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Introduction
In this module we’ll talk about formal languages, computability and math-
ematical logic. Before going through each in turn it may be useful to see, in
a simplified example, how closely related they are. The simplified example
will be that of a module enrollment system.

A simplified example
Module enrollment systems take data from university staff about what
modules students are allowed to take and from students about what mod-
ules they wish to take and either enroll the student in the modules if their
choices are allowed or don’t if they aren’t, hopefully with some feedback
about why they aren’t allowed.
A real such system has to cope withmany details which we’ll ignore in this
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simplified example, like the fact that a university typically has hundreds
or thousands of categories of students, depending on entry route, intended
degree, year of study, etc. and that each of these groups has different re-
strictions on the modules they can take. All of that detail is important in
a real system but in a hypothetical system intended just to illustrate some
basic ideas it would just be a distraction so we’ll assume here that all stu-
dents have the same set of choices. We’ll also ignore issues of time, such
as whether a student may have taken a prerequisite module in a previous
year. We’ll also ignore most user interface considerations.

Rules
A very restrictive system might offer students a short list of possible com-
binations and ask them to pick one. An incredibly lax system might allow
students to pick any combination they like. Both of these are easy to imple-
ment but any real university will have something in between and in this
one way, at least, we’ll try to be realistic. The usual way to specify a set of
combinations is with rules, like “If you take Statistics you must also take
Probability” or “You must take one and only one of these three modules”.
You find rules like these in a course handbook and the system’s job is turn
those rules and turn them into an algorithm which approves or rejects a
selection.

Languages
We need to talk about languages, and the distinction between natural and
formal languages. The rules above are in a natural language, specifically
English, and natural languages are ambiguous. The rule “You must take
Probability and Statistics or Algebra and Geometry”, for example, is am-
biguous in multiple ways. There is the distinction between inclusive and
exclusive “or”, for example. Are you allowed to take both Probability and
Statistics and Algebra and Geometry or do you have to choose only one
pair? How do the logical operators “and” and “or” split the phrase “Prob-
ability and Statistics or Algebra and Geometry” into meaningful pieces?
Are there two possibilities, “Probability and Statistics” and “Algebra and
Geometry”, where you have to take one pair or the other? In other words,
does the word “or” join separate phrases, each joined by an “and”? Or is it
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the other way around? In other words, do you have to take Probability, ei-
ther Statistics or Algebra, and Geometry, three modules where in one case
you have a choice between two? Does the phrase “Probability and Statis-
tics” even refer to a pair of modules named “Probability” and “Statistics”
or is there a single module named “Probability and Statistics”?
You may well be able to guess the intended meaning of the sentence but
you’re only able to do so from knowing a lot of context and you may guess
wrong. Your guesses for this rule and for others will probably give the
same word different meanings in different sentences. It’s likely, for exam-
ple, that you interpreted the “or” in the sentence above exclusively, so that
students cannot take both pairs of modules. But in a statement of prerequi-
sites, like “Before taking Partial Differential Equations you must take Tech-
niques in Theoretical Physics or Ordinary Differential Equations” you’d
probably interpret it inclusively, so that a student who had taken both of
those modules would also be allowed to take Partial Differential Equations.
To avoid ambiguities like the ones above we need formal languages. For-
mal languages have a precisely described grammar, which then determines
how they are parsed. If you want to program to check module choices
it needs them to be expressed in a formal language. Some human will
then need to translate from the rules from the natural language they’re ex-
pressed in a course handbook to a formal language. That formal language
may look superficially like a natural language. We could, for example, con-
tinue to use “and” and “or” as logical connectives. But they’d now be used
in a way which permits purely mechanical processing rather than human
intuition, and they might therefore be interpreted in a way which doesn’t
accord with your intuition.

Statements
Rules in a course handbook are full of modal verbs like “must”, “should”,
“may”, etc. It’s possible to studywhat’s calledmodal logic, which attempts
to formalise the meaning of such verbs. We won’t do that in this module.
We also wouldn’t need to in order to build a module enrollment system.
The part of the system which actually implements the rules is a checking
procedure which takes a list of modules entered by the student and checks
whether they do or don’t satisfy the requirements. In describing such a pro-
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cedure it’s more natural to express things declaratively than imperatively.
The rule which appears in course handbook as “You must take Probability
and Statistics or Algebra and Geometry” can be rewritten as the statement
“The student is taking Probability and Statistics or Algebra and Geometry”.
The checking procedure checkswhether this statement, alongwith any oth-
ers it’s been given, is true for the student whose choices it’s validating. I’ll
generally use this point of view, with statements in place of rules, from
now on.

A formal language
Since we need a formal language anyway might as well dispense with ev-
erything superfluous and replace “The student is taking Probability and
Statistics or Algebra and Geometry” with just “Probability and Statistics
or Algebra and Geometry”. There’s no point in starting every single rule
with “The student is taking”. Our language will then consist of module
names joined by the logical operator “and”, “or” and “not” according to
fixed rules.
We’ll avoid the ambiguity of whether “Probability and Statistics” is one
module or two by insisting that every module title is one word, beginning
with a capital letter. In a real system you would probably use some other
mechanism, like using module codes instead of names, or using symbols
unlikely to occur in a module name to stand in for “and”, “or” and “not”.
We’ll resolve the ambiguity about how to split up a compound phrase like
“Probability and Statistics or Algebra and Geometry” by declaring that
“not” takes precedence over “and”, which in turn takes precedence over
“or”. By precedence wemean that it binds more tightly, so given the choice
between binding the names “Probability” and “Statistics” with an “and”
or “Statistics” and “Algebra” with an “or” we prefer to bind “Probabil-
ity” and “Statistics” together first. Only after “Probability” and “Statistics”
have been bound together with “and” and “Algebra” and “Geometry” do
we bind the two larger phrases “Probability and Statistics” and “Algebra
and Geometry” together with an “or”. While not strictly necessary, it is
convenient to allow the use of parentheses to override these precedence
rules. The alternative interpretation described earlier could then be writ-
ten as “Probability and (Statistics or Algebra) and Geometry”. This could
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also expressed without parentheses as “Probability and Statistics and Ge-
ometry or Probability and Algebra and Geometry”, but this is longer and
harder to read than the version with parentheses.
Note that this use of the word precedence may not match your intuitions.
If you parse statements in a top down manner, which is the way humans
generally do, then you start with the operators of lowest precedence and
work your way up to those of higher precedence.

Logic
If the language above looks familiar, except for the role of module names,
that’s because it’s one that’s often used. With search terms in place of mod-
ule names it’s the language used by search engines, not just the big web
search engines but also the one used to search for books or articles in our
library.
This formal language, together with various axioms and rules of inference
we’ll discuss later, forms what’s called the predicate calculus, also known
as zeroeth order logic.
Beyond zeroeth order logic there is first order logic, which introduces
new language elements like variables and quantifiers, and axioms and
rules of inference for them. In a real module enrollment system there
would be advantages to introducing at least some elements of first order
logic. For example, suppose we want to implement the simple rule “You
must take Probability and Statistics and no other modules.” The statement
“Probability and Statistics” is not a faithful translation of this rule into our
formal language because it doesn’t enforce the “and no other modules
part. The correct translation of this into our formal language would look
like”Probability and Statistics and not Algebra and not Geometry and
not …” where the “…” continues on to list every other module offered.
That’s awkward. It would be much better to be able to say something like
“Probability and Statistics and, for all 𝑥, 𝑥 equals Probability or 𝑥 equals
Statistics or not 𝑥”. The “for all” is a quantifier, the universal quantifier,
and 𝑥 is a variable, which in this context is a placeholder for an arbitrary
module. The disadvantage of using first order logic is that it complicates
parsing input from staff, which we’ll talk more about shortly, and checking
input from students, which we’ll talk about later. For purposes of this
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simple example wewill therefore stick to zeroeth order logic and postpone
any further discussion of first order logic until later in the module.
Most humans would not naturally write “and no other modules”, thinking
it obvious from context. It would then be implicit in “You must take Prob-
ability and Statistics”, but might not be in other uses of the word “and”.
In the sentence “Before taking Forecasting you must take Probability and
Statistics” it seems unlikely that there’s an implicit “and no othermodules”.
The word “and” in English therefore has at least two different interpreta-
tions, whichwe canusefully refer to as “exclusive and” and “inclusive and”.
English is far from unique in failing to distinguish between these but some
other languages, like Japanese, do.

Parse trees
The process described above, splitting a statement up into successively
smaller phrases until we get to the simplest possible components, is called
parsing. A common way to describe the result, both for natural and for
formal languages, is what’s called an abstract syntax tree.
The following three figures give a visual representation of the abstract syn-
tax trees for the two statements considered above.

Figure 1: Syntax tree for ((Probability and Statistics) or (Algebra and Ge-
ometry))

A tree has elements called nodes and has arrows from one node to another.
The nodes with no arrows going out are called the leaves of the tree. There
is a single node with no arrows coming in, which is called the root. In our
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Figure 2: Syntax tree for ((Probability and (Statistics or Algebra)) and Ge-
ometry)

Figure 3: Syntax tree for (Probability and ((Statistics or Algebra) and Ge-
ometry))
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case the leaf nodes are all labelled by module names and the other nodes
are all labelled by logical operators.
These visual representations are nice, but all computers, and many hu-
mans, are blind. It’s possible to describe the same information in a dif-
ferent way, with fully parenthesised expressions. The fully parenthesised
expressions corresponding these abstract syntax trees are as follows.
((Probability and Statistics) or (Algebra and Geometry))

((Probability and (Statistics or Algebra)) and Geometry)

(Probability and ((Statistics or Algebra) and Geometry))
The internal representation a computer would use for a tree data structure
isn’t either of these. The visual description and the parenthesised expres-
sions are just for humans.
The fact that there are two possible abstract syntax trees for “Probability
and (Statistics or Algebra) andGeometry”, depending onwhich “and” has
higher precedence, shows that our grammar isn’t fully unambiguous.
When parsing statements in a formal language with a program one often
wants to construct a data structurewhichmirrors this structure. For simple
enough languages though it may be possible, as we’ll see, to use simpler
data structures than a tree.

Graphs
A tree is a special case of a more general structure called a directed graph.
A graph has nodes, which in the context of graph theory are usually called
vertices, and arrows, which in this context are called edges. Note that this
usage of the word “graph” has no relation at all to the graph of a function.
There are also undirected graphs, where the edges that connect vertices
don’t have a preferred direction. We’ll discuss graphs more later.

Interpretation
If you’ve been reading very carefully you may have noticed that one of the
ambiguities discussed previously has not been resolved, the one between
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inclusive and exclusive “or”. The perspective taken by the theory of formal
systems is that this distinction is not part of the language itself but rather
of its interpretation. The language is described by its grammar and deter-
mines which statements are to be regarded as grammatically correct and
how those statements are to be parsed but does not specify any particu-
lar interpretation of the language. The distinction between inclusive and
exclusive or isn’t needed for determining grammatical correctness or for
parsing so it’s not part of the language.
Note that this is different from the way we normally talk about natural
languages. We regard the interpretation as part of the language for natural
languages. The terms linguists use are syntax and semantics. Syntax deter-
mines grammatical correctness andparsingwhile semantics givesmeaning
to statements which are grammatically correct. A formal language is pure
syntax.
People often refer dismissively to “arguments about semantics”, which is
odd since semantics is what gives meaning to statements.
In reality no one, except possibly as an example in a module like this one,
would create a formal language without having an intended interpretation
in mind though. One reason we make the distinction between language
and interpretation is to allow the same language to have multiple interpre-
tations.
The interpretation we’ll give to our model module enrollment language
is that “and” and “not” mean what you expect them to mean and “or” is
always to be interpreted inclusively. With this interpretation the remain-
ing ambiguity we saw earlier, concerning precedence between “and”’s or
between “or”’s is seen to be harmless, because “and” and “or” are associa-
tive operators. We’ll talk more about associativity when we discuss semi-
groups, monoids and groups later. Module names are interpreted asmean-
ing that the student in question is taking that module.
Strictly speaking our language has multiple interpretations, one for each
student. We’ll see more interesting examples later where it’s useful for a
language to admitmultiple interpretations. We’ll also see that this unavoid-
able for all but the simplest systems.
If the “or” in “Probability and Statistics or Algebra and Geometry” in a
course handbookwas intended exclusively then in our formal languagewe
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will therefore need to replace it with something like “Probability and Statis-
tics and not Algebra and not Geometry or not Probability and not Statistics
and Algebra and Geometry” in order to achieve the desired interpretation.

Expressiveness
It’s possible for one language, with its intended interpretation, to be more
expressive than another language, also with its intended interpretation, in
the sense that any meaning which can be conveyed with the second can
be conveyed by the first, but not vice versa. If we, for example, dropped
the logical operator “not” from our language above we would obtain a less
expressive language because there would be some module selection rules
we simply couldn’t express.
On the other hand sometimes one language is larger than another without
being more expressive. The language described above has parentheses, for
example, but would be equally expressive without them. We’ve already
seen an example above of replacing a statement with parentheses with one
without parentheses which has the same interpretation and this can in fact
be done to any statement. Similarly our language doesn’t have an exclu-
sive “or” but we could add one, denoted for example by “xor”, without
any gain in expressiveness. We’ve already seen an example of converting
a statement with an exclusive “or” to one without any and this also can be
done in general. A further possible addition to our language would be an
“implies” operator. The statement “Statistics implies Probability” would
mean that if a student is taking Statistics they are then also taking Proba-
bility, i.e. that Probability is a prerequisite or corequisite of Statistics. This
also gives no gain in expressiveness. An equivalent statement without “im-
plies” is “not Statistics or Probability”. If this looks wrong then you may
need to remind yourself of our precedence rules. Since “not” is higher
precedence than “or” the statement will be parsed as “(not Statistics) or
Probability” rather than “not (Statistics or Probability)”.
Is it worth adding language features which don’t make a languagemore ex-
pressive? It often is, although such features are referred to dismissively as
“syntactic sugar” by some authors. The equivalent versions of statements
without the feature are often longer or harder to read than the versions
with them, as we’ve seen. But there’s a trade-off here. Adding language
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features may make it easier to craft a statement with your desired interpre-
tation but it will make your language harder to parse and will also make it
harder to reason about the language.

Parsing
I haven’t given a purely formal description of our example module selec-
tion language. We’ll see how to do that later. Hopefully I have described
it in enough detail that you can recognise which statements are grammati-
cally correct and which, like “Probability Statistics )and or( Geometry not”
are not grammatically correct, even though they are built from the same
pieces. You can probably also mentally parse grammatically correct state-
ments, at least if they’re not too long and complicated. Whether you could
write a parser for it is another matter. We have a certain level of parsing
built in which is how even very small children can learn languages, but
this process is mostly subconscious, which is why it’s hard towrite a parser
even for a language we would have no trouble parsing intuitively.
I’m not going to construct a parser for the module enrollment language
described above. I could, but it would be quite complicated despite the
apparent simplicity of the language. It would also be largely pointless, for
reasons I’ll explain soon. I will describe a parser for a closely related lan-
guage though.

Infix, prefix and postfix
Our notation for the logical operators “and” and “or” is what’s called infix
notation, where the operator is written between its operands. Alternatives
are prefix notation, where it’s written before the operands, or postfix nota-
tion, where it’s written after them. The prefix version of “Probability and
Statistics or Algebra and Geometry” is
(or (and Probability Statistics) (and Algebra Geometry))
while the postfix version is
((Probability Statistics and) (Algebra Geometry and) or)
The prefix version may look familiar if you’ve ever seen any of the many
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variants of the programming language LISP, the second oldest program-
ming language still in regular use.
The parentheses show the structure of the subphrases but aren’t really nec-
essary. There is no other way to split these statements. With prefix or
postfix notation we also don’t need precedence rules.

A parser for the prefix language
It’s much easier to write a parser for a prefix or postfix language than an in-
fix one. In fact here’s a simple parser for the prefix version of our language,
without the unnecessary parentheses.
The boring bit of the parser is the lexical analyser, the bit which separates
the input stream into the three logical connectives “and”, “or” and “not”
and the module names. We’ll call these tokens. With my rather drastic re-
quirement that module names are single words starting with capital letters
this part is easy, but for many interesting languages it is more difficult. I
will talk later about how a lexical analyser splits input into tokens but for
now we’ll just assume we have a lexical analyser and that our input is split
into tokens, which the parser reads in one at a time.
Slightly simpler than an actual parser is a grammar checker. The only data
structure this needs is a single integer, which we’ll call the counter. The is
initialised to 1. When the grammar checker reads an “and” or an “or” it
increments the counter. When it reads a module name it decrements the
counter. When it reads a “not” it does nothing. If the value of the counter
reaches 0 at the end, but not before, then the input is grammatically cor-
rect. Otherwise it isn’t. Here’s the input “or and Probability Statistics and
Algebra Geometry” together with the value of the counter at each point in
the input:
1 or 2 and 3 Probability 2 Statistics 1 and 2 Algebra 1 Geometry 0
We can turn this into a abstract syntax tree by scanning through for se-
quences of tokens where the value of the counter remains at least as high
as its value at the start of the sequence until the end of the sequence, where
it’s 1 lower. The seven sequences with this property in our example are
1 or 2 and 3 Probability 2 Statistics 1 and 2 Algebra 1 Geometry 0
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2 and 3 Probability 2 Statistics 1
1 and 2 Algebra 1 Geometry 0
3 Probability 2
2 Statistics 1
2 Algebra 1
1 Geometry 0
For each of them we have a node in our tree, which we will label with the
first token of the sequence. Whenever one sequence contains in another
we’ll draw an arrow from the first to the second, unless there’s an interme-
diate sequence, i.e. one which contains the second and is contained in the
first. Depending on our conventions we can label the node with the whole
phrase or just the first token. The version where we give just the first token
is one of the abstract syntax tree diagramswe saw earlier. The version with
the whole phrase is often called the “parse tree”, although some authors
use those terms interchangeably.

