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Second derivatives
If f is a di�erentiable function from Rn (column vectors) to R

then its derivative is

f 0(x) =
[

@f
@x1

(x) � � � @f
@xn

(x)
]
:

This is a function from column vectors to row vectors, so not on

the list of things with a sensible matrix derivative. Instead one

takes the derivative of (f 0)T , a function from column vectors to

column vectors. This gives the Hessian matrix

(
(f 0)

T
)
0

(x) =


@2f
@x2

1

(x) � � � @2f
@xn@x1

(x)

...
. . .

...
@2f

@x1@xn
(x) � � � @2f

@x2
n

(x)

 :

If (f 0)T is continuously di�erentiable we say that f is twice

continuously di�erentiable. In that case the Hessian is a

symmetric matrix.



A converse (Poincar�e Lemma)

Suppose g is a continuously di�erentiable function from Rn

(column vectors) to Rn Rn (column vectors). Is there a twice

continuously di�erentiable function f from Rn to R such that

f 0 = gT? De�nitely no unless

g0(x) =


@g1
@x1

(x) � � � @g1
@xn

(x)
...

. . .
...

@gn
@x1

(x) � � � @gn
@xn

(x)


is symmetric. Yes, if g is continuously di�erentiable on all of Rn

and g0 is symmetric there or, more generally, on a convex subset

of Rn, e.g. a ball, but not necessarily on general subsets of Rn.



Application to invariants

Consider an autonomous system x0(t) = F(x(t)) = (F � x)(t) Let
g = QF, where Q is an orthogonal antisymmetric matrix, i.e.

Q�1 = QT = �Q. Then

(g0)
T
= g0 , (F0)

T
QT = QF0 , (F0)

T
Q�1 = QF0 , (F0)

T
= QF0Q:

If this happens then there's an f such that f 0 = gT . Then

(f � x)0 = (f 0 � x) x0 =
(
gT � x

)
(F � x) =

(
gTF

)
�x =

(
FTQTF

)
�x

1� 1 matrices are symmetric so

FTQTF =
(
FTQTF

)T
= FTQF = �FTQTF

Therefore FTQTF = 0, (f � x)0 = 0 and f � x is constant. In

other words, f is an invariant.



The 2� 2 case

Q =

[
0 �1

1 0

]
is orthogonal and antisymmetric. I'll write x =

[
x

y

]
and F =

[
F

G

]
instead of x =

[
x1
x2

]
and F =

[
F1
F2

]
to avoid

subscripts. The system is then

x 0(t) = F (x(t); y(t)); y 0(t) = G (x(t); y(t)):

F0 =

[
@F
@x

@F
@y

@G
@x

@G
@y

]
:

The condition (F0)T = QF0Q is then @F
@x

= �@G
@y

: If this is

satis�ed then there is an invariant. It satis�es the equation

(f 0)T = QF, i.e. @f
@x

= �G and @f
@y

= F .



Integrals of matrix valued functions of a real variable

It's possible to de�ne the integral of a matrix valued function on

an interval. This may or may not follow the construction of the

integral of real valued functions. There are two main

constructions, one of which generalises nicely and the other

doesn't. In any case, it can be de�ned and has the expected

properties.

This includes the Fundamental Theorem of Calculus. If Q is a

continuous matrix valued function on an interval [a; b] and P is

de�ned by

P(x) =

∫
[a;x ]

Q(y) dy

for x 2 [a; b] then P 0 = Q. If P and Q are matrix valued functions

on an interval [a; b] and P 0 = Q and Q is integrable there then∫
[a;b]

Q(y) dy = P(b)� P(a):



The Poincar�e Lemma again
As we saw, if g is continuously di�erentiable in a convex set in Rn

and g0 is symmetric there then there is an f such that f 0 = gT .

Suppose x� and x are points in this convex set. Let

y(s) = (1� s)x� + sx. Then y0(s) = (x� x�). Also
(f � y)0 = (f 0 � y)y0 = (gT � y)(x� x�)

f (x)� f (x�) = (f � y)(1)� (f � y)(0)

=

∫
[0;1]

(f � y)0(s) ds

=

∫
[0;1]

(gT � y)(s)(x� x�)(s) ds

f (x) = f (x�) +

∫
[0;1]

(gT � y)(s)(x� x�)(s) ds

This isn't a good way to compute f , but it is used to show that it

exists. The convexity is needed to make sure y(s) stays with the

set for s 2 [0; 1].



The Inverse Function Theorem

Suppose u is a continuously di�erentiable function from a ball

about x� 2 Rn to Rn (column vectors in both cases). If u0(x�) is
invertible then there's a function v from a ball about u(x�) to Rn

such that (u � v)(y) = y for all y in an open ball about u(x�) and
(v � u)(x) = x for all x in a ball about x�. Also,

v0(y) = ((u0 � v)(y))�1 in the ball where it's de�ned. If the balls

are chosen small enough this v is unique.

This v is called the inverse function u.

In the case R this is the familiar Inverse Function Theorem for

real valued functions of a real variable.



Implicit Function Theorem

Suppose G is a continuously di�erentiable function from a ball

about the point (x�; y�) in R
m � Rn to Rn. Let @G

@x
be the matrix

consisting of the �rst m columns of G0 and @G
@y

the matrix

consisting of the last n columns of G0. Suppose @G
@y

(x�; y�) is
invertible. Then there is a function F from a ball about x� in Rm

to Rn such that F(x�) = y� and G(x;F(x)) = G(x�; y�) for all x in

the ball where F is de�ned. Also

F0(x) = �

(
@G

@y
(x;F(x))

)
�1

@G

@x
(x;F(x)) :

If the balls are chosen small enough this F is unique.

This was used in Lecture 4 to convert a system of the form

G(x(t); x0(t)) = 0 into one of the form x0(t) = F(x(t)).



Invariants, again
Suppose F and G are continuously di�erentiable in a ball about

(x0; y0) and
@F
@x

= �@G
@y

there. Suppose also that F (x0; y0) 6= 0.

As we saw, there's a function f from that ball to R such that
@f
@x

= �G and @f
@y

= F . Then @f
@y
(x0; y0) 6= 0. By the implicit

function theorem there is a function y de�ned in a ball about x0,

such that y(x0) = y0 and f (x ; y(x)) = f (x0; y0) in that ball.

Di�erentiating f (x ; y(x)) = f (x0; y0),

@f

@x
(x ; y(x)) +

@f

@y
(x ; y(x))y 0(x) = 0:

�G (x ; y(x)) + F (x ; y(x))y 0(x) = 0:

We've \solved" the initial value problem

y 0(x) =
G (x ; y(x)

F (x ; y(x))
y(x0) = y0:

Equations of this form, with @F
@x

= �@G
@y

, are called integrable.


