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Undetermined coefficients

The solutions to a linear homogenous ordinary differential
ordinary differential equation form a vector space, because any
linear combination of solutions is a solution, i.e. if x and y are
solutions to 3 7 ci(t)xU)(t) = 0 then so is ax + by. If ¢y has
no zeroes this vector space is of dimension m, because the
existence and uniqueness theorem tells us that the linear function

X(fo)
. . X' (to) om
which takes the function x to the vector in R is a

X(mfl)(to)
bijection. We can write this bijection explicitly in terms of the
fundamental solution of the associated first order linear system.
Last time we found m linearly independent solutions in the case
where the coefficients ¢; are constant. These solutions are
therefore a basis, which is why they were called basic solutions.
We can use this observation to solve initial value problems or
boundary value problems by linear algebra.



Undetermined coefficients example (1/2)

Suppose, for example, that we want to solve the initial value
problem

X"(t) +2xX'(t) +2x(t) =0, x(to) =x0, X'(to) = vo.

72 4+2z+2=(z+1-1i)(z+1+1i) so the basic solutions are
x1(t) = exp(—t) cos(t) and xa(t) = exp(—t)sin(t).
Differentiating, x](t) = exp(—t)(— cos(t) — sin(t)) and

x5(t) = exp(—t)(cos(t) — sin(t)). We know our solution is of the
form x(t) = a1x1(t) + axx2(t) so we need

xo = a1 exp(—tp) cos(tp) + a2 exp(—to) sin(tp).
Vo = a1 exp(—tp)(— cos(to) — sin(tp)) + a» exp(—tp)(cos(to) — sin(tp)).

These are linear equations for a; and a» in terms of xp and vy.



Undetermined coefficients example (2/2)

The solution to
xo = a1 exp(—tp) cos(tp) + a2 exp(—to) sin(tp).
Vo = ay exp(—to)(— cos(tg) — sin(tp)) + a2 exp(—to)(cos(to) — sin(tp)).
IS
a1 = exp(tp)(cos(ty) — sin(tp))xo — exp(to) sin(to)vo
ar = exp(to)(cos(to) + sin(to))xo + exp(to) cos(to)vo
Substituting into x(t) = aixi(t) + axxa(t) gives
x(t) = (exp(to)(cos(tp) — sin(to))xo — exp(to) sin(to)vo) exp(—t) cos(t)
+ (exp(to)(cos(tg) + sin(to))xo + exp(to) cos(tg)vo) exp(—t) sin(t.

= exp(—(t — to))(cos(t — to) + sin(t — tp))xo
+ exp(—(t — to))sin(t — to))vo.



A boundary value problem example (1/4)
You can use undetermined coefficients for boundary value
problems as well.
Suppose we want to find a solution to the boundary value
problem.

y""(x) + 2y”(x) +y(x) -0
yxa)=y1 Y(x)=wv yle)=y y(ie)=w

The associated polynomial is z* +22° + 1 = (z — i)?(z + )? so
the real basic solutions are cos(x), sin(x), x cos(x) and xsin x.
The most general solution is therefore

y(x) = acos(x) + bsin(x) + cx cos(x) + dxsin(x).

We want to choose a, b, ¢ and d such that it satisfies the
boundary conditions

J/(Xl) =0 yl(Xl) =W J/(Xz) =2 yl(Xz) =W



A boundary value problem example (2/4)

y(x) = acos(x) + bsin(x) + cx cos(x) + dxsin(x),

y'(x) = —asin(x) 4+ bcos(x) + c(cos(x) — xsin(x))
+ d(sin(x) 4 x cos(x)).

acos(xy) + bsin(xy) + cx1 cos(x1) + dxy sin(x1) = y1
—asin(xy) + bcos(x1) + c(cos(x1) — x1 sin(x1))

+d(sin(x1) + x1 cos(x1)) = v

acos(x2) + bsin(x2) + cxo cos(x2) + dxa sin(x2) = y2
—asin(x2) + bcos(x2) + c(cos(x2) — X2 sin(x2))

+d(sin(x2) + x2 cos(x2)) = v



A boundary value problem example (3/4)

a 7
Thisis M | 7] = || where
¢ Y2
d Vo
cos(x1)  sin(xy) x1 cos(x1) xy sin(x1)
| =sin(x1) cos(x1) cos(x1) — xysin(xy) sin(xq) 4 xq cos(xq)
| cos(x2)  sin(x2) xp cos(x2) xo sin(x2)

—sin(x2) cos(x2) cos(x2) — xasin(x2) sin(x2) + x2 cos(x2)

det(M) = (x1 — x2)? — sin?(x; — x2) so this has a unique solution,
with the obvious exception of when x; = x». If you impose
different types of boundary conditions then the condition for there
to be a unique solution will change. You can check what happens
if 1 specify y(x1), y(x2), ¥"(x1) and y"(x2) instead of y(x1),
y(x2), ¥'(x1) and y'(x2), for example.



A boundary value problem example (4/4)

This is now a problem of solving linear equations to find a, b, ¢
and d, substituting, and then simplifying. The answer works out
to be

_ y191(x) + vihi(x) + y292(x) + vaha(x)
(Xl — X2)2 — SinQ(Xl — X2)

y(x)

where

91(x) = (x1 — x2) sin(x1 — x2)(x — x2) sin(x — x2)
+ [(x1 — x2) cos(x1 — x2) + sin(x1 — x2)]
[(x — x2) cos(x — x2) — sin(x — x2)]
hi(x) = [(x1 = x2) cos(x1 — x2) — sin(x1 — x2)](x — x2) sin(x — x2)

+ (x1 — x2) sin(x1 — x2)[(x — x2) cos(x — x2) — sin(x — x2)]

and similarly with the 1's and 2's reversed.



Overview

The method is

1.
2.

Find the basic solutions as in Lecture 11.

Write the general solution as a linear combination of basic
solutions

Take as many derivatives as needed.

Substitute for any initial or boundary conditions to obtain
linear (algebraic) equations.

. Solve them. This step may be complicated, particularly if

there are parameters in the conditions, but it's linear algebra.

If you need a lot of derivatives there's a trick to get them.



Derivatives of basic solutions (1/2)
We can easily find the derivatives of the basic solutions.

tk £k
k(L) = o exp(At) Newk(t) = 7 exp(kt) cos(wt)
k
Skw, k(1) = % exp(kt) sin(wt)
Aa{)(2) itk =0
Le(t) = Tk , :
. AL (8) + a0k 4 (1) if k>0
k4 (8) = ws) (1) if k=0,
N =9_0 ) yel) () .
Ky (1) —wsy i (8) + i1 (8) i k>0
sh (1) = ks (1) + Wiy (1) if k=0,
. "’"Sf,)k(f)+wff)k(t)+s§”k (£) ifk>o0.

The derivative each basic solution is a linear combination of basic
solutions.



Derivatives of basic solutions (2/2)
If X1, ..., Xm are basic solutions then x; = >~ d; xx; for some
coefficients d; x, which we can determine using the equations on
the preceding slide. We can write this as a matrix equation

d
D) (] = [a(t) - x(8)] D.

Higher derivatives of basic solutions are also linear combinations
of basic solutions. To find out which linear combinations, it
suffices to compute powers of D. If you have a general linear
combination x = Yy ; axxx then the value of its i'th derivative
at tis
ai
[xl(t) xm(t)] D’

am