A parser for the postfix language
It’s equally easy to write a parser for the postfix version. Again we’ll start
with a checker. The checker has a counter initialised to 0. When it reads a
module name it increments the counter. When it reads an “and” or an “or”
it decrements the counter. When it reads a “not” it does nothing. If the
counter remains positive until the end of the input, and is equal to 1 there,
then the input is grammatically correct. Otherwise it is not.
Here is the input “Probability Statistics andAlgebra Geometry and or” dec-
orated with the values of the counter at each stage:
0 Probability 1 Statistics 2 and 1 Algebra 2 Geometry 3 and 2 or 1
Constructing an abstract syntax tree from the checker is similar to the case
of the prefix language. The nodes correspond to sequences of tokenswhere
the value of the counter is 1 higher at the end than the start and is always
higher in between than at the start, and we label each node with its final
token. The abstract syntax tree for the input above is the same as for the
corresponding input for the prefix parser, assuming we’re using the ver-
sion where each node is labelled with a single token rather than the whole
phrase.
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Parser generators
It’s probably not obvious that the parsers described above are correct. It’s
also probably not obvious how you would construct a parser for our origi-
nal, infix, language. People realised early on that generating parsers is both
a specialised skill and one which can be automated. There are programs,
called parser generators, which take a description of a formal language and
generate a parser for it. For them to be able to do this the description needs
to be in a suitable format. In other words one needs a formal language for
the description of formal languages. If you’ve written such a parser gener-
ator you can even apply it to its own language to generate another parser
generator!
Writing a parser generator is generally harder than writing a parser, and
proving a parser generator always generates correct parsers is generally
harder than proving that any individual parser is correct, but the great
advantage is that in principle you only need to do the work once.

A simple checker
If we have a parser for our module enrollment language then we can write
a recursive procedure for checking a student’s module choices. The proce-
dure takes as input a node of the tree and has as output a Boolean, i.e. the
value “true” or “false”. When called on a node labelled by a module name
it checks whether the student has selected the module, returning “true” if
so and “false” if not. When called on a node labelled “not” it calls itself on
the node at the end of the outgoing arrow and returns “true” if that call
returned “false” and vice versa. When called on a node labelled “and” it
calls itself on each of the nodes at the end of the two outgoing arrows and
returns “true” if both of those calls returned “true” and “false” otherwise.
When called on a node labelled “or” it calls itself on each of the nodes at
the end of the two outgoing arrows and returns “false” if both of those calls
returned “false” and “true” otherwise.
Applying this procedure to the root of the abstract syntax tree for amodule
selection rule tells youwhether the student’smodule selections are allowed
by the rule.
This checker works equally well regardless of whether we chose the infix,
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prefix or postfix version of our input language, since they all have parsers
which produce the same abstract syntax tree.

A simpler checker
Except for being recursive the procedure described above is fairly simple.
It does depend on having a parser though, and parsers are not simple. For
the postfix version of the language it’s possible to avoid the parsing stage
entirely and write a simple checker which works directly on the unparsed
statements.
Our simple checker needs a stack, but no other data structures. A stack is
a simple data structure with only three operations. We can push a value
onto the top of the stack or pop the value currently at the top off of the
stack. We can also check whether the stack is currently empty.
Our procedure starts with an empty stack and reads tokens one by one
from the statement expressing the module rule. When it reads a module
name it pushes a 0 onto the stack if the student has selected the module
and pushes a 1 onto the stack if the student has not. When it reads a “not”
it pops a value from the top of the stack and pushes 1 minus that value
onto the stack. When it reads an “and” it pops two values off of the stack
and pushes their maximum onto the stack. When it reads an “or” it pops
two values off of the stack and pushes their minimum onto the stack. After
reading all the tokens there is one value on the stack. The student’s choices
comply with the rule if and only if that value is 0.
Here is the statement “Probability Statistics and Algebra Geometry and
or” decorated with the state of the stack after reading each token, if the
student has selected “Statistics” and “Algebra” but no other modules. To
make things compact the stack is written horizontally, with the left hand
side being the “top”.
Probability 1 Statistics 0 1 and 1 Algebra 0 1 Geometry 1 0 1 and 1 1 or 1
The final value is 1, meaning the selection does not comply with the rule.
If you’ve beenwonderingwhat the counter in our grammar checker for the
postfix language represented you now have an answer: it’s the size of the
stack. The contents of the stack depend on the individual student’smodule
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choices but its size doesn’t.
One minor comment is that this module selection checker is using 0 and 1
as substitutes for the Boolean values “true” and “false”, in that order. With
this convention “and” corresponds to a maximum and “or” to a minimum.
You could write a similar checker for the prefix version of the language but
it would have to read tokens in reverse order.

Idealised machines
It’s useful to think of various types of idealised machines, with varying
levels of complexity, and classify computations by which of these idealised
machines can perform them.
In this classification there’s a maximally powerful machine, which should
be able to perform any calculation which can be performed. This is called
a Turing machine. Those will be described much later in the module.
The simplest useful machine in this hierarchy is what’s called a finite state
automaton. It has a single state variable, which can take only finitely many
values, and must read its input one token at a time without backtracking.
Our grammar checker for the postfix version of our language barely fails to
qualify. Its state is completely described by the counter but it can take any
non-negative integer as its value and there are infinitelymanynon-negative
integers.
A finite state automaton can be conveniently illustrated by a directed graph,
where vertices correspond to possible states and edges correspond to the
allowed state transitions. More information is needed to give a complete
description of the finite state automaton, like which state is the initial state
and which tokens in the input cause which state transitions. The accompa-
nying figure gives an example.
We’ll discuss such diagrams in more detail later but I’ll give a quick ex-
planation now. The alphabet excepted by this finite state automaton is the
symbols P, S, A and G. Each state corresponds to a vertex, indicated by a
circle or a double circle. The doubly circled vertices are accepting states,
which means that if we are in one of those states when the input ends then
the input is accepted. If the input endswhenwe’re at a singly circled vertex
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then it is rejected. Each possible transition is indicated by an edge, i.e. an
arrow. These edges are labelled by the symbols which cause the transition.
The initial state is the one on the left with the arrow from nowhere.
Intermediate in complexity between the finite state automaton and the Tur-
ingmachine is what’s called the pushdown automaton. This is an idealised
machine whose only data structure is a single stack. Like the finite state au-
tomaton it must read its input one token at a time. The state of the machine
is fully described by the contents of this stack. Our postfixmodule selection
procedure is an example of a pushdown automaton.
There are a variety of visual representations of pushdown automata but
none seem to be as standard as the one for finite state automata.

A hierarchy of languages
Corresponding to the hierarchy of idealised machine types there is a hier-
archy of languages, with languages classified by which idealised machines
are powerful enough to recognise the language, i.e. identify grammatically
correct statements in the language. Languages which can be recognised
by a finite state automaton are called “regular”. Languages which can
be recognised by a pushdown automaton are called “context free”. Lan-
guages which can be recognised by a Turing machine are called “recur-
sively enumerable”.
We know that the prefix and postfix versions of our module enrollment
language are context free, because we’ve described an algorithm for recog-
nising them which could be implemented by a pushdown automaton.
I didn’t actually describe those algorithms in that way, instead using a non-
negative integer as a state variable, but we can simulate non-negative inte-
gers with a stack. Zero is the empty stack. We increment by pushing some-
thing onto the stack and decrement by popping something off. What we
push or pop is irrelevant. The size of the stack at each stage is what we
earlier referred to as the counter.
We may strongly suspect that those languages are not regular, but we
haven’t proved that yet. Whether the infix version of our module selection
language is context free is a question we’ll return to later.
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It’s also possible to characterise these classes of languages purely in terms
of their grammar, without reference to any idealised computing machine.
This characterisation is useful because it’s usually easier to write down a
grammar for a language than to design an idealised machine to recognise
it.

Satisfiability
One rather serious problem with our rule-based approach to the module
enrollment problem is that it’s possible inadvertently to create a set of rules
which can’t be satisfied by any set of modules a student might choose.
It’s possible to prove that a set of rules can be satisfied by exhibiting a mod-
ule selection which satisfies them. It’s possible to prove that they can’t be
satisfied by checking all possible module selections. This works in theory
because the set of modules, and hence the set of sets of modules, is finite.
For any university with a realistic number of modules checking all possible
module selections would never work from a practical point of view. Nev-
ertheless we say the satisfiability problem in this context is decidable, be-
causewe could construct a Turingmachinewhichwould eventually answer
the question. For more complicated languages the satisfiability problem is
often undecidable even in theory.
Since our language is essentially that of zeroeth order logic we can borrow
satisfiability checking algorithms from there. These methods are faster in
practice than checking all possibilities but their theoretical worst case com-
plexity is poorly understood.
I’ve just described satisfiability as a property of a statement in a language,
but this isn’t quite correct. It’s a property of the statement, language and in-
terpretation. Without the interpretation we wouldn’t be able to determine
when the statement is true.

Tautologies and consequences
A less serious problem is that it’s possible to specify redundant rules. The
most extreme form is a rule which is always satisfied, like “Probability or
not Probability”. These are called tautologies. The problem of identifying
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tautologies is in some sense dual to that of identifying unsatisfiability. In-
stead of looking for rules which can never be satisfied we’re looking for
ones which can always be satisfied.
A tautology is a special case of a consequence. One statement is a conse-
quence of others if it is always satisfied whenever they are. A tautology
is a statement which is a consequence of the empty set of statements. The
question of whether a statement in our language is a tautology is decidable,
at least in a theoretical sense. More generally, the question of whether one
statement is a consequence of a list of other statements is decidable, in the
same sense.

Rules of inference
The definition for a consequence given above requires checking a very large
number of possibilities. To verify that “Probability and Statistics orAlgebra
and Geometry” is a consequence of “Probability and Statistics” we would
have to check all possible module selections and confirm that all the ones
which satisfy the second statement also satisfy the first one. That’s tedious
and unnecessary. If A and B are grammatically correct statements then
“A or B” is always a grammatically correct statement and is a consequence
of A and also a consequence of B. Transformations like this which take
statements and give you consequences are called “rules of inference”. The
soundness, or validity, of a rule of inference, the property that the state-
ments they produce are actually consequences, depends on the interpre-
tation. The rule for “or” given above is a sound rule of inference for our
system with its intended interpretation.
Writing down sound rules of inference can be tricky. It might seem obvi-
ous that if A and B are each grammatically correct statements then “A and
B” is a grammatically correct statement and that A and B are both conse-
quences of it. This unfortunately isn’t true. “Probability and Statistics or
Algebra and Geometry” is grammatically correct statement, as are “Prob-
ability” and “Statistics or Algebra and Geometry”. The second of these is
indeed a consequence of “Probability and Statistics or Algebra and Geom-
etry” but the first is not. There are module selections for which the state-
ment “Probability and Statistics or Algebra and Geometry” is satisfied but
the statement “Probability” is not. The student could, for example, select
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Algebra and Geometry and possibly various other modules but not Prob-
ability. The problem here is that this “and” is an unnatural place to break
the expression “Probability and Statistics or Algebra and Geometry”. It’s
possible to express this in terms of the abstract syntax tree. Breaking a
statement into two pieces using an “and” at the root of its abstract syntax
tree is safe. Breaking it at an “and” elsewhere in the tree is dangerous.
Changes to the language can help. For the prefix version of the grammar
it is true that if A and B are grammatically correct then “and A B” is gram-
matically correct and they are consequences of it. The same is true for the
postfix version, except now the consequence is “A B and”. For the fully
parenthesised infix language it’s true that if A and B are grammatically
correct then so is “( A and B )” and they are consequences of it. In none
of these cases does the rule of inference need to refer to the abstract syn-
tax tree. Our choice of language, with infix notation and with parentheses
used only where needed to override precedence rules, turns out to be a
particularly unfortunate one.

Formal systems
A formal system is a language defined by a grammar together with a set of
axioms, and a set of rules of inference. The rules of inference should refer
only to the language and grammar, not any particular interpretation. An
interpretation is sound if the axioms are true in that interpretation and the
rules of inference when applied to true statements generate only true state-
ments. Statementswhich can be derived from the axioms using the rules of
inference are called theorems and any such derivation is called a proof of
the theorem. Theorems are true in any sound interpretation. A true state-
ment in a particular sound interpretation need not be a theorem though.
This will certainly be the case if there is another sound interpretation in
which the statement is false.
The above definition of theorem and proof are the one used by logicians.
Mathematicians tend to use the terms somewhat differently. Mathemati-
cians typically refer to something as a theorem only after a proof has been
found. They refer to a proof in the logician’s sense as a formal proof. By an
informal proof theymean a convincing argument that the statement is true
in the intended interpretation. This is necessarily somewhat vague. What’s
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convincing to one person may not be to another. More worryingly, there’s
no way to compare interpretations directly. The writer and reader of an in-
formal proof may have subtly different interpretations and the statement
may be true in the writer’s interpretation and false in the reader’s. Inter-
mediate between formal and informal proofs we have semiformal proofs.
A semiformal proof is a convincing argument that a formal proof exists.
This might include, for example, an algorithm for producing such a formal
proof. That’s a viable strategy in cases where it’s easier to verify that the
algorithm is correct than actually to run it. We’ll see examples later.
Should you have more faith in a formal proof than an informal one? Possi-
bly, but not necessarily. Formal proofs havemany advantages. They can be
checked mechanically. They imply that the statement is true in any sound
interpretation. But mechanically checking only works if the checking algo-
rithm is correct. The interpretation is only sound if the axioms are true and
the rules of inference preserve truth. What assurance do we have on any of
these points? Usually an informal proof! Formal proofs therefore don’t re-
ally rest on any firmer philosophical foundations than informal ones. They
can still be practically useful though. Checking the soundness of an inter-
pretation or the correctness of a verification algorithm is generally a lot of
work but it only needs to be done once. In this way the situation is analo-
gous to the one we encountered earlier with parser generators.
In reality we typically start with a language and interpretation and then
look for a set of axioms and rules of inference. We shouldn’t include any
false axioms or rules of inference which allow us to derive false statements
from true ones. Otherwise we wouldn’t have a sound interpretation. It
would be nice to have finite sets of axioms and rules of inference but some-
times it’s convenient to consider systems where one or both of those sets
are infinite. We should at least insist on an algorithm for deciding whether
or not a statement is an axiom or can be derived from a list of other state-
ments via the rules of inference though.
Ideally we’d like a set of axioms and rules of inference which are large
enough so that all true statements are theorems. For our module enroll-
ment language it’s possible to accomplish this but there are many settings
where it’s not possible. In fact it’s not even possible in what’s just about the
simplest mathematical setting imaginable: the arithmetic of non-negative
integers.
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Sets
I’ve referred to sets informally several times above. All of the sets involved
were finite, which is why all the questions we considered were decidable,
again in a theoretical sense. There are infinite sets lurking in the back-
ground though. The set of all possible statements in our language is in-
finite. It is in some sense only mildly infinite though. More specifically,
it is countable, a term we’ll define later. We actually considered multiple
different languages built from the same set of tokens. The infix, prefix and
postfix languages are distinct languages. How many languages are there?
This requires a definition of language, whichwehaven’t given yet, but there
are infinitelymany, and even uncountablymany, even if we restrict to those
based on the same finite set of tokens. There are however only countably
many grammars so there are languages which cannot be described by a
grammar. There are also only countably many Turing machines so there
are languages which can’t be recognised by any Turing machine, i.e. are
not recursively enumerable.
Later we’ll see a formal language to describe the theory of sets. As we’ve
just seen though, it can’t describe each individual set, because there will
only be countably many statements and the number of sets can’t be count-
able. Set theory is nice and intuitive as long aswe restrict ourselves to finite
sets but rapidly becomes weird when we have to consider infinite sets.

A regular language
The module enrollment problem we’ve been discussing requires input
from staff, about which combinations of modules students should be able
to take, and from students, about which modules each student wants to
take. So far we only have a language for the input from staff. In reality the
students would probably select modules from some sort of web interface,
but for the implementer it would bemuch easier just to provide a language
for their input as well. The simplest such language would have statements
which are just lists of modules. The statement “Statistics Algebra”, for
example, would have the interpretation “I want to take Statistics and
Algebra and nothing else”.
If our language includes all such lists of modules then no parsing is really
needed. The lexical analyser, which splits the input into tokens, i.e. module

28



names, does all the work.
There’s another option though. At the point where students are entering
their module selections the staff have already entered all the information
about allowed combinations. We could define a language consisting of
precisely those module lists which are allowed. The information collected
from the staff implicitly gives this language a grammar and grammatically
correct just means allowed by the module selection rules. Of course any
change to those rules gives us a new language.
What sort of language is this? It turns out to be regular. It is possible to
create a finite state automaton which recognises it. In fact the example
of a finite state automaton I gave you earlier is essentially the one which
enforces the rule “Probability and Statistics or Algebra and Geometry”. I
just shortened each of the module names to just their initial letter to avoid
clutter in the diagram.
One way to construct a module enrollment system would be to use the
following components:

• A parser generator. There are parser generators freely available
which efficiently generate efficient parsers so we don’t need to write
anything.

• A simple lexical analyser. It just needs to distinguish module names
from the logical operators “and”, “or” and “not” so it’s easy to write.
It’s helpful if it has an option to throw an error whenever it sees a
logical operator. That way it can be used, with the option unset, for
input from staff entering module selection rules and, with the option
set, for input from students selecting modules.

• A grammar for the module rule language, which is the same as the
language of the propositional calculus, written in the languagewhich
the parser generator accepts as input. This is very easy to write since
the grammar is very simple.

• The parser generated from this grammar. This may be complicated,
but it’s generated for you by the parser generator.

• A procedure which converts parsed statements to a grammar for the
language of module selections for which those statements are true.
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This is the hardest part andunfortunately is very hard to do efficiently.
It’s possible to arrange that the grammar is a regular grammar.

• The parser generated by the parser generator from that grammar.
Again, this parser will probably be complicated but it’s generated for
us by the parser generator. Since the grammar is regular it could
generate a finite state machine parser, but might choose not to. The
actual parsing isn’t really what’s needed, just the check that the mod-
ule selection is grammatically correct.

I’m not saying you should construct a module enrollment system this way,
merely noting that you can.

