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Undetermined coe�cients

The solutions to a linear homogenous ordinary di�erential

ordinary di�erential equation form a vector space, because any

linear combination of solutions is a solution, i.e. if x and y are

solutions to
∑m

j=0 cj(t)x
(j)(t) = 0 then so is ax + by . If cm has

no zeroes this vector space is of dimension m, because the

existence and uniqueness theorem tells us that the linear function

which takes the function x to the vector


x(t0)
x 0(t0)
� � �

x (m�1)(t0)

 in Rm is a

bijection. We can write this bijection explicitly in terms of the

fundamental solution of the associated �rst order linear system.

Last time we found m linearly independent solutions in the case

where the coe�cients cj are constant. These solutions are

therefore a basis, which is why they were called basic solutions.

We can use this observation to solve initial value problems or

boundary value problems by linear algebra.



Undetermined coe�cients example (1/2)

Suppose, for example, that we want to solve the initial value

problem

x 00(t) + 2x 0(t) + 2x(t) = 0; x(t0) = x0; x 0(t0) = v0:

z2 + 2z + 2 = (z + 1� i)(z + 1+ i) so the basic solutions are

x1(t) = exp(�t) cos(t) and x2(t) = exp(�t) sin(t).
Di�erentiating, x 01(t) = exp(�t)(� cos(t)� sin(t)) and
x 02(t) = exp(�t)(cos(t)� sin(t)). We know our solution is of the

form x(t) = a1x1(t) + a2x2(t) so we need

x0 = a1 exp(�t0) cos(t0) + a2 exp(�t0) sin(t0);

v0 = a1 exp(�t0)(� cos(t0)� sin(t0)) + a2 exp(�t0)(cos(t0)� sin(t0)):

These are linear equations for a1 and a2 in terms of x0 and v0.



Undetermined coe�cients example (2/2)

The solution to

x0 = a1 exp(�t0) cos(t0) + a2 exp(�t0) sin(t0);

v0 = a1 exp(�t0)(� cos(t0)� sin(t0)) + a2 exp(�t0)(cos(t0)� sin(t0)):

is

a1 = exp(t0)(cos(t0)� sin(t0))x0 � exp(t0) sin(t0)v0

a2 = exp(t0)(cos(t0) + sin(t0))x0 + exp(t0) cos(t0)v0

Substituting into x(t) = a1x1(t) + a2x2(t) gives

x(t) = (exp(t0)(cos(t0)� sin(t0))x0 � exp(t0) sin(t0)v0) exp(�t) cos(t)

+ (exp(t0)(cos(t0) + sin(t0))x0 + exp(t0) cos(t0)v0) exp(�t) sin(t)

= exp(�(t � t0))(cos(t � t0) + sin(t � t0))x0

+ exp(�(t � t0)) sin(t � t0))v0:



A boundary value problem example (1/4)
You can use undetermined coe�cients for boundary value

problems as well.

Suppose we want to �nd a solution to the boundary value

problem.

y 0000(x) + 2y 00(x) + y(x) = 0

y(x1) = y1 y 0(x1) = v1 y(x2) = y2 y 0(x2) = v2

The associated polynomial is z4 + 2z2 + 1 = (z � i)2(z + i)2 so

the real basic solutions are cos(x), sin(x), x cos(x) and x sin x .
The most general solution is therefore

y(x) = a cos(x) + b sin(x) + cx cos(x) + dx sin(x):

We want to choose a, b, c and d such that it satis�es the

boundary conditions

y(x1) = y1 y 0(x1) = v1 y(x2) = y2 y 0(x2) = v2



A boundary value problem example (2/4)

y(x) = a cos(x) + b sin(x) + cx cos(x) + dx sin(x);

y 0(x) = �a sin(x) + b cos(x) + c(cos(x)� x sin(x))

+ d(sin(x) + x cos(x)):

a cos(x1) + b sin(x1) + cx1 cos(x1) + dx1 sin(x1) = y1

�a sin(x1) + b cos(x1) + c(cos(x1)� x1 sin(x1))

