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Where we left o� last time

We saw that we can solve the initial value problem x(t0) = x0 for

the linear di�erential equation x0(t) = A(t)x(t) + g(t) if the
sequence of matrix valued functions de�ned by

W0(t; r) = I Wk+1(t; r) = I +

∫
t

r

A(s)Wk(s; r) ds

has a limit. If this limit is W then the solution is

x(t) = W (t; t0)x0 +

∫
t

t0

W (t; s)g(s) ds:

This is a sum of two parts: W (t; t0)x0 solves the linear

homogeneous equation x0(t) = A(t)x(t) with initial conditions

x(t0) = x0, and
∫
t

t0
W (t; s)g(s) ds solves the linear

inhomogeneous equation x0(t) = A(t)x(t) + g(t) with initial data

x(t0) = 0.

Our goal today is to prove the sequence converges.



Convergence (1/3)

We only expect a reasonable theory when A is continuous in an

interval J, so I'll assume this from now on. I'll also assume J is

closed.

In addition to the W s it's convenient, temporarily, to introduce

some V s.

V0(t; r) = I Vk+1(t; r) = I �

∫
t

r

Vk(s; r)A(s) dr :

Note that Vk(t; t) = Wk(t; t) = I for all k .

Vk+1(t; r)� Vk(t; r) = �

∫
t

r

[Vk(s; r)� Vk�1(s; r)]A(s) ds;

Wk+1(t; r)�Wk(t; r) =

∫
t

r

A(s) [Wk(s; r)�Wk�1(s; r)] ds:

except in the case k = 0, where we have to remove the quantity

in brackets.



Convergence (2/3)

kVk+1(t; r)� Vk(t; r)k =

∥∥∥∥∫ t

r

[Vk(s; r)� Vk�1(s; r)]A(s) ds

∥∥∥∥
�

∫
t

r

k[Vk(s; r)� Vk�1(s; r)]A(s)k ds

�

∫
t

r

kVk(s; r)� Vk�1(s; r)k kA(s)k ds

� max
J

kAk

∫
t

r

kVk(s; r)� Vk�1(s; r)k ds

If kVk(t; r)� Vk�1(t; r)k �
jt�r jk (maxJ kAk)

k

k! for all t; r 2 J then

kVk+1(t; r)� Vk(t; r)k �
jt�r jk+1(maxJ kAk)

k+1

(k+1)! for all t; r 2 J. The

base case holds as well, so the result holds for all k by induction.



Convergence (3/3)

Similarly, kWk+1(t; r)�Wk(t; r)k �
jt�r jk+1(maxJ kAk)

k+1

(k+1)! for all

t; r 2 J.

Wm(t; r) = I +

m�1∑
k=0

[Wk+1(t; r)�Wk(t; r)] :

By the triangle inequality and induction

kWm(t; r)k �

m∑
k=0

jt � r jk (maxJ kAk)
k

k!
:

The comparison test with exp(jt � r jmaxJ kAk) shows that the
sequence converges uniformly on J � J to a limit which is

bounded by exp(jt � r jmaxJ kAk). The same holds for the V s.



Properties of V and W (1/3)
The integral of the limit of a uniformly convergent sequence is

the limit of the integrals,

so from

Vk+1(t; r) = I �

∫
t

r

Vk(s; r)A(s) dr

Wk+1(t; r) = I +

∫
t

r

A(s)Wk(s; r) dr

we get

V (t; r) = I �

∫
t

r

V (s; r)A(s) dr

W (t; r) = I +

∫
t

r

A(s)W (s; r) dr :

By the Fundamental Theorem of Calculus

V
0(t; r) = �V (t; r)A(t); W

0(t; r) = A(t)W (t; r):

The 0's denote derivatives with respect to the �rst argument.