Conclusion
This introduction was intended mainly to introduce a cast of characters
which will play a more prominent role later in the module. Of particular
importance are formal languages, algorithms and computability, zeroeth
and first order logic, grammars, quantifiers, variables, parsing, trees and
graphs, interpretations, extensions of languages and expressiveness, the
hierarchies of languages and idealised machines, satisfiability, tautologies
and consequences, integers and sets.
One important thing to take away from this is that formal languages do not
emerge fully formed from a vacuum. They are designed by humans. They
may be intended to be written and read by humans, by computers, or by
both. That design process involves a number of compromises, for example
between making it possible to express simple ideas with similarly simple
statements on the one hand and making statements easy to parse on the
other. Formal languages tend to be annoying toworkwith. Understanding
those design trade-offs doesn’t necessarily make them less annoying, but
it may at least make the reasons for those annoying aspects clearer.
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Languages
A grammar example (bc)
bc is an arbitrary precision calculator. It’s part of the POSIX specification
for Unix operating systems. That specification not only requires a bc pro-
gram to be present but also gives a minimal grammar which it must recog-
nise, which makes it useful as an example. I’ll start by giving the grammar,
then introduce some terminology useful for talking about it, then point
out some features. Later I’ll describe in more detail the grammar of the
language in which the grammar is expressed.
The grammar of the bc calculator, as given in the specification, is as follows.
Understanding it in detail is not necessary unless for some reason youwant
to write a POSIX-compliant implementation of the bc utility.
%token EOF NEWLINE STRING LETTER NUMBER

%token MUL_OP
/* '*', '/', '%' */

%token ASSIGN_OP
/* '=', '+=', '-=', '*=', '/=', '%=', '^=' */

%token REL_OP
/* '==', '<=', '>=', '!=', '<', '>' */

%token INCR_DECR
/* '++', '--' */

%token Define Break Quit Length
/* 'define', 'break', 'quit', 'length' */
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%token Return For If While Sqrt
/* 'return', 'for', 'if', 'while', 'sqrt' */

%token Scale Ibase Obase Auto
/* 'scale', 'ibase', 'obase', 'auto' */

%start program

%%

program : EOF
| input_item program
;

input_item : semicolon_list NEWLINE
| function
;

semicolon_list : /* empty */
| statement
| semicolon_list ';' statement
| semicolon_list ';'
;

statement_list : /* empty */
| statement
| statement_list NEWLINE
| statement_list NEWLINE statement
| statement_list ';'
| statement_list ';' statement
;
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statement : expression
| STRING
| Break
| Quit
| Return
| Return '(' return_expression ')'
| For '(' expression ';'

relational_expression ';'
expression ')' statement

| If '(' relational_expression ')' statement
| While '(' relational_expression ')' statement

| '{' statement_list '}'
;

function : Define LETTER '(' opt_parameter_list ')'
'{' NEWLINE opt_auto_define_list
statement_list '}'

;

opt_parameter_list : /* empty */
| parameter_list
;

parameter_list : LETTER
| define_list ',' LETTER
;

opt_auto_define_list : /* empty */
| Auto define_list NEWLINE
| Auto define_list ';'
;
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define_list : LETTER
| LETTER '[' ']'
| define_list ',' LETTER
| define_list ',' LETTER '[' ']'
;

opt_argument_list : /* empty */
| argument_list
;

argument_list : expression
| LETTER '[' ']' ',' argument_list
;

relational_expression : expression
| expression REL_OP expression
;

return_expression : /* empty */
| expression
;

expression : named_expression
| NUMBER
| '(' expression ')'
| LETTER '(' opt_argument_list ')'
| '-' expression
| expression '+' expression
| expression '-' expression
| expression MUL_OP expression
| expression '^' expression
| INCR_DECR named_expression
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| named_expression INCR_DECR
| named_expression ASSIGN_OP expression
| Length '(' expression ')'
| Sqrt '(' expression ')'
| Scale '(' expression ')'
;

named_expression : LETTER
| LETTER '[' expression ']'
| Scale
| Ibase
| Obase
;

NUMBER : integer
| '.' integer
| integer '.'
| integer '.' integer
;

integer : digit
| integer digit
;

digit : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
| 8 | 9 | A | B | C | D | E | F
;

This isn’t actually a complete grammar. There are some further ruleswhich
are given afterwards in ordinary text, but those are mostly boring bits like
the fact that NEWLINE is the newline character.

Terminology
We need a bit of terminology in order to talk about this and other formal
languages.
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Languages have an alphabet consisting of tokens. These might be single
characters or might be strings. If they’re not single characters then a lexi-
cal analyser is needed to group characters into tokens. The grammar above
starts with some information about the tokens in the the language bc ac-
cepts. = and += are both tokens, for example. Each token is assigned to
one, and only one, group, called its symbol. In the example = and += are
in the group ASSIGN_OP. Assigning tokens to symbols part of the lexical
analyser’s job. While we may allow infinitely many tokens there should
only be finitely many symbols. In the bc grammar STRING is a symbol with
infinitely many tokens. Although it’s not specified in the formal part of the
grammar the lexical analyser recognises almost any string of characters as
a STRING. Some tokens are likely to be in a group by themselves, in which
case people tend to blur the token/symbol distinction. Technically, for ex-
ample, there are two NEWLINEs, the token and the symbol, a set of tokens
whose only element is the NEWLINE token. A lot of people blur the distinc-
tion even when there are multiple symbols in a group and use the words
symbol and token as interchangeable.
The symbols we’ve just discussed, the ones which are groups of tokens
are called terminal symbols or just terminals. There are other symbols,
conveniently called nonterminal symbols or just nonterminals. In the bc
example program, input_item and semicolon_list are nonterminals. In
fact the non-terminals precisely the things you see listed on the left hand
sides of all the grammar rules after the line
%%
One of these symbols has a special status. It is called the start symbol. In
the example above program is the the start symbol. You can tell because of
the line
%start program
Not everyone labels the start symbol. If it’s not labelled then the convention
is that it’s the one on the left hand side of the first grammar rule. A con-
text free grammar is a finite set of grammar rules, also sometimes called
production rules. Each of these grammar rules describes possible ways
to build up a nonterminal symbol from other symbols, which might be
terminal or nonterminal. For example a program can be an EOF symbol,
which is just the end of file marker, or an input_item followed by a pro-
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gram. The EOF symbol is terminal while input_item and program are non-
terminal. An input_item can be a semicolon_list followed by a NEWLINE
or a function. NEWLINE is a terminal while semicolon_list and function
are non-terminal. The | character separates the distinct possibilities in each
case.
You can see from the rule for program that when I wrote that “each of these
grammar rules describes possible ways to build up a nonterminal symbol
from other symbols” I didn’t mean the word “other” to exclude the possi-
bility of the same symbol occurring on both the left hand side and the right
hand side of a rule. In other words, rules can be recursive.
As might be expected from a field where people from radically different
fields, like computer science, linguistics and mathematics, not everyone
uses the same terminology and the specifics of how grammar rules are
written can vary a lot. Most differences are minor but one is quite signif-
icant: whether the “other symbols” referred to above, used to build up a
nonterminal symbol, could include no symbols. The three conventions in
common use are to allow this in all cases, to allow it only for the start sym-
bol, and do allow it for no symbols. The authors of the specification belong
to the tradition in which this is allowed for all symbols, as you can see from
the rules for semicolon_list, statement_list, opt_parameter_list and a
number of others. The /* empty */ things you see there, like everything
between a /* and a following */, are comments, which are there to draw
attention to the fact that each of these symbols could be built from no sym-
bols, and the meaning would be the same if they were omitted.

Thinking backwards
When I discussed languages earlier it was from the point of view of pars-
ing or at least recognising them. We receive a list of tokens from the lexical
analyser andwant to piece them together into larger and larger phrases un-
til we have one phrase encompassing the whole input. This process should
be entirely deterministic and should terminate at some point.
The way the grammar describes the language is completely the opposite.
Its starting point is the start symbol. It then “expands” that into a list of
other symbols, which are then further expanded. We can only expand non-
terminals. Once we reach a terminal we have to choose from among tokens
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composing that terminal and no further expansion is possible. I wrote the
word “expand” in quotation marks because the “expansion” might not be
any larger than what we started with–it could be a single symbol–and it
could even be smaller–an empty list of symbols.
You should think of the grammar as describing a method for generating
elements of our language. A list of tokens belongs to the language if and
only if this process of expansion starting from the start system could even-
tually produce it. Interesting languages tend to be infinite and the expan-
sion process described above is nondeterministic because of the multiple
possibilities for expanding each symbol, and it need not terminate, so this
isn’t a definition which is testable in any obvious way even when you have
the full grammar specification.
As an approach to linguistics this is called “generative grammar”. It was
developed by Dakṣiputra Pāṇini about two and a half millenia ago.

A subexample
The full language for bc is rather complicated so let’s concentrate just on
the last bit for now:
NUMBER : integer

| '.' integer
| integer '.'
| integer '.' integer
;

integer : digit
| integer digit
;

digit : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
| 8 | 9 | A | B | C | D | E | F
;

You shouldn’t assume just because a name is familiar that it means what
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you think. According to this grammar ACAB is a NUMBER while -7 and
5,011,400 are not. There are reasons for this. A through F are classed as
digits to allow for hexadecimal representations of numbers. Disallowing
the commas which traditionally separate groups of three digits is a design
decision. It simplifies processing and avoids the awkward fact that most of
the non-English speaking world uses dots instead of commas, while India
uses commas but places them differently. The minus sign isn’t needed
because bc is a calculator and a further part of its grammar is a rule for
expression which includes '-' expression. A NUMBER is an expression
and - followed by any expression is an expression so -7 isn’t a NUMBER
but it is an expression.
In any case, lets try the generative grammar approach and generate some
NUMBERs. We’ll start from the rule for NUMBER and pick possibilities at ran-
dom each time we have to expand a nonterminal or choose a token for a
terminal. Each line will be the result of doing this to the previous line.
NUMBER
integer
digit
7
So 7 is a NUMBER. Let’s try again.
NUMBER
. integer
. digit
. B
So .B is also a NUMBER. Another two attempts:
NUMBER
integer
digit
5

NUMBER
integer . integer
digit . integer
digit . integer digit
digit . digit digit
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5 . digit digit
5 . C digit
5 . C C
So .B, 5 and 5.CC are NUMBERs. Note that the spaces between symbols above,
and in the specification are just there to improve readability and are not
part of the string we’re generating.

More numerical examples
If you only want to allow decimal integers and you want to allow them to
be negative you could use the following grammar:
integer : '0'

| pos_integer
| '-' pos_integer
;

pos_integer : pos_digit
| pos_integer digit
;

digit : '0' | pos_digit
;

pos_digit : '1' | '2' | '3' | '4' | '5'
| '6' | '7' | '8' | '9'
;

We’ve eliminated the digits needed for hexadecimal and allowed our in-
tegers to be negative. There are some further changes. 007 is a perfectly
good integer according to bc’s grammar but is now disallowed. The only
integer allowed to begin with a 0 is now 0 itself. We don’t allow -0 either.
In this grammar there is one any only one way to represent each integer as
an integer.
It’s possible to encode some basic arithmetic in a grammar. Consider, for
example, the following grammar.
even_integer : '0'
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| pos_even_integer
| '-' pos_even_integer
;

pos_even_integer : pos_even_digit
| pos_integer even_digit
;

pos_integer : pos_digit
| pos_integer digit
;

even_digit : 0 | pos_even_digit
;

pos_digit : pos_even_digit | pos_odd_digit
;

pos_even_digit : '2' | '4' | '6' | '8'
;

odd_digit : '1' | '3' | '5' | '7' | '9'
;

The even_integers described by this grammar are precisely the even inte-
gers. This relies on the fact the an integer is even if and only if its last digit
is even.
You can check divisibility by three as well.
multiple_of_3 : '0'

| pos_integer_0_mod_3
| '-' pos_integer_0_mod_3
;

pos_integer_0_mod_3 : pos_digit_0_mod_3
| pos_integer_0_mod_3 digit_0_mod_3
| pos_integer_1_mod_3 digit_2_mod_3
| pos_integer_2_mod_3 digit_1_mod_3
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;

pos_integer_1_mod_3 : digit_1_mod_3
| pos_integer_0_mod_3 digit_1_mod_3
| pos_integer_1_mod_3 digit_0_mod_3
| pos_integer_2_mod_3 digit_2_mod_3
;

pos_integer_2_mod_3 : digit_1_mod_3
| pos_integer_0_mod_3 digit_2_mod_3
| pos_integer_1_mod_3 digit_1_mod_3
| pos_integer_2_mod_3 digit_0_mod_3
;

digit_0_mod_3 : '0' | pod_digit_0_mod_3
;

pos_digit_0_mod_3 : | '3' | '6' | '9'
;

digit_1_mod_3 : '1' | '4' | '7'
;

digit_2_mod_3 : '2' | '5' | '8'
;

The multiple_of_3’s are just the multiples of three.
How far can we go in this direction? Can we express divisibility by any
integer purely in grammatical terms? As it turns out, yes. Since we can
express divisibility can we write down a grammar for prime numbers? In
this case the answer is more complicated. We can’t construct such a gram-
mar using only rules of the type considered above but we can if we allow
more complicated rules, which replace a list of symbols with another list of
symbols rather than just replacing a single symbol with a list of symbols.
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Ambiguous grammars
The grammar for integers considered above is unambiguous, in the sense
that there’s only one abstract syntax tree we can get from any given input.
The same is true of NUMBERS in bc. The bc grammar as awhole is ambiguous
though. One of the possible expansions is expression + expression. There
are therefore at least two ways to generate the expression 1 + 2 + 3. One
is
expression
expression + expression
NUMBER + expression
integer + expression
digit + expression
1 + expression
1 + expression + expression
1 + NUMBER + expression
1 + digit + expression
1 + 2 + expression
1 + 2 + NUMBER
1 + 2 + digit
1 + 2 + 3
and another is
expression
expression + expression
expression + NUMBER
expression + digit
expression + 3
expression + expression + 3
NUMBER + expression + 3
digit + expression + 3
1 + expression + 3
1 + NUMBER + 3
1 + digit + 3
1 + 2 + 3
These differ not just in the order inwhichwe expanded symbols but in how
the expression 1 + 2 + 3 is broken up into phrases. In the first one 1 and 2
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+ 3 are expressions joined by a +. In the second 1 + 2 and 3 are expressions
joined by a +.
Ambiguous grammars are allowed. In fact there are context free languages
for which no unambiguous grammar exists. It’s also possible, and indeed
common, for an ambiguous grammar and an unambiguous grammar to
define the same language. It’s often easier to write an ambiguous gram-
mar for a language and often easier to analyse an unambiguous one. In
fact the specification for bc doesn’t require that this particular grammar be
used, merely that whatever grammar is used should recognise the same
language as this one generates. There are unambiguous grammars for this
language and an implementation which used one would still be compliant.

Constructing a “parser” from a grammar
Can we construct a parser from a grammar description of the type we’ve
just described? Yes. We can even do so in a way which is reasonably effi-
cient. Unfortunately that way is also very complicated to describe. If we’re
willing to sacrifice efficiency canwe do it in awaywhich is relatively simple
to describe? Yes, but there is one way in which this parser will be unsatis-
factory.
It’s helpful to think in terms of nondeterministic computation. Normally
we expect an algorithm to tell us what to do at each stage. Our grammar
rules are like an algorithm in that we proceed by steps from a well defined
initial state, one where we have a list consisting of just the start symbol.
Each step takes a symbol from the list and replaces it with one of the tokens
corresponding to that symbol or expands it into one of the lists of symbols
on the right hand side of a grammar rule for that symbol, depending on
whether it’s terminal or nonterminal. There’s also a termination condition
and a criterion for success. If we have just a list of tokens then there’s noth-
ing further to do and either the list matches the input, in which case the
path by which we arrived at this point has all the information necessary to
construct an abstract syntax tree, or it doesn’t match the input, in which
case we can’t construct a syntax tree from this particular path, but might
have been able towith a different set of choices. It’s the choiceswhichmake
the computation nondeterministic, choices of which symbol in the current
list to process, which of the possible right hand sides to expand it with if
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it’s nonterminal, and which token to choose if more than one corresponds
to the same terminal symbol.
There’s a trick to turn nondeterministic computations into deterministic
ones. Instead of making any particular choice at each step we make all of
them. More precisely, starting from the initial statewewrite down all states
we can reach in a single step. Then we write down all states which can be
reached fromone of those states, also recording the path that led us to those
states. Then we write down all the ones we could reach in a single step
from those, again recording the path that led to each one. Whenever we
write down a state we check whether it satisfies the terminating condition.
If so then we check whether the computation terminated successfully or
unsuccessfully. If it terminated successfully then we’re done. We have the
full path which led us to that state. We’re in the same situation we would
be in if we had a “lucky guesser”, who made the optimal choice at each
stage, except that it will have taken us longer to get there. If we’re in one
of the unsuccessful terminating states then we don’t need to, and indeed
can’t, continue looking for continuations of that computational path butwe
can consider continuations from the other states on our list, if there are any.
Only if all of our paths reach a dead end does the computation terminate
unsuccessful. Typically it doesn’t terminate at all though.
This algorithm can conveniently by represented by a tree, with the ini-
tial state at the route and nodes for each possible computational path and
arrows from each of those to its one-step continuations, which implies
branching at each node where there are multiple choices for the next step.
Unless we specify an upper bound on the number of steps this tree could
well be infinite. It is for the parsing problem we just considered, which is
why I won’t attempt to draw the tree.
Does this work? That depends on whether the available choices at each
stage are finite and also what you mean by work. If there are only finitely
many choices available in each state and there is a solution, i.e. a computa-
tional path which terminates successfully then this method will find it. In
fact the method can be modified to cope with an infinite variety of choices,
as long as it’s not too infinite. What the method can’t be relied on for is to
tell us when there is no solution. It could tell us, if all paths have reached a
dead end. It’s certainly possible though that there is no solution but there’s
always something else to try so the algorithm will just run forever.
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For the parsing problem you should not do this. There are algorithms
which aremuch faster andwhich are guaranteed to tell youwhen the prob-
lemhas no solution, i.e. when the list of tokenswhich is your input does not
belong to the language. You should use one of those instead. They aren’t
covered in this module though. Still, the idea of nondeterministic compu-
tation is one which we will meet again in this module. It’s not always this
useless.