+d(sin(x1) + x1 cos(x1)) = v1

a cos(x2) + b sin(x2) + cx2 cos(x2) + dx2 sin(x2) = y2

�a sin(x2) + b cos(x2) + c(cos(x2)� x2 sin(x2))

+d(sin(x2) + x2 cos(x2)) = v2



A boundary value problem example (3/4)

This is M


a

b

c

d

 =


y1
v1
y2
v2

 where

M =


cos(x1) sin(x1) x1 cos(x1) x1 sin(x1)
� sin(x1) cos(x1) cos(x1)� x1 sin(x1) sin(x1) + x1 cos(x1)
cos(x2) sin(x2) x2 cos(x2) x2 sin(x2)
� sin(x2) cos(x2) cos(x2)� x2 sin(x2) sin(x2) + x2 cos(x2)


det(M) = (x1 � x2)

2
� sin2(x1 � x2) so this has a unique solution,

with the obvious exception of when x1 = x2. If you impose

di�erent types of boundary conditions then the condition for there

to be a unique solution will change. You can check what happens

if I specify y(x1), y(x2), y
00(x1) and y 00(x2) instead of y(x1),

y(x2), y
0(x1) and y 0(x2), for example.



A boundary value problem example (4/4)

This is now a problem of solving linear equations to �nd a, b, c

and d , substituting, and then simplifying. The answer works out

to be

y(x) =
y1g1(x) + v1h1(x) + y2g2(x) + v2h2(x)

(x1 � x2)2 � sin2(x1 � x2)

where

g1(x) = (x1 � x2) sin(x1 � x2)(x � x2) sin(x � x2)

+ [(x1 � x2) cos(x1 � x2) + sin(x1 � x2)]

[(x � x2) cos(x � x2)� sin(x � x2)]

h1(x) = [(x1 � x2) cos(x1 � x2)� sin(x1 � x2)](x � x2) sin(x � x2)

+ (x1 � x2) sin(x1 � x2)[(x � x2) cos(x � x2)� sin(x � x2)]

and similarly with the 1's and 2's reversed.



Overview

The method is

1. Find the basic solutions as in Lecture 11.

2. Write the general solution as a linear combination of basic

solutions

3. Take as many derivatives as needed.

4. Substitute for any initial or boundary conditions to obtain

linear (algebraic) equations.

5. Solve them. This step may be complicated, particularly if

there are parameters in the conditions, but it's linear algebra.

If you need a lot of derivatives there's a trick to get them.



Derivatives of basic solutions (1/2)
We can easily �nd the derivatives of the basic solutions.

q�;k(t) =
tk

k!
exp(�t) r�;!;k(t) =

tk

k!
exp(�t) cos(!t)

s�;!;k(t) =
tk

k!
exp(�t) sin(!t)

q0�;k(t) =

{
�q

(j)
�;k

(t) if k = 0,

�q
(j)
�;k

(t) + q
(j)
�;k�1(t) if k > 0.

r 0�;k(t) =

{
�r

(j)
�;k

(t)� !s
(j)
�;k

(t) if k = 0,

�r
(j)
�;k

(t)� !s
(j)
�;k

(t) + r
(j)
�;k�1(t) if k > 0.

s 0�;k(t) =

{
�s

(j)
�;k

(t) + !r
(j)
�;k

(t) if k = 0,

�s
(j)
�;k

(t) + !r
(j)
�;k

(t) + s
(j)
�;k�1(t) if k > 0.

The derivative each basic solution is a linear combination of basic

solutions.



Derivatives of basic solutions (2/2)

If x1, . . . , xm are basic solutions then x 0k =
∑m

j=1 dj ;kxj for some

coe�cients dj ;k , which we can determine using the equations on

the preceding slide. We can write this as a matrix equation

d

dt

[
x1(t) � � � xm(t)

]
=
[
x1(t) � � � xm(t)

]
D:

Higher derivatives of basic solutions are also linear combinations

of basic solutions. To �nd out which linear combinations, it

su�ces to compute powers of D. If you have a general linear

combination x =
∑m

k=1 akxk then the value of its i 'th derivative

at t is [
x1(t) � � � xm(t)

]
D i

a1...
am

 :


