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Existence and uniqueness

The main existence and uniqueness theorem on ODEs is a local

theorem about the initial value problem.

Suppose t� 2 R and x� in Rn Suppose that

F : B(t�;S)� B(x�;R)! Rn is continuous for some R;S > 0.

B(x�;R) is the ball of radius R about x� in Rn. Similarly B(t�;S)
is the ball of radius S about t�, i.e. the interval (t� � S ; t� + S).
Then there are r ; s > 0 such that if t0 2 B(t�; s) and
x0 2 B(x�; r) then the initial value problem

x
0(t) = F(t; x(t)) x(t0) = x0

has a continuously di�erentiable solution x : B(t0; s)! B(x0; r).
If F(t; x) is a continuously di�erentiable function of x then there

is only one solution to the initial value problem. This solution

depends continuously on t0 and x0 as well as t.



Why these restrictions?

Any theorem this general can only give local existence. Consider

x 0(t) = 1+ x(t)2. The solution with x(t0) = x0 is

x(t) =
x0 + tan(t � t0)

1� x0 tan(t � t0)
:

This makes sense only for t su�ciently close to t0, speci�cally

within an interval of length �. At the ends of the interval the

solution tends to �1.

Continuity of F is enough for existence, but not uniqueness.

Consider x 0(t) = x(t)1=3, x(0) = 0. x(t) = 0 is a continuously

di�erentiable solution. But so is

x(t) =

{
(2t=3)3=2 if t > 0;

0 if t � 0:

We'll �nd out later where these solutions come from.



Illusory restrictions
Some of the restrictions are more apparent than real though. The

theorem covers �rst order systems, but reduction of order can

make anything into a �rst order system.

The theorem is for an equation without parameters. We could

apply it to each value of any parameter separately, but then it

wouldn't tell us how the solution depends on the parameters.

There is a better way.

Consider the initial value problem y(x0) = y0, y
0(x0) = v0 for the

Legendre equation

(1� x2)y 00(x)� 2xy 0(x) + �(� + 1)y(x) = 0:

If z1 = y , z2 = y 0 and z3 = � then z satis�es the initial value

problem

(z1; z2; z3)(x0) = (y0; v0; �)

z 0

1(x) = z2(x) z 0

2(x) =
2xz2(x)� z3(x)(z3(x) + 1)z1(x)

1� x2
z 0

3(x) = 0:



Illusory restrictions (continued)
Conversely, if z satis�es

(z1; z2; z3)(x0) = (y0; v0; �)

z 0

1(x) = z2(x) z 0

2(x) =
2xz2(x)� z3(x)(z3(x) + 1)z1(x)

1� x2
z 0

3(x) = 0

and we set y = z1 then y satis�es

y(x0) = y0; y 0(x0) = v0

(1� x2)y 00(x)� 2xy 0(x) + �(� + 1)y(x) = 0:

We can apply the existence and uniqueness theorem to

F(x ; z1; z2; z3) =

(
z2;

2xz2 � z3(z3 + 1)z1
1� x2

; 0

)
to get existence and uniqueness of solutions to

y(x0) = y0; y 0(x0) = v0

(1� x2)y 00(x)� 2xy 0(x) + �(� + 1)y(x) = 0:

We need to restrict to an interval not containing (�1; 1).



Illusory restrictions (conclusion)

The theorem only gives us existence and uniqueness in a still

smaller interval. But it gives us continuous dependence not just

on x , x0, y0 and v0 but also on �.

You wouldn't gain any real generality by including higher order

di�erential equations or equations with parameters in the

statement of the theorem.

You could even restrict it to autonomous systems, i.e those of the

form x0(t) = F(x(t)).

(z1; z2; z3; z4)(x0) = (y0; v0; �; x0)

z 0

1(x) = z2(x) z 0

2(x) =
2z4(t)z2(x)� z3(x)(z3(x) + 1)z1(x)

1� z4(t)2

z 0

3(x) = 0 z 0

4(x) = 1

is equivalent to the original initial value problem for the Legendre

equation.



Explicit versus implicit

Not every equation is, or can be, naturally written as

x0(t) = F(t; x(t)). Sometimes the form G(t; x(t); x0(t)) = 0 is

more natural.

Consider x(t)2 + x 0(t)2 = I , for example. You could try to rewrite

this as

x 0(t) = �
√

I � x(t)2

but this isn't single valued. Near the initial values you can make it

single valued though by choosing the correct branch, i.e. sign.

We can �x this problem in the general case with an appeal to the

Implicit Function Theorem. If G is continuously di�erentiable near

(t�; x�; v�), G(t�; x�; v�) = 0 and @G=@v(t�; x�; v�) is invertible
then there is a unique continuously di�erentiable function F

de�ned near (t�; x�) such that G(t; x;F(t; x)) = 0 and

F (t�; x�) = v�. You can make all the references to \near" precise

by using balls, as in the existence and uniqueness theorem. You

can also use open sets, if you know what they are.



Approximations

The statement of the existence and uniqueness theorem gives no

hint of how to �nd the solution it claims exists. There are two

main methods, each with advantages and disadvantages.

I Picard's \method of successive approximations", via a

sequence of integrals.

I Peano's method, based on minimisation in a function space.

Both give, or can give, a sequence of approximations converging

to the solution. In the case where F is merely continuous, where

we can't expect uniqueness, they give a sequence such that some

subsequence converges to a solution, but di�erent subsequences

might converge to di�erent solutions.



Picard and integral equations

The Fundamental Theorem of Calculus applies to vector valued

functions as well as to real valued functions. So

x(t) = x(t0) +

∫
t

t0

x
0(s) ds:

If x satis�es the initial value problem

x
0(t) = F(t; x(t)) x(t0) = x0

then

x(t) = x0 +

∫
t

t0

F(s; x(s)) ds:

Conversely, if x satis�es the integral equation above then it

satis�es the initial value problem.



Picard and integral equations (continued)

Note that

x(t) = x0 +

∫
t

t0

F(s; x(s)) ds:

isn't really a solution formula. To get the function x from the

integral we would already need to know it, since it appears in the

integrand.

To get around this, de�ne a sequence inductively by

x0(t) = x0 xk+1(t) = x0 +

∫
t

t0

F(s; xk(s)) ds:

You could hope that this sequence converges and that its limit

satis�es the integral equation and therefore the initial value

problem. This largely works, at least in a small enough interval

containing the initial data. Either the sequence converges or it has

a convergent subsequence, depending on the di�erentiability of F.