Formal definition
Let 𝐴∗ be the set of lists all of whose elements are in 𝐴. We’ll define this
notion more precisely later but for now it suffices to note that lists are re-
quired to be of finite length, but could be of length 0. The set 𝐴 is called the
alphabet of the language and its elements are called tokens. Any subset of
𝐴∗ is called a language.
This definition of language is broad enough to include a wide variety of
meanings which are commonly given to the word, including

• programming languages like C, Python, E, LISP, etc.
• data description languages like (parts of) SQL,
• file formats like .csv or .ini,
• specialised single purpose languages like printcap config file entry

syntax,
• languages for mathematical logic like the ones we’ll use for zeroeth

and first order logic.
It may not always be clear which category a language belongs to. In the in-
troduction I introduced a single purpose language for module enrollment
but it turns out to be equivalent to one of the languages used for math-
ematical logic, namely that of the propositional calculus. Similarly you
might think of PostScript as a single purpose language for page descrip-
tion but it is also a full programming language capable of anything any
other programming language is capable of. I’ve written PostScript code to
solve ordinary differential equations and to compose Lorentz transforma-
tions. This isn’t as bizarre a thing to do as it might seem. If your aim is to
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produce nice diagrams and you have a language which can describe dia-
grams in a way every modern printer can understand and which is also a
full programming language then why wouldn’t you just do everything in
that language? The answer to that question, as it turns out, is that debug-
ging PostScript code is very painful.
The definition above doesn’t really include natural languages, like English,
Irish, Arabic, Japanese, or Toki Pona, used by humans for communicating
for other humans. For those it’s often unclear whether particular lists of
tokens are valid elements of the language. Subsets of natural languages
are often used for communication between humans and computers though.
The subset of a natural language that a given computer programme emits
is almost always a language by the definition above. The subset it accepts is
always one as well. Also, many of the concepts described below were first
developed in the context of natural languages and only later was it noticed
that they apply even better to languages used by computers.

Grammars
Some, but not all languages are describable by a grammar. Languages
which are describable by a grammar are typically describable bymore than
one grammar. According to the definition above the language is the set of
lists of tokens, not any particular way of describing which lists belong to
the subset.
Here we mean, by the term grammar, a finite set of grammar rules which
describe howmore complicated expressions are built up from simpler ones.
What we’ve considered so far are context free grammars, which always
replace a single symbol by a list of zero ormore symbols. More complicated
grammar rules might allow the replacement of one list of symbols with
another list of symbols. That takes us into the world of context sensitive
grammars, a world you are well advised to avoid if possible.
Normally we are only interested in a language if its lists of tokens have
some sort of interpretation, but it’s important to understand that that’s not
part of either the language or the grammar. In linguistic terms, we’re cur-
rently discussing only syntax, not semantics.
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Hierarchy
The definition of language given above is deliberately very broad, but it
is really too broad to be useful. In this it is similar to notions like binary
relation or binary operation discussed earlier. Practically useful examples
have more structure. As in abstract algebra, there is a hierarchy of levels of
structure. The main levels of this hierarchy, from most restrictive to least,
are

1. finite
2. regular
3. deterministic context free
4. context free
5. context sensitive
6. recursive
7. recursively enumerable
8. general

The easiest of these to define are finite, which just means a finite set of lists
of tokens, and general, which is any set of lists of tokens. The levels in
between have more complicated definitions, but are more useful.
Each level in the hierarchy above includes all the lower levels, so every fi-
nite language is regular, every regular language is context free, etc. The
step which is most likely to cause confusion is that every context free lan-
guage is context sensitive. “Context sensitive” doesn’t really mean that the
language is sensitive to context, merely that it could be, while context free
means that it definitely isn’t.
This sort of terminology is often used in mathematics. In the theory of lin-
ear equations we make a distinction between homogeneous equations and
inhomogeneous equations. Homogeneous equations have zero constant
term. Inhomogeneous equations aren’t required to have zero constant term
but are certainly allowed to. This means that every homogeneous equation
is inhomogeneous. That certainly soundsweird butwe define things in this
way because there’s simply nothing of interest to be said about equations
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whose constant term is non-zero which doesn’t apply equally well when
the constant term is zero. Similarly, the class of languages which are con-
text sensitive but not context free simply has no interesting properties and
therefore isn’t worth naming.
A good rule of thumb when developing a language for a specific purpose
is to choose one as low as possible in the hierarchy, and to describe it by
a grammar at that level, or not much higher. Most modern programming
languages are technically context sensitive, but try to segregate their con-
text sensitive features as much as possible. The remainder is context free,
with significant parts which are regular or even finite.

Back to the beginning
In the introduction I informally introduced a language formodule selection
rules. I can now provide an actual grammatical description. In fact I can
provide more than one. The typical way to do things in practice would be
with two stages, a lexical analyser and a parser. If the lexical analyser is
doing the work of breaking the input into tokens then our grammar, in the
same notation as that of the POSIX standard can be as simple as
%token MODULE
/* any possible module name */

%token And Or Not
/* 'and', 'or', 'not' */

%start statement

%%

statement : statement2
| statement Or statement2
;

statement2 : statement3
| statement2 And statement3
;
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statement3 : statement4
| Not statement4
;

statement4 : MODULE
| ( statement )
;

In fact even simpler grammars are possible but this one is unambiguous
and always generates the correct parse tree. The different levels of
statements ensure this. For example, “not Algebra and Geometry” will
be parsed as if it were “((not Algebra) and Geometry” rather than as
“(not (Algebra and Geometry))” because “not” can only appear before a
level 4 statement. “Algebra”, as a module name, is a level 4 statement but
“Algebra and Geometry is a level 2 statement.
This language is simple enough that we could dispense with the separate
lexical analysis step entirely though and work directly with characters
rather than strings as tokens. A grammar which does this is
%start statement

%%

statement : statement2
| statement spaces Or spaces statement2
;

statement2 : statement3
| statement2 spaces And spaces statement3
;

statement3 : statement4
| Not spaces statement4
;

statement4 : module
| '(' statement ')'
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| '(' spaces statement ')'
| '(' statement spaces ')'
| '(' spaces statement spaces ')'
;

spaces : ' '
| spaces ' '
;

module : capital
| capital letters
;

letters : letter
| letters letter
;

capital : 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H' | 'I'
| 'J' | 'K' | 'L' | 'M' | 'N' | 'O' | 'P' | 'Q' | 'R'
| 'S' | 'T' | 'U' | 'V' | 'W' | 'X' | 'Y' | 'Z'
;

letter : 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i'
| 'j' | 'k' | 'l' | 'm' | 'n' | 'o' | 'p' | 'q' | 'r'
| 's' | 't' | 'u' | 'v' | 'w' | 'x' | 'y' | 'z'

And : 'a' 'n' 'd'
;

Or : 'o' 'r'
;

Not : 'n' 'o' 't'
;

Lexical analysers use spaces or other whitespace to separate tokens but
don’t typically pass this whitespace on to the parser so if we’re dispensing
with the parser then we need to handle this in the parser.
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A final example
I haven’t described the grammar for our grammar specification language.
You’ve probably picked up on most of it from the examples but just in case
you haven’t here are the details. %token statements list the types of ter-
minals the parser can expect from the lexical analyser. Tokens which are
single character don’t need to be listed. The %start statement identifies
the start symbol. %% separates these from the actual grammar rules. Each
grammar rule has the nonterminal being expanded, followed by a colon,
followed by the possible expansions, followed by a semicolon. Different
possible expansions are separated by | characters. Each expansion is just
a list of symbols.
This is one of many conventions for listing grammar rules. The authors
of the POSIX specification chose it because it happens to be the format ex-
pected by the parser generator yacc, which, like bc, is one of the utilities
described in the specification. So its grammar is also defined by the stan-
dard. If you’re curious here it is:
/* Grammar for the input to yacc. */
/* Basic entries. */
/* The following are recognized by the lexical analyzer. */

%token IDENTIFIER /* Includes identifiers and literals */
%token C_IDENTIFIER /* identifier (but not literal)

followed by a :. */
%token NUMBER /* [0-9][0-9]* */

/* Reserved words : %type=>TYPE %left=>LEFT, and so on */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK /* The %% mark. */
%token LCURL /* The %{ mark. */
%token RCURL /* The %} mark. */
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/* 8-bit character literals stand for themselves; */
/* tokens have to be defined for multi-byte characters. */

%start spec

%%

spec : defs MARK rules tail
;

tail : MARK
{

/* In this action, set up the rest of the file. */
}
| /* Empty; the second MARK is optional. */
;

defs : /* Empty. */
| defs def
;

def : START IDENTIFIER
| UNION
{

/* Copy union definition to output. */
}
| LCURL
{

/* Copy C code to output file. */
}

RCURL
| rword tag nlist
;

rword : TOKEN
| LEFT
| RIGHT
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| NONASSOC
| TYPE
;

tag : /* Empty: union tag ID optional. */
| '<' IDENTIFIER '>'
;

nlist : nmno
| nlist nmno
;

nmno : IDENTIFIER /* Note: literal invalid with % type. */
| IDENTIFIER NUMBER /* Note: invalid with % type. */
;

/* Rule section */

rules : C_IDENTIFIER rbody prec
| rules rule
;

rule : C_IDENTIFIER rbody prec
| '|' rbody prec
;

rbody : /* empty */
| rbody IDENTIFIER
| rbody act
;

act : '{'
{

/* Copy action, translate $$, and so on. */
}
'}'

;
prec : /* Empty */

| PREC IDENTIFIER
| PREC IDENTIFIER act
| prec ';'
;
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I mentioned in the introduction that you could have a parser generator gen-
erate its own parser. The grammar given above is what you would need in
order to do that. Perhaps surpringly its grammar is no more complicated
than that of the simple calculator bc.

Zeroeth order logic
Formal vs informal proof
In the twenty three centuries since Euclidmathematical proofs have gradu-
ally become more formalised. The ultimate step in formalisation is proofs
which can be, and indeed are, checked entirely mechanically.
There are a few advantages to such proofs. Informal proofs rely on intu-
ition. Intuition is oftenwrong. More subtly, it is often correct, but only on a
particular interpretation. But theories, if formulated sufficiently generally,
may admit multiple interpretations. This can be quite useful. For example,
much of elementary algebra works equally well regardless of whether the
numbers in question are rational, real or complex. Mechanically checked
formal proofs can insure that conclusions of theorems follow from their hy-
potheses under any interpretation which is consistent with the axioms and
rules of inference, not just a particular interpretation. They will continue
then to hold under interpretations which would never have been consid-
ered by the original writer and readers of a proof. Projective geometry,
for example, was originally developed for perspective drawing, but is now
principally used in settings like error-correcting codes with “lines” and a
“plane” with only finitely many points. This is possible because the theory
was formulated in a way which didn’t exclude this unanticipated interpre-
tation, and proofs were given for the major theorems which did not rely on
any intuition that lines or planes must be infinite.
There are, however, three disadvantages to completely formalised mathe-
matics.
The first disadvantage is that such arguments are hard for humans to read.
There is simply too much detail. The language required to remove all am-
biguities is too unfamiliar. It is too difficult to identify the important steps.
Here, for example, is a formal proof in the language used by metamath, one
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of the more popular proof checkers:
..3 ⊢ 𝑆 = 𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ((𝑛/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))
.3 ⊢ 𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ((𝑛/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛))) ⊆ ℕ
2 ⊢ 𝑆 ⊆ ℕ
...5 ⊢ (𝑗 ∈ ℕ → ∃𝑘 ∈ ℕ(𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))
.........11 ⊢ (𝑗 ∈ ℕ → 1 ≤ 𝑗)
........10 ⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑗)
.........11 ⊢ (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
.........11 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
..........12 ⊢ 1 ∈ ℝ
..........12 ⊢ ((1 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((1 ≤ 𝑗 ∧ 𝑗 < 𝑘) → 1 < 𝑘))
.........11 ⊢ ((𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((1 ≤ 𝑗 ∧ 𝑗 < 𝑘) → 1 < 𝑘))
........10 ⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((1 ≤ 𝑗 ∧ 𝑗 < 𝑘) → 1 < 𝑘))
.......9 ⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑗 < 𝑘 → 1 < 𝑘))
......8 ⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑗 < 𝑘 → (𝑗 < 𝑘 ∧ 1 < 𝑘)))
.....7 ⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) → ((𝑗 < 𝑘 ∧ 1 < 𝑘) ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
.....7 ⊢ (((𝑗 < 𝑘 ∧ 1 < 𝑘) ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ↔ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
....6 ⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) → (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))))
...5 ⊢ (𝑗 ∈ ℕ → (∃𝑘 ∈ ℕ(𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) → ∃𝑘 ∈ ℕ(𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))))
..4 ⊢ (𝑗 ∈ ℕ → ∃𝑘 ∈ ℕ(𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
.......9 ⊢ (𝑛 = 𝑘 → (1 < 𝑛 ↔ 1 < 𝑘))
..........12 ⊢ (𝑛 = 𝑘 → (𝑛/𝑚) = (𝑘/𝑚))
.........11 ⊢ (𝑛 = 𝑘 → ((𝑛/𝑚) ∈ ℕ ↔ (𝑘/𝑚) ∈ ℕ))
..........12 ⊢ (𝑛 = 𝑘 → (𝑚 = 𝑛 ↔ 𝑚 = 𝑘))
.........11 ⊢ (𝑛 = 𝑘 → ((𝑚 = 1 ∨ 𝑚 = 𝑛) ↔ (𝑚 = 1 ∨ 𝑚 = 𝑘)))
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........10 ⊢ (𝑛 = 𝑘 → (((𝑛/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))

.......9 ⊢ (𝑛 = 𝑘 → (∀𝑚 ∈ ℕ((𝑛/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))

......8 ⊢ (𝑛 = 𝑘 → ((1 < 𝑛 ∧ ∀𝑚 ∈ ℕ((𝑛/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛))) ↔ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))

.....7 ⊢ (𝑘 ∈ 𝑆 ↔ (𝑘 ∈ ℕ ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))

....6 ⊢ ((𝑘 ∈ 𝑆 ∧ 𝑗 < 𝑘) ↔ ((𝑘 ∈ ℕ ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))) ∧ 𝑗 < 𝑘))

....6 ⊢ (((𝑘 ∈ ℕ ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))) ∧ 𝑗 < 𝑘) ↔ (𝑘 ∈ ℕ ∧ ((1 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ∧ 𝑗 < 𝑘)))

.....7 ⊢ (((1 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ∧ 𝑗 < 𝑘) ↔ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))

....6 ⊢ ((𝑘 ∈ ℕ ∧ ((1 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ∧ 𝑗 < 𝑘)) ↔ (𝑘 ∈ ℕ ∧ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))))

...5 ⊢ ((𝑘 ∈ 𝑆 ∧ 𝑗 < 𝑘) ↔ (𝑘 ∈ ℕ ∧ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))))

..4 ⊢ (∃𝑘 ∈ 𝑆𝑗 < 𝑘 ↔ ∃𝑘 ∈ ℕ(𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ((𝑘/𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))

.3 ⊢ (𝑗 ∈ ℕ → ∃𝑘 ∈ 𝑆𝑗 < 𝑘)
2 ⊢ ∀𝑗 ∈ ℕ∃𝑘 ∈ 𝑆𝑗 < 𝑘
2 ⊢ ((𝑆 ⊆ ℕ ∧ ∀𝑗 ∈ ℕ∃𝑘 ∈ 𝑆𝑗 < 𝑘) → 𝑆 ≈ ℕ)
⊢ 𝑆 ≈ ℕ
You may find it quite difficult even to identify what statement is being
proved. In fact this is a proof of the fact that there are infinitely many
primes.
The second difficulty with formal proofs is that we need to know that the
formal system in which we are working, and the proof checker we use to
verify the proofs, are correctly designed. In order to have any confidence
in the results, this needs to be proved, but how? We can give an informal
proof, or we can give a formal proof, but this would have to be done in
another formal system, and checked by a different proof checker, since the
correctness of this one has yet to be established. So eventually even the
most formal of proofs has to be based on an informal foundation. The gain
fromusing formal systems is therefore not in getting rid of all appeals to hu-
man intuition, but rather in reducing those to a tightly defined core. There
is also thematter of checking that the formal statements being proved have
the desiredmeaning under the interpretationwe’ve adopted for statements
in the system, which is in fact a frequent source of error.
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The third difficulty with formal proofs is that they can’t accomplish the
purpose for which they were originally intended. It was originally hoped
that one could find a formal system inwhich it would be possible to formu-
late and prove all true statements in mathematics, and of course only true
statements, since a system which proves false statements is not of much
use. It’s now known that this can’t be accomplished even for arithmetic.
Any systemwhich is consistent, in the sense that it cannot be used to prove
contradictions, will be incomplete, in the sense that not all true statements
will be provable.
This doesn’t mean that formal proofs are useless. The exercise of giving
a formal proof that a piece of code works for all allowed inputs, for ex-
ample, will almost always reveal that it doesn’t. A large scale project was
conducted in 2009 to show that the L4 microkernel was free of bugs, in
the sense that it was proven to implement its design specification. The ex-
ercise uncovered a large number of previously unsuspected bugs, which
were then fixed. Some of these were bugs in the implementation, but oth-
ers were bugs in the specification itself, where assumptions which should
have been explicit had been left unstated.

Formal systems
The preceding section referred to formal systems without defining them.
A formal system consists of a formal language, a set of axioms and a set
of rules of inference. It does not include an interpretation, although we’re
usually interested in a formal system because it admits at least one useful
interpretation.
The language describes the elements from which statements are built and
the grammatical rules which describe how they are built from those ele-
ments. A rule of inference describes how a statement can be derived from
other statements. A proof in a formal system is a finite sequence of gram-
matically correct statements, each of which is either an axiom or is derived,
in accordance with the rules of inference, from statements earlier in the se-
quence. A statement is called a theorem if it forms the final statement in
such a sequence and that sequence is called a proof of the theorem.
The set of axioms can be empty, finite and non-empty, or infinite. All of
these cases occur in commonly used systems. In principle the set of rules
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of inference can also be empty, finite and non-empty, or infinite, but sys-
tems with no rules of inference are uninteresting because the only theo-
rems in such systems are the axioms. Systems with infinitely many rules
of inference are not often used.
The rules of grammar and rules of inference are required to be not merely
constructive, but analytic. It should be possible not just to build more com-
plicated expressions from simpler expressions but also to analyse a compli-
cated expression to determine uniquely how it was built up. This process
should be purely mechanical, relying solely on the structure of the expres-
sion andnot on any intended interpretation. Similarly the rules of inference
should enable us not just to derive statements from other statements but to
check that a statement is indeed derivable from earlier statements. If there
are infinitely many axioms then it should be possible not just to generate
axioms but to verify whether a statement is an axiom.

