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Where we left off last time

We saw that we can solve the initial value problem x(tp) = xo for
the linear differential equation x'(t) = A(t)x(t) + g(t) if the
sequence of matrix valued functions defined by

Wo(t, r)=1 Wi1(t, r) =1+ /tA(s)Wk(s, r)ds

has a limit. If this limit is W then the solution is

t
x(t) = W(t to)xo+ [ W(t,s)g(s)ds.

to
This is a sum of two parts: W(t, to)xo solves the linear
homogeneous equation X'(t) = A(t)x(t) with initial conditions
x(to) = o, and ftf) W(t,s)g(s) ds solves the linear
inhomogeneous equation x'(t) = A(t)x(t) + g(t) with initial data
X(to) =0.
Our goal today is to prove the sequence converges.



Convergence (1/3)

We only expect a reasonable theory when A is continuous in an

interval J, so I'll assume this from now on. I'll also assume J is
closed.

In addition to the Ws it's convenient, temporarily, to introduce
some Vs.

(.0 =1 Vet =1- [ Vils.0AE) o
Note that Vi(t, t) = Wi(t, t) = I for all k.
Vit (6.1) = Ve(t:1) = = [ Vil 0) = Viea(s. DI AG)
W t.r) = Wh(t.) = [ A We(s.1) = Wies(s. )] 05

except in the case k = 0, where we have to remove the quantity
in brackets.



Convergence (2/3)

WVers(e0) = Vet )l = | [ s, 1) = Vecs(s. 0l AG) o

< [ I.0) = Viea(s. DAl 0

< /rt | V(s r) = Vi—1(s, )L IA(s)]] ds

< max | /rt IVi(s. ) = Ve (s. )] ds
If | Vie(t. r) = Viees(t, )| < E=rimalAD o a4 r e J then

N ||+ (max [JAID*
| Vi1 (t, r) — Vi(t, n)]| < (k1)) forall t,r € J. The
base case holds as well, so the result holds for all k by induction.




Convergence (3/3)

Similarly, | W a(t, r) = Wit )| < =1 maglADTE go g
t,red
m—1
Win(t, r) =1+ [Wiga(t, r) = Wi(t, r)].
k=0

By the triangle inequality and induction

m k k
[t = r|" (maxy [[Al])
[Win(t, NIl < kz_o i .

The comparison test with exp(|t — r| max, || Al|) shows that the
sequence converges uniformly on J x J to a limit which is
bounded by exp(|t — r| max, ||A]|). The same holds for the Vs.



Properties of V and W (1/3)

The integral of the limit of a uniformly convergent sequence is
the limit of the integrals,
so from

Viga(t, r)=1— /t Vi(s, r)A(s) dr
r
Wiri(t, r) =1+ /tA(S)Wk(s, r)dr
we get ’
Vit,r)y=1- /t V(s, r)A(s) dr
r
W(t, r)=1+ /tA(S)W(s, r)dr.
r
By the Fundamental Theorem of Calculus

V/(t,r) = =V(t,r)A(t), W'(t, r) = A(t)W(t,r).

The "’s denote derivatives with respect to the first argument.



Properties of V and W (2/3)

Let U(t,s,r) = V(t,s)W(t,r). We just saw that
VI(t,r)=—V(t, r)A(t) and W'(t,r) = A(t)W(t, r) so

U'(t,s,r)=V'(t,s)W(t, r)+ V(t.s)W'(¢t,r)
= —V(t,)A(t)W(t,r)+ V(t.s)A(t)W(t,r) = O.

So U(t,s, r) is independent of t. A useful consequence is

V(r,s)=V(r,s)I = V(r,s)W(r,r)=U(r,s,r)
=U(s,s,r)=V(s,s)W(s, r)=IW(s,r)=W(s,r).

Another is
V(t, s)W(t,s) = U(t,s,s) = U(s,s,s) = V(s,s)W(s,s)=1?=1.

So V(t,s) = W(t,s)" .



Properties of V and W (3/3)
A further consequence is

W(s,r)=IW(s.r)= V(s s)W(s,r)=U(s,s,r)
= U(t,s,r)= V(t,)W(t,r) = W(t, s)"W(t,r)

Multiplying from the left by W(t,s),
W(t,s)W(s,r) = W(t,r).

In view of the equation W(t,s) = V/(s, t) we can rewrite

%—\S/(s t) = —V(s, t)A(s)
as S
ﬁ(t s) = —W(t, s)A(s).



The theorem on fundamental solutions (1/2)

If Ais a continuous square matrix valued function on the closed
interval J then there is a unique square matrix valued function W
on J x J such that

1. 9 (t,s) = A(t)W(t,s),

2. W(t,s) is invertible, with W(t,s) 1 = W(s, t).

3. W(t t)=1,

4. GV (t,s) = —W(t, s)A(s),

5. W(t,s)W(s,r) = W(t, r), and
This W is called the fundamental solution corresponding to the
coefficient matrix A and the interval J. We just showed the

existence of such a W. To see the uniqueness, suppose W has
the same properties.



The theorem on fundamental solutions (2/2)
Let K(t,s) = W(t,s)W(s,t). Then

%ﬁg:%ngMswwwwggﬁﬂ

= (—W(t, 5)A(s))W(s, t) + W(t, s)(A(s)W(s, t)) = O.

So K(t,s) is independent of s.

K(t, t)= W(t. t)W(t t)=12=1s0o W(t s)W(s,t)=1 for all
t and s. Then W(t,s)W(t,s)~1 = /. Multiplying from the right
by W(t,s) gives W(t,s) = W(t,s).

An invertible square matrix valued function Y on J is called a
fundamental solution corresponding to the coefficient matrix A
and the interval J if Y/(t) = A(t)Y(t). The first two properties
above tell us that the fundamental solution is a fundamental
solution for any fixed value of its second argument.



Constructing the fundamental solution from a
fundamental solution (1/2)

Getting a fundamental solution from the fundamental solution is
easy. Just fix the second argument. Getting the fundamental
solution from a fundamental solution is also possible.

Suppose Y is a fundamental solution and set

W(t,s)=Y(t)Y(s)™ L.

88\/15‘/(1.‘,5) =Y'()Y(s) L = A(t)Y(£)Y(s) ! = A(t)W(t, s).



Constructing the fundamental solution from a
fundamental solution (2/2)

MW (t,9) = V(022 ~(t:5) = ~Y(OV(s) V()Y ()

0
=Y ()Y (5)TTAG)Y(s)Y(s) "t = —W(t, s)A(s).

W(t, r)=Y(@)Y(r) =YYt
=Y()Y ()Y (s)Y(r)"t = W(t, s)W(s, r).
Of course this is only useful if you have some other way of finding

a fundamental solution besides fixing the second argument of the
fundamental solution.



