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Matrix valued sequences, series, functions (1/4)

Most of what you would expect to be true of matrix valued

sequences, series and functions, based on the results for the real

valued case, is true. In de�nitions, statements of theorems, and

proofs you replace the absolute value sign, j j with the norm

sign k k. In the case of vectors in Rn, either row or column

vectors, the norm is the Euclidean one.

kxk =

√√√√ n∑
j=1

jxj j2:

Any function q satisfying the following conditions could be used

instead of k k:

I q(x) � 0 and q(x) > 0 unless x = 0.

I q(�x) = j�jq(x).

I q(x+ y) � q(x) + q(y).



Matrix valued sequences, series, functions (2/4)
For m � n matrices it is more convenient to make the following

odd looking choice:

kAk = max
kxk�1

kyk�1

jxTAyj = max
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m∑
i=1

n∑
j=1

xiai ;jyj

∣∣∣∣∣∣ :
The maximum exists. In the case m = 1 or n = 1 it agrees with

the Euclidean norm on vectors. It has all the properties

mentioned earlier:

I kAk � 0 and kAk > 0 unless A = O.

I k�Ak = j�jkAk.

I kA+ Bk � kAk+ kBk.

It is the only choice satisfying those properties and

kABk � kAkkBk; kIk = 1;
∥∥AT

∥∥ = kAk :



Matrix valued sequences, series, functions (3/4)
There are only two complications compared to the real case.

I You need to be slightly careful about not changing the order

of multiplication. For example,

lim
n!1

AnBn =
(
lim
n!1

An

)(
lim
n!1

Bn

)
provided the limits on the right exist. That wouldn't be true

if you reversed the order of multiplication on only one side.

I You need to distinguish between the concepts of non-zero

and invertible. For example,

lim
n!1

An = B , lim
n!1

(An � B) = O

but the condition for

lim
n!1

AnB
�1
n =

(
lim
n!1

An

)(
lim
n!1

Bn

)
�1

to hold is that both limits on the right exist and limn!1 Bn

is invertible.



Matrix valued sequences, series, functions (4/4)

Sequences, series, functions, etc. converge in the sense described

above if and only if all the components, a.k.a entries, of the

vector or matrix converge. The de�nitions in terms of norms are

more suited to proving theorems than checking examples. It's the

theorems you generally use to establish convergence, not the

de�nition or the componentwise criterion.



Derivatives (1/4)

The derivative of f : R! R at x 2 R is equal to v 2 R if and only

if the four equivalent conditions below are satis�ed. If they are

then we say f is di�erentiable at x and write f 0(x) = v .

I limy!x (y � x)�1(f (y)� f (x)) = v .

I limy!x (f (y)� f (x))(y � x)�1 = v .

I For all � > 0 there is a � > 0 such that if 0 < jx � y j < �

then jf (y)� f (x)� v(y � x)j < �jx � y j.

I For all � > 0 there is a � > 0 such that if 0 < jx � y j < �

then jf (y)� f (x)� (y � x)v j < �jx � y j.

The �rst and second conditions di�er only in the order of

multiplication. So do the third and fourth. We can also de�ne the

derivative if f is just de�ned near x , not everywhere. I will skip

the details.



Derivatives (2/4)

Which of these make sense for a function from m � n matrices to

p � q matrices? The �rst two conditions still make sense if

m = n = 1, i.e. for matrix valued functions of a real variable.

(y � x)�1(f (y)� f (x)) and (f (y)� f (x))(y � x)�1 are both

de�ned in this context, for any p and q. The derivative v is then

a p � q matrix. The �rst two conditions are either meaningless or

mostly uninteresting except when m = n = 1.

The third condition makes sense, i.e. the matrix operations are

well de�ned, if n = q and v is a p �m matrix. It's mostly

uninteresting except when n = q = 1, i.e. for functions from

column vectors to column vectors.

The fourth condition makes sense if m = p and v is an n � q

matrix. It's mostly uninteresting except when m = p = 1, i.e. for

functions from row vectors to row vectors.



Derivatives (3/4)

In the overlapping \interesting" cases, i.e. scalar or vector valued

functions of a real variable, all the \interesting" de�nitions agree.

All bets are o� in other cases.

For matrix valued functions of a real variable all the expected

rules for di�erentiation apply, provided the algebraic operations

are de�ned, except the product rule must be written

(AB)0(x) = A0(x)B(x) + A(x)B 0(x)

and the quotient rule in either of the two forms(
AB�1

)
0

(x) = A0(x)B(x)�1 � A(x)B(x)�1B 0(x)B(x)�1;(
A�1B

)
0

(x) = A(x)�1B 0(x)� A(x)�1A0(x)A(x)�1B(x):



Derivatives (4/4)

For functions from column vectors to column vectors the

expected rules of di�erentiation apply, provided the algebraic

operations are de�ned. The form of the chain rule is

(f � g)0(x) = (f 0 � g)(x)g0(x):

For functions from row vectors to row vectors the expected rules

of di�erentiation apply, provided the algebraic operations are

de�ned, except the form of the chain rule is

(f � g)0(x) = g0(x)(f 0 � g)(x):



Componentwise di�erentiation

A matrix valued function of a real variable is di�erentiable if and

only if each component/entry is di�erentiable as a real valued

function and the derivative can be computed componentwise, i.e.

the i 'th row, j 'th column of the derivative is the derivative of the

i 'th row, j 'th column.

If f is a function from Rn to Rm whose derivative at the point

x 2 Rn is the m � n matrix A then the i 'th row, j 'th column of A

is

ai ;j =
@fi

@xj
(x):

The existence of these partial derivatives is necessary but not

su�cient for the di�erentiability of f at x. The existence of

continuous partial derivatives near x is a necessary and su�cient

condition for f to be continuously di�erentiable near x.