A language for zeroeth order logic
The propositional calculus, often called zeroeth order logic, governs the
use of logical connectives like “and”, “or” and “if … then”. It does not con-
cern itself with quantifiers, like “for all” or “there exists”, which belong to
first order logic. It does not concern itself with the meaning of the state-
ments combined with those connectives. It should be noted though that
it can only be expected to behave as expected when those statements are
either definitely true or false. It does not cope well with statements like
“this statement is false.”
Our language for zeroeth order logic will consist of variables and logical
operators. We’ll use lower case letters, starting with 𝑝 for variables and
single symbols for logicial operators. In particular we’ll use ∧ for “and”,
∨ for “or”, and ¬ for “not”. The grammar will also allow the use of ⊃ for
“implies”, ⊼ for “nand”, ⊻ for “nor”, ≡ for “if and only if”, ≢ for “xor”, and
⊂ for “if”, but we’ll only ever use the first two of those, will use the second
only briefly. We’ll use an infix notation but, having learned our lesson from
the last chapter, we’ll use a fully parenthesised version rather than relying
on precedence and associativity rules. To make it easier to spot matching
parentheses we’ll use not just ( and ) but also [ and ] and { and }. These
are to be regarded as fully equivalent though. Anywhere they appear in
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the following discussion any of the above pairs may be replaced with any
other. We’ll use the lower case latin letters 𝑝, 𝑞, 𝑟, 𝑠 and 𝑢 for variables. We
skip 𝑡 because some authors use it as a Boolean constant, signifying the
value “true”, although we won’t do that.
The weird symbols for logical operators are unfamilar at first sight but forc-
ing all symbols to be single characters shortens formulae, makes a lexical
analyser unnecessary and allows us to dispense with whitespace as a way
of separating symbols.
For theoretical purposes it’s convenient to allow an infinite number of vari-
ables so we’ll also allow adding arbitrarily many exclamation points to
these letters to create new variables, like 𝑝, 𝑝!, 𝑝!!, etc. We’ll never actu-
ally encounter an example where we run out of latin letters though, so this
will remain just a theoretical possibility. Some treatments of zeroeth order
logic also have constants symbols for the values “true” and “false” but we
won’t introduce those.
Our grammar is then
%start statement

%%

statement : expression
;

expression : variable
| ( expression binop expression )
| [ expression binop expression ]
| { expression binop expression }
| ( ¬ expression )
| [ ¬ expression ]
| { ¬ expression }
;

variable : letter
| variable !
;
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letter : p | q | r | s | u
;

binop : ∧ | ∨ | ⊃ | ⊼ | ⊻ | ≡ | ≢ | ⊂
;

The spaces separate symbols in the specification. They aren’t part of the
language. Single characters are all terminal symbols.
binop is short for binary operator and includes the operators ∧, ∨, ⊃, ⊼, ⊻,
≡, ≢, ⊂. If they look like junk in the listing above then that’s because few
monospaced fonts include those glyphs.
We could have taken expression as the start symbol and dispensed with
statement entirely. It will be convenient to have the distinction when we
talk about rules of inference though. Every statement is an expression
but not every expression is a statement. When we discuss the rule of sub-
stitution, for example, it’s important that whenwe substitute an expression
for a variable in a statement that we replace all occurences of that variable
in the the statement, not just all in some particular expression occuring in
the statement.
There are certain symbols which are not part of our language but whichwe
will use for talking about the language. We’ll use the upper case latin let-
ters 𝑃, 𝑄, 𝑅, 𝑆 and 𝑈 to stand for arbitrary expressions. This is particularly
useful in stating rules of inference. One commonly used rule of inference,
for example, says that from statements of the form 𝑃 and (𝑃 ⊃ 𝑄) we can
deduce the statement 𝑄. Here any expression incan be substituted for 𝑃
and 𝑄. 𝑃 and 𝑄 themselves though do not belong to the language. It’s
understood, as discussed above, that different types of brackets are inter-
changeable so an instance of the rule above would be that from (𝑟 ∧ 𝑠) and
[(𝑟 ∧ 𝑠) ⊃ (𝑟 ∨ 𝑠)] we can deduce (𝑟 ∨ 𝑠). This saves us from needing to
repeat each rule three times, once for each set of brackets.

Interpretation(s)
The standard interpretation is that the symbols “∧”, “∨”, “¬”, and “⊃” for
“and”, “or”, “not” and “implies” mean what you think they do, assuming
you think “or” is always inclusive and you interpret “⊃” the way mathe-
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maticians and logicians do, i.e. that the expression is true if the hypothe-
sis is false or the conclusion is true. As we discussed in the introduction
(𝑃 ⊃ 𝑄) has the same meaning as ((¬𝑃) ∨ 𝑄).
Like “⊃” the more exotic symbols are all expressible in terms of “∧”,
“∨”, and “¬”. (𝑃 ⊼ 𝑄) has the same meaning as (¬(𝑃 ∧ 𝑄)). (𝑃 ⊻ 𝑄)
has the same meaning as (¬(𝑃 ∨ 𝑄)). (𝑃 ≡ 𝑄) has the same mean-
ing as ((𝑃 ∧ 𝑄) ∨ ((¬𝑃) ∧ (¬𝑄))). (𝑃 ≢ 𝑄) has the same meaning as
((𝑃 ∧ (¬𝑄)) ∨ ((¬𝑃) ∧ 𝑄)). It’s the exclusive or which we discussed
earlier. (𝑃 ⊂ 𝑄) has the same meaning as (𝑃 ∨ (¬𝑄)).
The variables are Boolean variables. They can take the values true or false.
Technically every possible assignment of values to the variables is a differ-
ent interpretation of the language.

Truth tables
Having assigned truth values to the variables we can work our way up to
assign values to more and more complicated expressions. The way values
are combined is summarised in “truth tables”. The ones for the four basic
operators are

P Q ( P ∧ Q )
F F F
F T F
T F F
T T T

P Q ( P ∨ Q )
F F F
F T T
T F T
T T T
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P ( ¬ P )
F T
T F

P Q ( P ⊃ Q )
F F T
F T T
T F F
T T T

I’ve written these with expressions 𝑃 and 𝑄 rather than variables 𝑝 and 𝑞
because these can be applied to any expression in our language, not just to
variables.
As an example of combining these to assign truth values to more compli-
cated expressions consider the expression {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}.
We have

p q r (p⊃q) (q⊃r) [(p⊃q)∧(q⊃r)] (p⊃r) {[(p⊃q)∧(q⊃r)]⊃(p⊃r)}
F F F T T T T T
F F T T T T T T
F T F T F F T T
F T T T T T T T
T F F F T F F T
T F T F T F T T
T T F T F F F T
T T T T T T T T

So the expression {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} evaluates as true no mat-
ter what truth values are assigned to 𝑝, 𝑞 and 𝑟. In the terminology intro-
duced earlier it is a tautology.
The fact that truth tables apply to expressions as well as variables has an
important consequence. If a statement in the language is a tautology, i.e. is
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true for all possible values of the variables, then it must remain a tautology
when any expressions are substituted in for those variables. This is called
the “rule of substitution” and a statement obtained in this way is called a
“substitution instance” of the tautology we started with. It is commonly
used as a rule of inference in formal systems for zeroeth order logic. Using
the rule of substitutionwe can see that since {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}
is a tautology so is {[(𝑃 ⊃ 𝑄) ∧ (𝑄 ⊃ 𝑅)] ⊃ (𝑃 ⊃ 𝑅)} for any expressions
𝑃, 𝑄 and 𝑅.

Informal proofs in zeroeth order logic
At the moment we have a language and an interpretation, or rather a class
of interpretations of that language but we don’t have the axioms or rules
of inference necessary for a formal system so we can’t do formal proofs.
We can still do informal proofs though since our interpretation, or rather
interpretations, give us a notion of truth. One method of informal proof
is truth tables. It’s not a very efficient method though. The number of
logical operators appearing in an expression is called the “degree” of the
expression. A truth table for an expression of degree 𝑑 with 𝑛 variables
will have 𝑑 + 𝑛 columns and 2𝑛 rows. There are better methods, including
what’s called the “method of analytic tableaux’’, which is our next topic.
The method of analytic tableaux is really just a bookkeeping device for
proof by contradiction combined with a form of case by case analysis.
Truth table methods also involve a form of case by case analysis, but
analytic tableaux use a less drastic one. To illustrate this I’ll use the
statement {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} which I proved earlier by the
method of truth tables. I’ll first give a version without tableaux and then
explain how tableaux can be used to organise the argument.
Suppose {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} is false for some value of 𝑝, 𝑞 and
𝑟. For those values [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] must be true and (𝑝 ⊃ 𝑟) must be
false. Since [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] is true so are (𝑝 ⊃ 𝑞) and (𝑞 ⊃ 𝑟). So in
our hypothetical example (𝑝 ⊃ 𝑞) and (𝑞 ⊃ 𝑟) are true and (𝑝 ⊃ 𝑟) is false.
Since it is false 𝑝 must be true and 𝑟 must be false. This is as far as we
can get without splitting the argument into cases. Since (𝑝 ⊃ 𝑞) is true 𝑝
is false or 𝑞 is true. But we already saw that 𝑝 is true so we can exclude
that possibility and conclude that 𝑞 must be true. Since (𝑞 ⊃ 𝑟) is true 𝑞
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is false or 𝑟 is true. But we already saw that 𝑞 is true 𝑟 is false so we can
exclude both possibilities. Thus the assumption that there are 𝑝, 𝑞, and
𝑟 which make {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} false is untenable. In other
words {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} holds for all values of 𝑝, 𝑞, and 𝑟.

Analytic tableaux
It can be difficult in arguments like the one above to keep track of what’s
known and what isn’t at each point in the argument. In fact the argument
above wasn’t too bad since on the two occasions we had to split the argu-
ment into caseswewere immediately able to rule out one or both. We aren’t
always so fortunate.
There are several versions of tableaux. I’ll use a versionwherewewrite true
statements to the left of a vertical line and false statements to the right of
it. We use existing statements to fill in more and more lines until we reach
a point where we need to split into two cases. Then we’ll draw diagonal
lines down to a new pair of vertical lines, one for each case, and proceed
in the same way with each of them. These are called branches. We can
close off a branch whenever we have a statement which appears on both
the left and right hand side of a vertical line. We proceed in this way until
all branches are closed or until we’ve explored all possible consequences
of all statements in all branches.
The tableau corresponding to {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} is given in the
accompanying figure.
The contradictions which allow us to close off branches are indicated by
underlining the expression which has previously appeared on the other
side of the vertical line.

Tableau rules

All expressions in our language are built by joining simpler expressions
with logical operators. For each operator there is a pair of tableau rules,
one for the case where the expression appears to the left of of the vertical
line. We’ve met both of these for the operator ⊃. When an expression of
the form 𝑃 ⊃ 𝑄 appears to the left of the vertical bar the tableau branches
into a branch with the 𝑃 on the right of the bar and one with a 𝑄 on the left,
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Figure 5: An analytic tableau for checking that
[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟) is a tautology
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reflecting the twoways 𝑃 ⊃ 𝑄 could be true, i.e. either 𝑃 is false or 𝑄 is true.
On the other hand when an expression of the form 𝑃 ⊃ 𝑄 appears to the
right of the bar there is no branching. We get a 𝑃 to the left of the bar and a
𝑄 to the right, reflecting the fact that 𝑃 ⊃ 𝑄 can be false only if 𝑃 is true and
𝑄 is false. The standard way of depicting these rules is with diagrams. In
addition to the vertical bar from earlier these diagrams have a horizontal
bar. Above this horizontal bar is the statement whose consequences we’re
exploring and below the bar are those consequences, which are always one
or the other of the subexpressions from which the expresssion was made,
and which may appear on either side of the vertical bar. The diagrams for
⊃ are

(𝑃 ⊃ 𝑄)
𝑃

(𝑃 ⊃ 𝑄)
𝑄

(𝑃 ⊃ 𝑄)
𝑃

𝑄
There are similar rules for ∧.

(𝑃 ∧ 𝑄)
𝑃
𝑄

(𝑃 ∧ 𝑄)
𝑃

(𝑃 ∧ 𝑄)
𝑄

The first of these rules appeared once in our example, when we split the
expression [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] on the left hand side of the vertical line to a
(𝑝 ⊃ 𝑞) and a (𝑞 ⊃ 𝑟), also on the left.
The diagrams for the remaining operators are

(𝑃 ∨ 𝑄)
𝑃

(𝑃 ∨ 𝑄)
𝑄

(𝑃 ∨ 𝑄)
𝑃
𝑄

(¬𝑃)
𝑃

(¬𝑃)
𝑃

(𝑃 ⊼ 𝑄)
𝑃

(𝑃 ⊼ 𝑄)
𝑄

(𝑃 ⊼ 𝑄)
𝑃
𝑄

(𝑃 ⊻ 𝑄)
𝑃
𝑄

(𝑃 ⊻ 𝑄)
𝑃

(𝑃 ⊻ 𝑄)
𝑄
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(𝑃 ≡ 𝑄)
𝑃
𝑄

(𝑃 ≡ 𝑄)
𝑃
𝑄

(𝑃 ≡ 𝑄)
𝑃

𝑄

(𝑃 ≡ 𝑄)
𝑃

𝑄
(𝑃 ≢ 𝑄)

𝑃
𝑄

(𝑃 ≢ 𝑄)
𝑃

𝑄

(𝑃 ≢ 𝑄)
𝑃
𝑄

(𝑃 ≢ 𝑄)
𝑃
𝑄

(𝑃 ⊂ 𝑄)
𝑃

(𝑃 ⊂ 𝑄)
𝑄

(𝑃 ⊂ 𝑄)
𝑃

𝑄
There is no need tomemorise any of these. In each case you can reconstruct
the diagram by asking yourself “How could this expression be true?” for
the ones where it appears on the left and “How could this be false?” for
the ones where it appears on the right.

Satisfiability

What happens if there’s a branch you can’t close? In otherwords, what hap-
pens if you’ve processed all consequences of all statements in the branch
and have not found any statements which appear on both the left and the
right of the line? In that case there is at least one choice of truth values
which make all the statements on the left true and make all the statements
on the right false. Finding such a choice is easy. You look for statements
of degree zero, i.e. variables on their own without logical operators. Any
which appear on the left are assigned the value true and any on the left are
assigned the value false. Any which don’t appear at all can be assigned
either value. With these choices every statement of any degree on the left
will be true and every statement of any degree on the right will be false.
Why does themethod abovework? Suppose it didn’t. Then therewould be
a statement of lowest degreewhich is assigned thewrong value. Because of
the way our grammar is defined this statement is constructed by applying
a logical operator to statements of lower degree. These statements will ap-
pear on either the left or the right hand side of the vertical line lower down
and, because they are of lower degree, they will have have been assigned
the correct truth value.
Similarly, if you start with an expression on the left hand side of the ver-
tical bar and can’t close a branch then that means there are values of the
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variables for which the expression is true, i.e. that it is satisfiable. Not only
do such values exist but you can find them by assigning variables which
appear on the left the value true and variables which appear on the right
the value false.

Another example

Consider the statement {[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)}. Is it a tautology,
i.e. true for all values of 𝑝 and 𝑞? Is it satisfiable, i.e. true for some values 𝑝
and 𝑞? Is it neither?
To check whether it’s a tautology we start a tableau with the expression
{[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)} to the right of the bar and then apply our vari-
ous rules.

Figure 6: An analytic tableau to check whether {[(¬p)⊃(¬q)]⊃(p⊃q)} is
a tautology

All rules which can be applied have been applied and we can’t close ei-
ther of the two branches which were created by splitting the statement
[(¬𝑝) ⊃ (¬𝑞)] so {[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)} is not a tautology. But the
tableau tells us more than this. We can pick an open branch, for example
the left branch, and look at which variables appear to the left and right of
the bar. In this case 𝑝 is on the left and 𝑞 is on the right so taking 𝑝 to be true
and 𝑞 to be false must make the statement {[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)} false.
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In this case we would have got the same values for 𝑝 and 𝑞 by choosing the
other open branch, but that’s an accident of this particular statement.
We don’t, strictly speaking, need to check that assigning true to 𝑝 and false
to 𝑞 makes {[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)} false but we certainly can. If you
want to convince someone that {[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)} is not a tautol-
ogy, and therefore cannot be a theorem, it suffices to provide them with
this counterexample. There’s no need to show them the whole tableau
and explain its meaning since they can check the value of the statement
for these particular values and verify for themselves that it’s false.
At this point we know that {[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)} for some values of
𝑝 and 𝑞 but we don’t yet know whether it’s true for other values of 𝑝 and 𝑞.
In other words, we don’t yet know whether it is satisfiable. To check this
we start another tableau, this time with {[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)} to the
left of the vertical bar.

Figure 7: An analytic tableau to check whether {[(¬p)⊃(¬q)]⊃(p⊃q)} is
satisfiable

Once again we weren’t able to close any branches. It wouldn’t have mat-
tered if we were able to close some. As long as there is one open branch
the statement is satisfiable. We can find values of 𝑝 and 𝑞 which make the
statement true by looking at where the variables are relative to the vertical
bar on any open branch. If we take the rightmost branch, for example, then
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𝑞 appears to the left and 𝑝 doesn’t appear at all. We can therefore take 𝑞 to
be true and take either value for 𝑞. For definiteness we’ll take it to be true
as well.
We don’t need to check that this works but we certainly can. More im-
portantly, so can anyone else, so to convince someone that the statement
{[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)} is satisfiable it suffices to give them the example
where 𝑝 and 𝑞 are both tree.
In this case we would have got a different example from choosing a dif-
ferent branch. Had we chosen the leftmost branch we would have got the
example where 𝑝 is false and 𝑞 is true.

