whether
the remaining roots have negative real parts.



When do all solutions to x'(t) = Ax(t) tend to 07

Every solution of X'(t) = Ax(t) is of the form

x(t) = exp(tA)xg = Z x;(t)rj kAFIxo

<j,k<m

If all the basic solutions tend to 0 as t — +o0 then x(t) tends 0
as t = +oo. The converse isn’t obvious, because we might have a
basic solution x; which doesn’t tend to 0 but >y rj kAK~1 = O.
This can’t happen if p is the minimal polynomial, because then
we'd have a non-zero polynomial g;j(z) = > 7., rjxz“ ! of degree
less than m such that g;(A) = O. It can happen for the
characteristic polynomial. We've seen examples.

All solutions of x'(t) = Ax(t) tend to 0 if and only if all roots of
the minimal polynomial have negative real parts. But the
characteristic and minimal polynomials have the same set of
roots, so all solutions of x(t) = Ax(t) tend to 0 if and only if all
roots of the characteristic polynomial have negative real parts.



When are all solutions to x/(t) = Ax(t) bounded?

x(t) =exp(tAxo = > x(t)rx A xo.
1<j.k<m

If all the basic solutions are bounded as t — 400 then x(t) is
bounded as t — 4o00. The converse isn't obvious, for the same
reason as before. Once again, everything is okay if we use the
minimal polynomial.
All solutions of x'(t) = Ax(t) tend to 0 if and only if all roots of
the minimal polynomial have non-positive real parts and any
purely imaginary roots are simple.
The characteristic and minimal polynomials have the same set of
roots, but different multiplicities, so we can't use the
characteristic polynomial to answer this question.



An alternate method (1/3)

Suppose C is positive definite symmetric and A is such that all
solutions to x’ = Ax tend to 0. Define

M(t) = exp(tA)T C exp(tA), B = /Ooo M(t) dt

The integral exists because exp(tA) tends to O exponentially fast.
M(t)" = M(t) and if y # O then
y  M(t)y = (exp(tA)y) " Cexp(tA)y > 0

so B=B' andy"By > 0, i.e. B is positive definite symmetric.

MI(2) = 5 exp(t) Cexp(tA)

= AT exp(tA) " Cexp(tA) + exp(tA) T C exp(tA)A
= AT M(t) + M(t)A.



An alternate method (2/3)
Integrate M'(t) = AT M(t) + M(t)A to get
~C=A"B+BA.

So if C is positive definite symmetric and A is such that all
(basic) solutions to x' = Ax tend to 0. then the matrix equation

ATB+BA+C=0

has a positive definite symmetric solution B.
Suppose, conversely, that AT B + BA+ C = O has a positive
definite symmetric solution B. If X’ = Ax then

d

Ex(t)TBx(t) =x(t)"ATBx(t) +x(t)T BAx(t) = —x(t) " Cx(t)

If x # 0 then x(t) " Bx(t) is positive but strictly decreasing. It
must tend to 0, which means x(t) also tends to 0.



An alternate method (3/3)

> If all solutions to X’ = Ax tend to 0 as t — +oo then for
every positive definite symmetric matrix C there is a positive
definite symmetric solution B to the equation
ATB+BA+C=0.

» If for some positive definite symmetric matrix C there is a
positive definite symmetric solution B to the equation
ATB + BA + C = O then all solutions to x' = Ax tend to 0
as t — +oo.

This gives a weird Linear Algebra theorem: If the equation

ATB + BA+ C = O has a positive definite symmetric solution for
some positive definite symmetric C then it has a positive definite
symmetric solution for all positive definite symmetric C.

This also gives a way to test whether all solutions to X’ = Ax tend
to 0: Choose a C and look fora B. ATB+BA+ C = O is a set
of linear equations in the entries of B. Solve them and check
whether B is positive definite symmetric.