Properties of V and W (2/3)

Let U(t; s; r) = V (t; s)W (t; r). We just saw that

V 0(t; r) = �V (t; r)A(t) and W 0(t; r) = A(t)W (t; r) so

U
0(t; s; r) = V

0(t; s)W (t; r) + V (t; s)W 0(t; r)

= �V (t; s)A(t)W (t; r) + V (t; s)A(t)W (t; r) = O:

So U(t; s; r) is independent of t. A useful consequence is

V (r ; s) = V (r ; s)I = V (r ; s)W (r ; r) = U(r ; s; r)

= U(s; s; r) = V (s; s)W (s; r) = IW (s; r) = W (s; r):

Another is

V (t; s)W (t; s) = U(t; s; s) = U(s; s; s) = V (s; s)W (s; s) = I
2 = I :

So V (t; s) = W (t; s)�1.



Properties of V and W (3/3)

A further consequence is

W (s; r) = IW (s; r) = V (s; s)W (s; r) = U(s; s; r)

= U(t; s; r) = V (t; s)W (t; r) = W (t; s)�1
W (t; r)

Multiplying from the left by W (t; s),

W (t; s)W (s; r) = W (t; r):

In view of the equation W (t; s) = V (s; t) we can rewrite

@V

@s
(s; t) = �V (s; t)A(s)

as
@W

@s
(t; s) = �W (t; s)A(s):



The theorem on fundamental solutions (1/2)

If A is a continuous square matrix valued function on the closed

interval J then there is a unique square matrix valued function W

on J � J such that

1. @W

@t
(t; s) = A(t)W (t; s),

2. W (t; s) is invertible, with W (t; s)�1 = W (s; t).

3. W (t; t) = I ,

4. @W

@s
(t; s) = �W (t; s)A(s),

5. W (t; s)W (s; r) = W (t; r), and

This W is called the fundamental solution corresponding to the

coe�cient matrix A and the interval J. We just showed the

existence of such a W . To see the uniqueness, suppose W̃ has

the same properties.



The theorem on fundamental solutions (2/2)

Let K (t; s) = W (t; s)W̃ (s; t). Then

@K

@s
(t; s) =

@W

@s
(t; s)W̃ (s; t) +W (t; s)

@W̃

@s
(s; t)

= (�W (t; s)A(s))W̃ (s; t) +W (t; s)(A(s)W̃ (s; t)) = O:

So K (t; s) is independent of s.
K (t; t) = W (t; t)W̃ (t; t) = I 2 = I so W (t; s)W̃ (s; t) = I for all

t and s. Then W (t; s)W̃ (t; s)�1 = I . Multiplying from the right

by W̃ (t; s) gives W (t; s) = W̃ (t; s).
An invertible square matrix valued function Y on J is called a

fundamental solution corresponding to the coe�cient matrix A

and the interval J if Y 0(t) = A(t)Y (t). The �rst two properties

above tell us that the fundamental solution is a fundamental

solution for any �xed value of its second argument.



Constructing the fundamental solution from a

fundamental solution (1/2)

Getting a fundamental solution from the fundamental solution is

easy. Just �x the second argument. Getting the fundamental

solution from a fundamental solution is also possible.

Suppose Y is a fundamental solution and set

W (t; s) = Y (t)Y (s)�1
:

@W

@t
(t; s) = Y

0(t)Y (s)�1 = A(t)Y (t)Y (s)�1 = A(t)W (t; s):

W (t; s)�1 =
(
Y (t)Y (s)�1

)�1
= Y (s)Y (t)�1 = W (s; t):

W (t; t) = Y (t)Y (t)�1 = I :



Constructing the fundamental solution from a

fundamental solution (2/2)

@W

@s
(t; s) = Y (t)

@Y�1

@s
(t; s) = �Y (t)Y (s)�1

Y
0(s)Y (s)�1

= �Y (t)Y (s)�1
A(s)Y (s)Y (s)�1 = �W (t; s)A(s):

W (t; r) = Y (t)Y (r)�1 = Y (t)IY (r)�1

= Y (t)Y (s)�1
Y (s)Y (r)�1 = W (t; s)W (s; r):

Of course this is only useful if you have some other way of �nding

a fundamental solution besides �xing the second argument of the

fundamental solution.