Consequences

We can use the tableaux method to check whether a statement is a conse-
quence of a list of other statements as well. We just put it to the right of the
vertical bar and those statements to the left and fill in the tableau as before.
If all branches close then it is indeed a consequence. If not then by choosing
an open branch and looking at which side of the bar each variable lies on
we can find truth values for them which cause the premises to be true and
the purported consequence to be false. Our earlier method of proving, or
disproving, tautologies can be viewed as a special case since a statement is
a tautology if and only if it is a consequence of the empty list of statements.

Tableaux as nondeterministic computations

The method of analytic tableaux is an example of nondeterministic compu-
tation, like the parsing method for context free languages we considered
earlier. There’s a specified initial state and at each point there is a set of
operations available, specified by the tableaux rules, but no particular or-
der of operations is specified. The situation for tableaux is better than for
context free languages. Different orders of operations will give different
tableaux, but no matter which order we choose we will reach an end state
where either all branches have been closed or there is an open branchwhere
all rules which can be applied have been applied. Which type of state we
reach doesn’t depend the order inwhichwe apply the rules, although some
orders may get us there faster than others. This is very different from the
situation for context free grammars. There some ordersmay lead to a parse
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tree while others will end with a list of tokens which don’t match the input
and still others won’t terminate at all.

The Nicod formal system
Perhaps the simplest formal system for zeroeth order logic is the Nicod
system. As its language it uses the subset of our language for zeroeth order
logic consisting of those lists where ⊼, whose truth table is

P Q ( P ⊼ Q )
F F T
F T T
T F T
T T F

is the only logical operator appearing. There’s no loss of expressiveness in-
volved in this restriction sincewe canwrite (𝑃 ∧ 𝑄) as [(𝑃 ⊼ 𝑄) ⊼ (𝑃 ⊼ 𝑄)],
(𝑃 ∨ 𝑄) as [(𝑃 ⊼ 𝑃) ⊼ (𝑄 ⊼ 𝑄)], and (¬𝑃) as (𝑃 ⊼ 𝑃). All the other oper-
ators were expressed in terms of ∧, ∨ and ¬ so they can be expressed by
first converting the expression into one involving those three operators and
then converting them as above.
The Nicod system has a single axiom,

((𝑝 ⊼ (𝑞 ⊼ 𝑟)) ⊼ ((𝑠 ⊼ (𝑠 ⊼ 𝑠)) ⊼ ((𝑢 ⊼ 𝑞) ⊼ ((𝑝 ⊼ 𝑢) ⊼ (𝑝 ⊼ 𝑢))))).

There are two rules of inference. The first is the rule of substitution dis-
cussed earlier. More explicitly, from any statement we can derive another
statement by replacing each occurence of one of the variables with an ex-
pression. In fact we can do this for each variable in the statement. The
second is that from two statements of the form 𝑃 and [𝑃 ⊼ (𝑄 ⊼ 𝑅)] we
can derive the statement 𝑅.

Soundness of the Nicod system

We can use truth table method to show that, no matter which of the 32
possible ways of assigning truth values to the variables 𝑝, 𝑞, 𝑟, 𝑠, and 𝑢 we
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choose, the statement

((𝑝 ⊼ (𝑞 ⊼ 𝑟)) ⊼ ((𝑠 ⊼ (𝑠 ⊼ 𝑠)) ⊼ ((𝑢 ⊼ 𝑞) ⊼ ((𝑝 ⊼ 𝑢) ⊼ (𝑝 ⊼ 𝑢))))).

will always evaluate to true, i.e. that it is a tautology.
It is also possible to show that the two rules of inference of the system have
the property that if applied to tautologies they lead to a tautology. In fact
the first is, as discussed earlier, a general property of zeroeth order logic
and the second follows from the truth table

P Q R ( Q ⊼ R ) [ P ⊼ ( Q ⊼ R ) ]
F F F T T
F F T T T
F T F T T
F T T F T
T F F T F
T F T T F
T T F T F
T T T F F

There is only one case in which both 𝑃 and [𝑃 ⊼ (𝑄 ⊼ 𝑅)] are true and in
that case 𝑅 is also true.
It follows that any theorem must be a tautology, since we start from an
axiom which is true in any interpretation which assigns to the operator ⊼
the meaning described by its truth table given earlier and the rules of in-
ference can only produce true statements from true statements. In other
words any interpretation which assigns to the operator ⊼ the meaning de-
scribed by the truth table above and assigns any truth values whatever to
its variables is a sound interpretation of the Nicod system. We say that
a system is “sound” if the intended interpretation or interpretations are
sound. The Nicod system is sound in this sense.

Completeness of the Nicod system

We just saw that the Nicod system is sound, which in this case means that
every theorem is a tautology. It’s also complete, in the sense that every tau-
tology is a theorem. As you might imagine, proving this is rather painful.
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The fact that we have only one axiom and two rules of inferencemade prov-
ing soundness relatively easy but it makes proving completeness very hard.
We won’t even attempt it.
It’s important to note that soundness and completeness are properties of
the system and its interpretation. They express, respectively, the fact that
every provable statement is true and every true statement is provable.
Provability is a concept within the system, but truth depends on the
interpretation given to statements, which is not part of the system.

The Łukasiewicz system
An alternative formal system for the propositional calculus is due to
Łukasiewicz. It uses the subset of our general language for zeroeth order
logic where the only logical operators are ¬ and ⊃. There is no loss of
expressiveness since (𝑃 ∧ 𝑄) has the same meaning as {¬[𝑃 ⊃ (¬𝑄)]}
and (𝑃 ∨ 𝑄) has the same meaning as [(¬𝑃) ⊃ 𝑄].
The axioms are

[𝑝 ⊃ (𝑞 ⊃ 𝑝)],
{[𝑝 ⊃ (𝑞 ⊃ 𝑟)] ⊃ [(𝑝 ⊃ 𝑞) ⊃ (𝑝 ⊃ 𝑟)]},

and
{[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑞 ⊃ 𝑝)}.

The rules of inference are the rule of substitution and a rule, known by the
curious name of “modus ponens” which allows us to derive 𝑄 from 𝑃 and
(𝑃 ⊃ 𝑄).
The system as introduced by Łukasiewicz differs in one respect from that
described above. Łukasiewicz used prefix notation in place of infix nota-
tion. He was, in fact, the first person to introduce prefix notation, and to
notice that it allows one to dispense with parentheses. Łukasiewicz also
used 𝑁 and 𝐶 in place of ¬ and ⊃.
A direct proof of the soundness Łukasiewicz’s system is slightly more com-
plicated than a proof the soundness ofNicod’s, because the system is larger
andmore complicated, but it can be done by the samemethod, using truth
tables.

74



Because Łukasiewicz’s system contains the ¬ operator we can also discuss
consistency, which is the requirement that for any statement 𝑃 at most one
of 𝑃 and (¬𝑃) is a theorem. In other words the system is free from contra-
dictions. Unlike soundness, consistency is purely a property of the system,
not the system and its interpretation. A small bit of interpretation is smug-
gled in because it’s only the interpretation which tells us that the pair 𝑃
and (¬𝑃) form a contradiction but this is really the only aspect of the inter-
pretation which is needed to discuss consistency. If you believe that 𝑃 and
(¬𝑃) can’t simultaneously be true then consistency follows from sound-
ness because if they can’t both be true then they can’t both be tautologies
and every theorem is a tautology.
For humans, proofs in Łukasiewicz’s system are easier to read, write and
check. This doesn’t mean they are easy. Here is a proof of the theorem
(𝑝 ⊃ 𝑝), which we can easily check is a tautology by considering the two
possible values of 𝑃:

1 (𝑝 ⊃ (𝑞 ⊃ 𝑝))
2 ((𝑝 ⊃ (𝑞 ⊃ 𝑟)) ⊃ ((𝑝 ⊃ 𝑞) ⊃ (𝑝 ⊃ 𝑟)))
3 (𝑝 ⊃ ((𝑞 ⊃ 𝑝) ⊃ 𝑝))
4 ((𝑝 ⊃ ((𝑞 ⊃ 𝑝) ⊃ 𝑝)) ⊃ ((𝑝 ⊃ (𝑞 ⊃ 𝑝)) ⊃ (𝑝 ⊃ 𝑝)))
5 (𝑝 ⊃ (𝑞 ⊃ 𝑝)) ⊃ (𝑝 ⊃ 𝑝))
6 (𝑝 ⊃ 𝑝)

Statements 1 and 2 are axioms. Statement 3 follows from 1 by substituting
(𝑞 ⊃ 𝑝) for 𝑞. Statement 4 follows from 2 by substituting (𝑞 ⊃ 𝑝) for 𝑞 and
𝑝 for 𝑅. Statement 5 follows from 3 and 4 by modus ponens. Statement 6
follows from 1 and 5 by modus ponens. More interesting theorems have,
as you might expect, even longer proofs.
Proving the completeness of Łukasiewicz’s system is easier than proving
that of Nicod’s, but I still won’t do it.

Natural deduction
Some people find proving theorems in formal systems like Nicod’s or
Łukasiewicz’s an entertaining sort of puzzle. Other people do not. What’s
undeniable is that such proofs have a very different flavour from those of
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the rest of mathematics. There was a reaction against these and similar
axiomatic systems which led to what’s known as “natural deduction’’.
One of the most important people behind this reaction was Łukasiewicz
himself. Natural deduction systems are still formal systems, but their
rules better reflect the way mathematicians typically think.

A formal system for natural deduction

There are awide variety of natural deduction systems. We’ll use onewhose
language includes only the operators ∧, ∨, ¬, and ⊃. It has no axioms! In
contrast it has a lot of rules of inference:

1. From statements 𝑃 and 𝑄 we can deduce the statement (𝑃 ∧ 𝑄). Also,
from any statement of the form (𝑃 ∧ 𝑄) we can deduce the statement
𝑃 and the statement 𝑄.

2. From the statement 𝑃 we can deduce the statement (𝑃 ∨ 𝑄), where
𝑄 is any expression.

3. The expressions [¬(¬𝑃)] and 𝑃 are freely interchangeable. In other
words, anywhere an expression of one of these forms appears in a
statement we may deduce the statement where it has been replaced
by the other.

4. From 𝑃 and (𝑃 ⊃ 𝑄) we can deduce 𝑄.
5. The expressions (𝑃 ⊃ 𝑄) and [(¬𝑄) ⊃ (¬𝑃)] are freely interchange-

able.
6. The expressions [(¬𝑃) ∧ (¬𝑄)] and [¬(𝑃 ∨ 𝑄)] are freely inter-

changeable.
7. The expressions [(¬𝑃) ∨ (¬𝑄)] and [¬(𝑃 ∧ 𝑄)] are freely inter-

changeable.
8. The expressions (𝑃 ∨ 𝑄) and [(¬𝑃) ⊃ 𝑄] are freely interchangeable.
9. The “Rule of Fantasy”, to be described below.

10. The “Rule of Substitution”, subject to restrictions to be discussed be-
low.

The first four rules specify the behaviour of the four logical operators. They
are closely related to our tableaux rules. Half of the first rule, which is
called the rule of joining and separation, can be thought of an equivalent
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to the tableau rule
(𝑃 ∧ 𝑄)

𝑃
𝑄

for example. It reflects the fact that if (𝑃 ∧ 𝑄) is true then 𝑃 and 𝑄 are true.
It’s important to remember though that that’s a property of the intended
interpretation, or rather interpretations, of the system, while the rule above
is a rule of inference within the system. Similarly the third rule above is
related to the tableau rule

(¬𝑃)
𝑃

(¬𝑃)
𝑃

with the first one appliedwith (¬𝑃) in place of𝑃. It reflects the “fact” that if
𝑃 is not not true then it is true. The quotation marks reflect the reality that
not everyone accepts this a logical principle. This is one of the dividing
lines between “classical” and “intuitionist” logic. The fourth rule is one
we’ve met before, under the name modus ponens. It’s tableau counterpart
is more complicated. It consists of following both branches from a (𝑃 ⊃ 𝑄)
but then using the 𝑃 to immediately close off the left branch, which would
have a 𝑃 to the right of the bar.
The fifth rule is called the rule of the contrapositive, it is the basis of proofs
by contradiction. It is another dividing line between “classical” and “intu-
itionist” logic. The sixth and seventh rules are two known as De Morgan’s
laws. The eighth rule of inference is really just the observation we made
when discussing Łukasiewicz’s system that ∨ is expressible in terms of ¬
and ⊃.

Introducing and discharging hypotheses

The ninth rule, the “rule of fantasy” in Hofstadter’s terminology, is more
complicated to explain, but reflects a common practise in informal proofs.
We often say “Suppose 𝑃”. We then reason for a while under that assump-
tion and reach a conclusion𝑄. We then conclude “So if𝑃 then𝑄.” There are
two common circumstances in which we do this. One is proof by contradi-
tion, where we then immediately apply the rule of the contrapositive. The
other is case by case analysis, whichwas the basis of our tableaumethod. In
such applications there will be a separate application of the rule of fantasy
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for each possible case. Writers of informal proofs are under no obligation
to tell you which of these two uses they have in mind and sometimes you
have to read the whole proof to find out but often a clue is is in the verb
forms used. In a proof by contradiction people are more likely to write
“Suppose … were true” rather than “Suppose … is true”. But this is not
something you can entirely rely on.
I’ve just describedwhat the rule of fantasy is intended to do, but not the pre-
cise rules governing it. They’re just a formalised version of the rules which
mathematicians follow in informal arguments. We need some terminology.
The step of saying “Suppose 𝑃” is called introducing the assumption or hy-
pothesis 𝑃. The step of saying “So if 𝑃 then 𝑄” is called discharging this
hypothesis or assumption. Everything in between is called the scope of
the hypothesis. It’s possible, and indeed common, to introduce further hy-
potheses within the scope of an existing one, and so have nested scopes. In
arguments based on tableax this corresponds to branches within branches.
Scope determineswhich statements are accessible for use by the other rules
at any point in a proof. When you enter a new scope by introducing a hy-
pothesis you retain access to everything in the scope you were in. When
you leave that scope by discharging that hypothesis you lose access to all
statements since you entered it. The only trace of any of the reasoning
which took place within that scope is the single statement (𝑃 ⊃ 𝑄) gener-
ated by discharging the hypothesis. This restriction on the accessible state-
ments is needed to ensure that you can’t deduce a statement by introduc-
ing 𝑃 as a hypothesis unless it’s of the form (𝑃 ⊃ 𝑄). Otherwise you could
prove all statements, true or false, by introducing them as a hypothesis and
then using them outside of the scope of that hypothesis. All the other rules
are to be interpreted as implicitly subject to this restriction. Sowhenwe say
that from (𝑃 ∧ 𝑄) we can deduce 𝑃 and 𝑄 we mean that in a scope where
(𝑃 ∧ 𝑄) is accessible we can deduce 𝑃 and 𝑄. It doesn’t allow us to de-
duce 𝑃 or 𝑄 if the statement (𝑃 ∧ 𝑄) appeared after some hypothesis was
introduced and before it was discharged.
Statements outside the scope of any hypotheses are said to have “global”
scope. Only such statements are theorems.
In informal proofs it can be difficult to spot where hypotheses are intro-
duced andwhere they’re discharged and therefore difficult to knowwhich
ones are accessible. This is particularly problematic in proofs by contradic-
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tion. The whole point of a proof by contradiction is that the hypothesis
which is introducedwill later be shown to be false. Everything in the scope
of that hypothesis could, and usually does, depend on that false hypothesis
and therefore should never be used outside that particular proof by contra-
diction argument. This is a common source of error for students. If you
scan through a textbook looking for things which might be useful in prob-
lem you’re attempting then you may find useful statements in the proof
of a theorem. They’ll typically depend on various hypotheses which have
been introduced though and can’t safely be used in a context where those
hypotheses aren’t known to be true.
In a formal system we need some way to indicate the introduction and
discharging of hypotheses.
The safest way to do it would be to include a list of all active, i.e. not yet
discharged, hypotheses before each statement. That solves the problem
described above of using statements outside of their scope, but at the cost
of making proofs very long and repetitive.
Jaśkowski, one of the founders of the theory of natural deduction, used
boxes. A box encloses all the statements within a give scope and it’s
straightforward to see which statements are available within it. Starting
from wherever we currently are we have available any statement we can
reach by crossing zero or more box boundaries from inside to outside, but
we are not allowed to cross any from outside to inside. This notationa-
tional convention would probably have been more popular if it weren’t a
nightmare to typeset.
A popular alternative is to use indentation. Every time we introduce a hy-
pothesis we increase the indentation and every time we discharge one we
restore it to its previous value. The first statement after the indentation is
increased is the newly introduced hypothesis. The first statement after the
indentation has been restored is the result of discharging the hypothesis,
i.e. the statement (𝑃 ⊃ 𝑄) where 𝑃 is the hypothesis and 𝑄 is the last state-
ment before the indentation was restored. This is a very compact notation
but using spaces for indentation can cause problems. Screen readers will
generally ignore spaces. Even for sighted readers judging the number of
spaces at the start of a line is error-prone. It’s better to use a non-whitespace
character. We’ll use dots.
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The “rule of fantasy” is Hofstadter’s terminology. It accurately reflects the
use of the rule, to explore the consequences of a statement not known to be
true, but don’t expect anyone to understand you if you use the term outside
of this module.
There is some redundancy in the rules above, in the sense that there are
proper subsets of those rules with the property that any statement which
has a proof using the full set also has a proof using only the subset. But
the point of a natural deduction system is to formalise something close to
the way mathematicians actually reason rather than to have an absolutely
minimal system. If you like minimal systems then you’re better off with
Nicod.
There are, as we’ll see some restrictions needed on the rule of substitution
but I’ll get to those once we have some examples of proofs. In the interim
I will be careful not to use that rule.

Some proofs

As an example, consider this proof of the statement {𝑝 ⊃ [𝑞 ⊃ (𝑝 ∧ 𝑞)]}.

. 𝑝

. . 𝑞

. . (𝑝 ∧ 𝑞)

. [𝑞 ⊃ (𝑝 ∧ 𝑞)]
{𝑝 ⊃ [𝑞 ⊃ (𝑝 ∧ 𝑞)]}

Our first step is to introduce a hypothesis. In this system the first step is
always to introduce a hypothesis. There are no axioms and every other
rule deduces a statement fromprevious statements, ofwhichwe have none.
It’s not hard to guess which hypothesis to introduce. The statement we
want to prove is {𝑝 ⊃ [𝑞 ⊃ (𝑝 ∧ 𝑞)]} and it starts with 𝑝 ⊃ so if we introduce
𝑝 and then manage to prove [𝑞 ⊃ (𝑝 ∧ 𝑞)] then we will be done. So we
introduce 𝑝. What next? We want to prove [𝑞 ⊃ (𝑝 ∧ 𝑞)]. It starts with
𝑞 ⊃ so try the same thing, introducing 𝑞 as a further hypothesis. If we can
prove (𝑝 ∧ 𝑞) within the scope of this hypothesis then we will have proved
[𝑞 ⊃ (𝑝 ∧ 𝑞)] within the scope of the hypothesis 𝑝 and therefore will have
proved {𝑝 ⊃ [𝑞 ⊃ (𝑝 ∧ 𝑞)]} within the global scope, i.e. in the absence of
any hypotheses. At this point we have two statements available within our
current scope 𝑝 and 𝑞. We just introduced 𝑞. We inherited 𝑝 from the outer
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scope. This is what I meant when I said that when you enter a new scope
by introducing a hypothesis you retain access to everything in the scope
you were in. So we have 𝑝 and 𝑞 and want (𝑝 ∧ 𝑞). Fortunately our first
rule of inference, the rule of joining and separation, does exactly this. So
the proof may look strange at first but really at each stage we do the only
thing we can and it works.
As another example, consider [𝑝 ∨ (¬𝑝)], which is often called the “law of
the excluded middle”. In this case it’s less obvious how to start. For the
reasons discussed above we must start by introducing a hypothesis, but
what hypothesis. The statement isn’t of the form (𝑃 ⊃ 𝑄) for any choice
of expressions 𝑃 and 𝑄. Looking at our rules though we see that one of
them allows us to derive [𝑝 ∨ (¬𝑝)] from [(¬𝑝) ⊃ (¬𝑝)]. That is easily
proved with the fantasy rule. We introduce the hypothesis (¬𝑝) and then
immediately discharge it. The complete proof is

. (¬𝑝)
[(¬𝑝) ⊃ (¬𝑝)]
[𝑝 ∨ (¬𝑝)]

Substitution

This is where we should talk about the rule of substitution. A very com-
mon style of mathematical argument, and one which we formalised in the
tableau method, is case by case analysis. The simplest type of case by case
analysis is where we have only two cases, one where a certain statement is
true and one where it’s false. If we can prove a certain conclusion in both
of those cases then that conclusion must be true. Or at least it must be if
you accept the law of the excluded middle. Intuitionists don’t.
But to apply the case by case analysis aboveweneed the lawof the excluded
middle for expressions and not just for variables. In other words we need
[𝑃 ∨ (¬𝑃)] to be a theorem for every expression 𝑃. There are three ways of
accomplishing this. One is to run exactly the same argument as above with
𝑝 replaced everywhere by 𝑃. The rules we used, of which there were only
two, refer to expressions rather to variables and so no change is needed.
We could do the same with {𝑝 ⊃ [𝑞 ⊃ (𝑝 ∧ 𝑞)]}, by the way. For any ex-
pressions 𝑃 and 𝑄 we could replace every 𝑝 by the expression 𝑃 and every
𝑞 by the expression 𝑄 in the proof of {𝑝 ⊃ [𝑞 ⊃ (𝑝 ∧ 𝑞)]} and obtain a proof
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of {𝑃 ⊃ [𝑄 ⊃ (𝑃 ∧ 𝑄)]}. A disadvantage of this approach is that we need
to repeat the argument for each 𝑃 and 𝑄 we need to result for. We can’t
just do it with the letters 𝑃 and 𝑄 in place of the letters 𝑝 and 𝑞 because 𝑃
and 𝑄 aren’t even elements of our language, just elements of the language
we use to talk about our language. We have to substitute the actual expres-
sions, and so we’ll need to redo that work whenever we need the result for
a different pair of expressions.
Another option is to leave the realm of formal proof and enter the realm
of semiformal proof. The argument above shows that for any expressions
𝑃 and 𝑄 the statements [𝑃 ∨ (¬𝑃)] and {𝑃 ⊃ [𝑄 ⊃ (𝑃 ∧ 𝑄)]} are theorems.
Anything you can derive from them using our rules of inference is also a
theorem. But now we’re not giving proofs of statements but rather proofs
that statements have proofs. That’s a semiformal proof rather than a formal
one.
The third option is to bring in the rule of substitution, which was a rule of
inference in both the Nicod and Łukasiewicz systems. This seems redun-
dant, since we’ve just seen how one can get around the lack of a rule of
substitution by just substituting expressions for variables within a proof,
but it’s convenient to have and we already decided we aren’t trying for a
minimal system.
There’s a subtle danger here though. Consider the following proof:

. 𝑝

. 𝑞
(𝑝 ⊃ 𝑞)

The first step is to introduce the hypothesis 𝑝. The second is to apply the
rule of substitution, replacing the variable 𝑝 with the expression 𝑞. Vari-
ables are expressions so this is okay. The third step is to discharge the
hypothesis. But (𝑝 ⊃ 𝑞) is not a tautology. There is an interpretation under
which it is false, namely the one where 𝑝 is assigned the value true and 𝑞 is
assigned the value false, and therefore it should not be a theorem.
What went wrong? There’s a difference in interpretation between state-
ments in the Nicod or Łukasiewicz systems and in a natural deduction
system. In the Nicod or Łukasiewicz systems every statement is meant
to be unconditionally true. We could stop a proof at any point and have
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a proof of the last statement before we stopped. This is not the case for
natural deduction systems. Only statements in global scope are meant to
be unconditionally true. All other statements are meant to be true if all the
active hypotheses for their scope are true. In other words they’re only con-
ditionally true. That’s why I had to specify that only statements in global
scope are theorems. The problem with the argument above is that once
we’ve introduced 𝑝 as a hypothesis it’s no longer just any variable. It’s the
specific variable whose truth everything will be dependent upon until we
discharge that hypothesis. Replacing it with some other variable, or some
other expression, can’t safely be allowed.
How can we repair this? We could sacrifice the rule of fantasy but the
rule of fantasy is the foundation of our system. It is literally impossible to
prove anything without it. We could limit our rule of substitution by say-
ing that only statements with global scope are available for substitution.
This is a sound rule of inference. We know it’s sound because the other
rules are sound and this one is redundant. Anything we could prove with
it we could also prove without it, by the technique we discussed earlier of
repeating the proof but with expressions substituted in for the variables.
It’s unnecessarily restrictive though, since it can sometimes be safe to sub-
stitute for some variables in a statement within the scope of a hypothesis.
The precise rule is that in any available statement we may substitute any
expression for any variablewhich does not appear in any hypothesis which
was active in its scope. In the global scope no hypotheses are active and so
we can substitute for any variable, but elsewhere certain variables will not
be substitutable. Note that which variables are substitutible depends on
the scope of the statement into which we’re substituting, not on our cur-
rent scope at the point where we want to make the substitution.
This is the first example we’ve seen of a phenomenon where not all vari-
ables are equally variable. Some have special status in a particular context
which restricts what we can do with them. It won’t be the last such exam-
ple. Something similar will happen when we move on to first order logic.
Although I’ve put in some effort above to ensure that you can substitute
into statements within the scope of a hypothesis, in those cases where it’s
safe, you shouldn’t generally structure your proofs in a way which makes
that necessary. If you’re going to need multiple substitution instances of a
statement then you should prove that statement in global scope so that it’s
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available everywhere. Often that means writing your proofs out of order.
Once you release you’ll need multiple instances of a statement you need to
go back and insert a proof of that statement at the start of your argument.
When reading proofs it’s useful to know that people do this. If an author
starts by proving a bunch of random facts whose usefulness isn’t immedi-
ately apparent and which don’t reappear for several pages that’s not nec-
essarily just bad exposition. It may well be that their being proved there to
make it clear that they’re in global scope, i.e. that their truth is not contin-
gent on hypotheses which will be made later.

More proofs

Here’s another fairly short proof. Try going through each line and seeing
if you can identify which rule is being used.

. (𝑝 ⊃ 𝑞)

. [(¬𝑞) ⊃ (¬𝑝)]

. [𝑞 ∨ (¬𝑝)]
{(𝑝 ⊃ 𝑞) ⊃ [𝑞 ∨ (¬𝑝)]}

The next proof is a bit trickier to find but is very useful.

. [𝑝 ∧ (¬𝑝)]

. 𝑝

. (¬𝑝)

. . (¬𝑞)

. . [¬(¬𝑝)]

. {(¬𝑞) ⊃ [¬(¬𝑝)]}

. [(¬𝑝) ⊃ 𝑞]

. 𝑞
{[𝑝 ∧ (¬𝑝)] ⊃ 𝑞}

The theorem {[𝑝 ∧ (¬𝑝)] ⊃ 𝑞} is known as the “principle of explosion”. Un-
like other fanciful names, like the “rule of fantasy”, this name is quite stan-
dard and people should understand what you’re talking about if you use
it. This theorem shows that from a contradiction it’s possible to derive any-
thing at all. In a theory with contradictions all statements are theorems. A
useful substitution instance of this {[𝑝 ∧ (¬𝑝)] ⊃ 𝑝}.
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Here are two more complicated examples.
. [¬(𝑝 ⊃ 𝑞)]
. [¬({¬𝑞} ⊃ {¬𝑝})]
. [¬(𝑞 ∨ {¬𝑝})]
. [(¬𝑞) ∧ (¬{¬𝑝})]
. [(¬𝑞) ∧ 𝑝]
{[¬(𝑝 ⊃ 𝑞)] ⊃ [(¬𝑞) ∧ 𝑝]}

and
. [𝑝 ∧ (¬𝑝)]
. 𝑝
. (¬𝑝)
. . (¬𝑞)
. . [¬(¬𝑝)]
. {(¬𝑞) ⊃ [¬(¬𝑝)]}
. [(¬𝑝) ⊃ 𝑞]
. 𝑞
{[𝑝 ∧ (¬𝑝)] ⊃ 𝑞}
{[𝑟 ∧ (¬𝑟)] ⊃ 𝑟}
. {(𝑝 ∨ 𝑞) ∧ [(𝑝 ⊃ 𝑟) ∧ (𝑞 ⊃ 𝑟)]}
. (𝑝 ∨ 𝑞)
. [(𝑝 ⊃ 𝑟) ∧ (𝑞 ⊃ 𝑟)]
. (𝑝 ⊃ 𝑟)
. (𝑞 ⊃ 𝑟)
. [(¬𝑝) ⊃ 𝑞]
. . (¬𝑝)
. . 𝑞
. . 𝑟
. [(¬𝑝) ⊃ 𝑟]
. [(¬𝑟) ⊃ 𝑝]
. . (¬𝑟)
. . 𝑝
. . 𝑟
. [(¬𝑟) ⊃ 𝑟]
. 𝑟
({(𝑝 ∨ 𝑞) ∧ [(𝑝 ⊃ 𝑟) ∧ (𝑞 ⊃ 𝑟)]} ⊃ 𝑟)

You might notice that the first part simply repeats the proof given earlier
for {[𝑝 ∧ (¬𝑝)] ⊃ 𝑞}. One annoying feature of formal systems is that they
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start the proof of every theorem from scratch. No mechanism is provided
for reusing previously proved theorems other than repeating their proofs.
As a final examplewe consider the tautology {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}
we encountered earlier. A proof is

. [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)]

. . 𝑝

. . (𝑝 ⊃ 𝑞)

. . (𝑞 ⊃ 𝑟)

. . 𝑞

. . 𝑟

. (𝑝 ⊃ 𝑟)
{[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}

Soundness, consistency and completeness

Because natural deduction systems were developed to mimic exactly the
sort of reasoning we formalised with the method of analytic tableau it is
possible, though somewhat tedious, to give an algorithm for converting
a tableau into a proof in this system. The construction of a tableau for a
tautology can also be automated. Combining these we see that there is an
algorithm which takes tautologies and generates formal proofs for them.
So every tautology is a theorem and therefore the system is complete. It’s
also sound because all the axioms are true and all the rules of inference
preserve truth. It’s easy to see that all the axioms are true because there
aren’t any! Showing that the rules of inference are sound is fairly straight-
forward until we get to the rule of fantasy and the rule of substitution. You
can read through the descriptions of those rules and convince yourself that
they can’t be used to prove true statements from untrue ones. There’s a
good chance you could have convinced yourself even if I’d left out the re-
strictions on substitution though and neglected to mention that the unre-
stricted version makes 𝑝 ⊃ 𝑞 into a theorem, so I’m not sure how far you
can trust your intuition on these things. Unfortunately I can’t give a for-
mal proof of soundness though because we don’t have a formal language
in which we can state it. Soundness, as before, implies consistency.
It’s also possible for the standard axiomatic systems, like that of Nicod or
Łukasiewicz, to give algoritms for converting proofs in a natural deduc-
tion system to proofs within the axiomatic system. This is generally the
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easiest way of showing that those systems, which we already know to be
consistent, are complete.

First order logic
The next step after zeroeth order logic is first order logic. In fact it’s also
normally the last step. Higher order logic exists as well, but the standard
formulation of mathematics makes no use of it, using only first or logic
and set theory as its foundations. We’ll talk about set theory later and first
order logic now.
The most important thing which first order logic introduces is quantifiers,
specifically the universal quantifier “for all” and the existential quantifier
“for some”.
There are some other new elements as well. One is “predicates”. The term
is unfortunate. It’s borrowed from linguistics, but in a way which is incom-
patible with the way it’s used there. A word which better reflects the role
they play might have been “property”, but “predicate” is standard.
First order logic can be difficult to follow though if you have no examples
in mind. We’ll use first order logic soon in discussing the integers and sets,
so it may be helpful to give some examples chosen from those.
For integer arithmetic “is prime” is an example of a unary predicate, i.e. one
which takes a single variable. The variable in this case is an integer and the
value of the predicate is true or false depending on whether that integer is
or is not prime. One the other hand “is less than” is a binary predicate, one
which takes two values and is either true or false depending onwhether the
first is less than the second or not. There are also ternary predicates, with
three variable, like “is the sum of … and”, which is true if first variable is
the sum of the second and third. It’s clear that any statement about the
integers can be made up of such predicates, together with quantifiers.
For set theory an important unary predicate is “is finite”. A binary predi-
cate is “is a member of”. A ternary predicate is “is the union of … and”.
Although the examples above may be helpful in understanding what role
predicates play first order logic doesn’t concern itself with the meaning of
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predicates and indeed has no way to represent any such meaning. Predi-
cates appear as letters, just as variables do. This letter is just as unspecified
in its meaning as a variable is. First order logic doesn’t care whether a
ternary predicate represents “is the sum of … and” or ““is the union of …
and” or something else entirely.
In addition to quantifiers, variables and predicates we also have “param-
eters”. It’s somewhat harder to describe what a parameter is. When we
discussed the rule of substitution in zeroeth order logic we saw that not all
variables are equally variable. Some are allowed to vary more than others.
Parameters represent instantiated variables. Suppose, for example, we’re
operating in a context where we have available the statement that for every
integer 𝑛 there is a prime number greater than 𝑛. This statement, which
has a universal quantifier in the “for every” and an existential quantifier
in the “there is”, might be available because it’s already been proved or it
might be available because we’ve introduced it as a hypothesis, as we dis-
cussed when we talked about natural deduction. In this case the statement
happens to be true but it could conceivably have appeared in a proof by
contradiction. In any case we have the statement available. Now 2023 is an
integer, so we are assured by this statement that there is a prime number
greater than 2023. We could then say “let 𝑝 be such a prime”. In that case
a logician would describe 𝑝 as a parameter. Like variables, parameters are
allowed to appear as arguments of predicates. Mathematicians tend not to
bother with such distinctions and would refer to both 𝑛 and 𝑝 as variables
but logicians are more careful and distinguish between variables and pa-
rameters because the rules of inference treat them somewhat differently,
as we’ll see.
We’ll also retain the logical operators of zeroeth order logic along with the
parentheses but we’ll leave behind the boolean variables. The things con-
nected by the operators will be expressions built from predicates. We still
have variables but they are not, or at least are not necessarily, boolean vari-
ables and it will not make sense to talk about variables being true or false.
In integer arithmetic the variables will represent numbers and in set theory
they will represent sets. In neither case does it make sense to ask whether
they are true or false.
The version of first order logic we’ll consider is “untyped”. In other words
there is only one set of variables. This isn’t the way mathematicians or
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computer scientists are used to working. If we’re discussing linear algebra
we might, for example, want to have three types of variables, for scalars,
vectors and matrices. Traditional linear algebra textbooks use lower case
Greek letters for scalars, bold lower case Latin letters for vectors, and upper
case latin letters for matrices, for example. While that’s often convenient
it’s not strictly necessary. We could accomplish the same thing by having a
single set of variables and introducing the unary predicates “is a scalar”, “is
a vector” and “is amatrix”. In factwe’d be better off not introducing the last
of these and simply thinking of vectors as matrices with only one column
and of scalars as vectors with only one row. First order logic makes no
assumptions about what this one type of variable might represent, beyond
a hidden assumption that, whatever they are, there is at least one of them.
It is possible to dispense with even this assumption, and would probably
be a good idea to do so, with what’s called inclusive logic, but this has
never been particularly popular.

A language for first order logic
The language has been described informally above but here is a formal
grammar for it.
%start statement

%%

statement : expression
;

expression : atomic_expression
| ( expression binop expression )
| [ expression binop expression ]
| { expression binop expression }
| ( ¬ expression )
| [ ¬ expression ]
| { ¬ expression }
| ( quantifier variable . expression )
| [ quantifier variable . expression ]
| { quantifier variable . expression }
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;

atomic_expression : ( atom )
| [ atom ]
| { atom }
;

atom : predicate
| atom variable
| atom paramater
;

binop : ∧ | ∨ | ⊃ | ⊼ | ⊻ | ≡ | ≢ | ⊂
;

quantifier : ∀ | ∃
;

predicate : pred_letter
| predicate !
;

pred_letter : f | g | h | i | j
;

parameter : param_letter
| parameter !
;

param_letter : a | b | c | d | e
;

variable : var_letter
| variable !
;

var_letter : v | w | x | y | z
;
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As in the zeroeth order calculus, exclamation points can be used to generate
an infinite number of predicates, variables and parameters, but we will
never actually need them in examples.
As with zeroeth order logic it’s useful to have symbols which don’t belong
to the language but which are used for talking about the language. We’ll
continue to use 𝑃, 𝑄, etc. to represent expresions but we’ll add 𝐴, 𝐵, etc.
for parameters, 𝐹, 𝐺, etc. for predicates, and 𝑉, 𝑊, etc. for variables. The
same convention about different types of brackets being interchangeable
applies.

Free and bound variables
One of the most confusing, but also most important, parts of first order
logic is the distinction between free and bound variables, or, more prop-
erly, between free and bound occurences of a variable in an expression.
This is easier to understand in a formal system like the one we will use
for elementary arithmetic than in first order logic so we’ll consider it there
first.
Consider the expression

𝑙 = 𝑚 + 𝑛.
This could be true or false, depending on the values of 𝑙, 𝑚 and 𝑛. Now
consider the expression

[∃𝑛.(𝑙 = 𝑚 + 𝑛)]
which is normally read “there exists an 𝑛 such that 𝑙 equals 𝑚 plus 𝑛”. This
could be true or false depending on the values of 𝑙 and 𝑚. You could substi-
tute actual natural numbers in for 𝑙 and 𝑚 and sensibly ask whether this is
a true statement for those values. In the version of elementary arithmetic
we’ll consider the variables represent natural numbers, i.e. non-negative in-
tegers so this statement will in fact be true if 𝑙 ≥ 𝑚 and false if 𝑙 < 𝑚. What
the value of the expression doesn’t depend on is 𝑛. You are not allowed to
substitute in a value for 𝑛. The result of doing so isn’t true or false but just
grammatically incorrect. 𝑛 is what’s called a bound variable in this expres-
sion, while 𝑙 and 𝑚 are free variables. In the original expression all three
variables were free.
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We can add another quantifier.

{∀𝑙.[∃𝑛.(𝑙 = 𝑚 + 𝑛)]}

is normally read “for all 𝑙 there exists an 𝑛 such that 𝑙 equals 𝑚 plus 𝑛”. The
value of the expression now depends only on 𝑙. In fact it’s true if 𝑚 is zero
and is false if 𝑚 is positive. In this expression 𝑙 and 𝑛 are bound while 𝑚 is
free.
We can add one final quantifier.

(∃𝑚.{∀𝑙.[∃𝑛.(𝑙 = 𝑚 + 𝑛)]})

Now all the variables are bound. It would not make sense to substitute
for any of them. This statement is either true or false, not depending on
anything. In fact it is true, since zero is an example of such an 𝑚. In fact its
the only example.
It’s important to note that we can only talk about whether a variable is
free or bound within a particular expression. Each of the first three ex-
pressions above forms part of the expression which follows it and there
is a variable which is free in the subexpression but bound in the whole
expression. More subtly the same variable could be free and bound in dif-
ferent places in the same expression. This doesn’t happen in any of the
expressions above and you should never write down such an expression
because they are very confusing. I promise not to either. But it’s hard to
write down grammar rules which forbid this so the standard practice is to
allow it but then not do it. Because of this though we have to talk about
free and bounded occurrences of a variable in an expression rather than
free and bound variables, since a variable could potentially occur freely in
one place and bound in another within the same expression.
The example above was taken from elementary arithmetic. The corre-
sponding example in first order logic would be the four expressions

(𝑓 𝑥𝑦𝑧),

[∃𝑧.(𝑓 𝑥𝑦𝑧)],
{∀𝑥.[∃𝑧.(𝑓 𝑥𝑦𝑧)]},

and
(∃𝑦.{∀𝑥.[∃𝑧.(𝑓 𝑥𝑦𝑧)]}).
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The particular predicate saying that the first argument is the sum of the
last two has been replaced by the generic symbol 𝑓 . I’ve also renamed the
variables to put themwithin the range specified by the grammar. Whether
the last of these statements is true or false depends on the meaning of 𝑓 . If
𝑓 is the sum predicate we considered earlier then the statement is true but
for other choices of 𝑓 it might be false. This is a question of interpretation,
which we’ll discuss later.
The variable 𝑥 has a free occurrence, but no bound occurrences, in the first
and second expressions above and has a bound occurrence, but no free
occurrences, in the third and fourth. 𝑦 has free occurrences in the first
three and a bound occurrence in the fourth. 𝑧 occurs freely in the first and
bound in the last three.
The precise rules are not difficult to state. In an atomic expression all vari-
ables are free. Whenever we build an expression from a quantifier, a vari-
able, and an expression all occurrences of that variable in the combined ex-
pression are bound. Occurrences of other variables remain free or bound as
they were in the original expression. Combining expressions using logical
operators has no effect. Whatever occurrences were free in the old expres-
sions remain free in the new one and whatever occurrences were bound
remain bound.
An expression is called “open” if there is a free occurrence of some vari-
able in it and is called “closed” if all occurrences are bound. If we have
a particular interpretation where the variables are assumed to belong to
a particular set and assigned particular relations to the predicates then it
makes sense to askwhether a closed expression is true. For an open expres-
sion we can only ask that question after we’ve assigned particular values
to the variables which occur freely in the expression.

Interpretations
Interpretations in zeroeth order logic were relatively simple. For each vari-
able we got to assign it one of two values, true or false. Technically there
were infinitely many variables and hence infinitely many interpretations
but for any particular statement, or finite set of statements, only finitely
many variables occur and so we could enumerate all the interpretations.
This was in fact the basis of the method of truth tables.
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First order logic has many more interpretations. We can, for example, con-
struct an interpretation as follows. We begin by choosing a non-empty set,
called the “domain”. Thenwe assign an element of that set to each variable
or parameter. To each predicate we assign a relation, which you can safely
think of as a Boolean-valued function. To each unary relation we assign
a unary relation, which you should think of as a function which takes a
single argument, belonging to the domain, and gives you a Boolean value,
i.e. true or false. To each binary predicate we assign a binary relation, i.e a
Boolean function of two arguments. To each ternary predicate we assign a
ternary relation, and so forth.
Once we’ve done this we can assign truth values to expressions by start-
ing with atomic expressions and combining them to form larger and larger
expressions, much as we did in zeroeth order logic. There are some differ-
ences though. The values we assigned to the variables when constructing
our interpretation are only to be used for free occurrences of those vari-
ables.
A statement in first order logic is said to be valid if it is true for every in-
terpretation of the type described above. Valid statements play much the
same role for first order logic as tautologies did for zeroeth order logic.
There is no analogue of truth tables for first order logic because we have
no hope of listing the possible interpretations of a statement.
Some textbooks imply, or even directly state, that all interpretations are of
the type described above. They are wrong, for reasons we will discuss in
the set theory chapter.

Informal proofs
We can construct informal proofs in first order logic in much the same way
we did in zeroeth order logic, but asking how the given statement could be
false and trying to show that none of these ways can actually occur.
As an example, consider the statement

{[∃𝑥.(𝑓 𝑥)] ⊃ [¬(∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]})]}.

Suppose it were false in at least one interpretation. This is of the
form (𝑃 ⊃ 𝑄), where 𝑃 is the expression [∃𝑥.(𝑓 𝑥)] is the expression
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[¬(∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]})]. We know that an expression of the form
(𝑃 ⊃ 𝑄) can only be false when 𝑃 is true and 𝑄 is false, so [∃𝑥.(𝑓 𝑥)]
should be true and [¬(∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]})] should be false. We
also know that an expression of the form (¬𝑃) can only be false if 𝑃
is true, so (∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]}) should be true. If [∃𝑥.(𝑓 𝑥)] is true
then there is some 𝑎 such that 𝑓 𝑎. If (∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]}) is true then
{¬[(𝑓 𝑎) ∨ (𝑔𝑎)]}. Since this is true [(𝑓 𝑎) ∨ (𝑔𝑎)] must be false. Then (𝑓 𝑎)
is also false. But we previously found (𝑓 𝑎) to be true. So the assumption
that {[∃𝑥.(𝑓 𝑥)] ⊃ [¬(∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]})]} was false is untenable. It is
therefore a valid statement.
There was no branching in the proof above, but sometimes there will be,
just as there was in zeroeth order logic. As an example, consider the state-
ment

{(∀𝑥.{∀𝑦.[(𝑓 𝑥) ⊃ (𝑓 𝑦)]}) ⊃ ({∀𝑥.(𝑓 𝑥)} ∨ {∀𝑥.[¬(𝑓 𝑥)]})}.
Suppose itwere false in at least one interpretation. As before this is (𝑃 ⊃ 𝑄)
statement and for it to be false we’d need 𝑃 to be true and 𝑄 to be false. So
we take (∀𝑥.{∀𝑦.[(𝑓 𝑥) ⊃ (𝑓 𝑦)]}) to be true and ({∀𝑥.(𝑓 𝑥)} ∨ {∀𝑥.[¬(𝑓 𝑥)]})
to be false. The second of these statements is of the form (𝑃 ∨ 𝑄). For it to
be false both 𝑃 and 𝑄 must be, so in this case {∀𝑥.(𝑓 𝑥)} and {∀𝑥.[¬(𝑓 𝑥)]}
must be false. For {∀𝑥.(𝑓 𝑥)} to be false there must be an 𝑎 such that (𝑓 𝑎)
is false. Similarly, for {∀𝑥.[¬(𝑓 𝑥)]} there must be a 𝑏 such that [¬(𝑓 𝑏)] is
false, and hence such that (𝑓 𝑏) is true.
Note that we had to use a new name for this second parameter. It
wouldn’t have been legitimate to call it 𝑎 since 𝑎 was the value that made
(𝑓 𝑎) and while we know there are values which make each expression
false individually there’s nothing to assure us that a single value will make
both false. If you look back at the previous proof you’ll see a superficially
similar situation, where we first said that if [∃𝑥.(𝑓 𝑥)] is true then there is
some 𝑎 such that 𝑓 𝑎 and then said that if (∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]}) is true then
{¬[(𝑓 𝑎) ∨ (𝑔𝑎)]}. I used the same parameter 𝑎 for both statements. That
was legitimate though, since the second statement was about all values
and so applies in particular to the value 𝑎 chosen previously. So in that
case I was allowed to reuse the parameter. I wasn’t required to though. I
could have said that if (∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]}) is true then {¬[(𝑓 𝑏) ∨ (𝑔𝑏)]}.
That would also have been legitimate, but it wouldn’t have led to the
contradiction I was looking for.
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After that digression let’s return to our proof. To summarise where we
are, (∀𝑥.{∀𝑦.[(𝑓 𝑥) ⊃ (𝑓 𝑦)]}) is true, (𝑓 𝑎) is false, and (𝑓 𝑏) is true. We use
the first of these to conclude that {∀𝑦.[(𝑓 𝑏) ⊃ (𝑓 𝑦)]} is true. I’m allowed to
reuse the parameter 𝑏 here because the quantifier is universal and the state-
ment is true. I could also have reused 𝑎. That wouldn’t have accomplished
much though since (𝑓 𝑎) is false the statement [(𝑓 𝑎) ⊃ (𝑓 𝑦)] wouldn’t tell us
anything. (𝑓 𝑏) on the other hand is true, so the statement [(𝑓 𝑏) ⊃ (𝑓 𝑦)]does
tell us something. I could also have chosen an entirely new parameter and
concluded that {∀𝑦.[(𝑓 𝑐) ⊃ (𝑓 𝑦)]}. That also wouldn’t have accomplished
much though, so we’ll stick with {∀𝑦.[(𝑓 𝑏) ⊃ (𝑓 𝑦)]}. From it we can derive
[(𝑓 𝑏) ⊃ (𝑓 𝑎)]. Again I had a choice of parameters and this time I chose 𝑎 to
substitute for 𝑦. I could have chosen 𝑏 instead, or an entirely new parame-
ter. But I didn’t. It’s at this point that we need to branch the argument since
there are two ways that [(𝑓 𝑏) ⊃ (𝑓 𝑎)] could be true. (𝑓 𝑏) could be false or
(𝑓 𝑎) could be true. We’ve already seen though that (𝑓 𝑏) is true and (𝑓 𝑎) is
false. So the assumption that

{(∀𝑥.{∀𝑦.[(𝑓 𝑥) ⊃ (𝑓 𝑦)]}) ⊃ ({∀𝑥.(𝑓 𝑥)} ∨ {∀𝑥.[¬(𝑓 𝑥)]})}

is false is seen to be untenable. It is therefore a valid formula.

Tableaux for first order logic
Even though we can’t apply the method of truth tables to first order logic
we can still apply the method of analytic tableaux. As with zeroeth order
logic these are essentially just bookkeeping devices to keep from getting
confused in formal arguments like the ones above.
The tableaux rules for the logical operators remain the same but we need
new rules for quantifiers.

[∀𝑉.(𝑃𝑉)]
(𝑃𝐴)

[∃𝑉.(𝑃𝑉)]
(𝑃𝐵)

[∀𝑉.(𝑃𝑉)]
(𝑃𝐵)

[∃𝑉.(𝑃𝑉)]
(𝑃𝐴)

The notational conventions are as discussed previously but in this case 𝐴
stands for anyparameter but𝐵 stands for any newparameter, i.e. onewhich
has not been used previously in the tableau. 𝑃𝑉 stands for any expression

96



and 𝑃𝐴 or 𝑃𝐵 stand for the same expression but with all free occurrences
of the variable denoted by 𝑉 replaced by the parameter denoted by 𝐴 or
the parameter denoted by 𝐵, respectively.
So if we have the expression [∀𝑥.(𝐹𝑥)] on the left hand side of the verti-
cal bar we’d be allowed to write (𝐹𝑎) to the left of the bar. We’d also be
allowed to write (𝐹𝑏) or 𝐹 followed by any other parameter. But this rule
isn’t restricted to unary predicates. It applies to any expression. If, for ex-
ample, we had the expression to the left of the bar {∀𝑥.[(𝑔𝑤𝑥) ⊃ (ℎ𝑥𝑦)]}
then we could write [(𝑔𝑤𝑎) ⊃ (ℎ𝑎𝑦)] to the left. This is the tableau coun-
terpart of saying “We know that [(𝑔𝑤𝑥) ⊃ (ℎ𝑥𝑦)] for all 𝑥 so in particular
[(𝑔𝑤𝑎) ⊃ (ℎ𝑎𝑦)].”
The rule for a ∃ on the left is similar, but the counterpart in an informal
proof is now “We know there is at least one 𝑥 such that [(𝑔𝑤𝑥) ⊃ (ℎ𝑥𝑦)].
Let 𝑎 be such an 𝑥. Then [(𝑔𝑤𝑎) ⊃ (ℎ𝑎𝑦)].” This explains reason for the
restriction to new parameters, which we already met in the second of our
two informal proofs above. As another example of this phenomenon, if we
have the statements “there is at least one even number” and “there is at
least one one odd number” then we can legitimately say “Let 𝑎 be an even
number and let 𝑏 be an odd number”. We couldn’t legitimately say “Let 𝑎
be an even number and let 𝑎 be an odd number” and then conclude that
some number is simultaneously even and odd.
The rules to the right of the bar are similar. The only way a universal state-
ment can be false is if there is at least one counterexample. The correspond-
ing tableau rule allows us to name that counterexample with a parameter.
It has to be a new parameter because we have no right to assume it is equal
to any previously named value. For a universal statement there is no such
restriction. If a universal statement is false then every instance of it is false,
so it will be false for any previously named value as well.
The restriction to names which have never appeared in the tableau for the
two rules where we made such a restriction is in fact unnecessarily drastic.
It would have been enough to require that the parameter does not appear
anywhere in that branch rather than in the tableau as a whole.
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Example tableaux
The tableaux corresponding to the two informal proofs above are given
below.

Figure 8: Tableau to check that {[∃x.(fx)]⊃[¬(∀x.{¬[(fx)∨(gx)]})]} is
valid

Figure 9: Tableau to check that {(∀x.{∀y.[(fx)⊃(fy)]})⊃({∀x.(fx)}∨{∀x.[¬(fx)]})}
is valid

Tableaux as nondeterministic computations
As in zeroeth order logic themethod of analytic tableaux in first order logic
can be thought of in terms of nondeterministic computation. There the or-
der in which the rules are applied turned out to be relevant only in the
sense that some orders gave an answer faster than others. Here the situa-
tion is unfortunately more complicated. There’s no guarantee, for example
that the method ever terminates. In zeroeth order logic this was guaran-
teed by two facts: that all tableaux rules result in statements of lower de-
gree than what we start with and that only finitely many–in fact at most
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two–statements can be derived from any statement. The first of these is
still true for tableaux in first order logic but the second is not. Our rules for
quantifiers can be used to derive infinitely many statements from a single
one, just by using a different parameter each time.
Even when the tableau can be made to terminate after finitely many steps
a poor set of choices can result in it not terminating. In our first example
we derived (𝑓 𝑎) from [∃𝑥.(𝑓 𝑥)], for example. Instead of proceeding as I did
above I could then have derived (𝑓 𝑏) and then (𝑓 𝑥), etc., never arriving at
a contradiction.
The tableaux method for first order logic is more like the parsing prob-
lem where we first met nondeterministic computation than it is like the
tableaux method for zeroeth order logic. As happened in that problem
we can replace the nondeterministic computation by a deterministic one
by calculating all paths the nondeterministic calculation could take. As
happened there, this deterministic calculation will terminate successfully
in finite time if the nondeterministic one could terminate successfully in
finite time. Also as happened there, there is no guarantee that it will termi-
nate unsuccessfully in finite time if it can’t terminate successfully. It could
just run forever.
There is one complication here that we didn’t meet in the parsing problem.
There there were only finitelymany options at each step. Here therewill be
infinitely many if we are able to apply our quantifier rules, since there are
always infinitely many parameters to choose from. This problem is more
apparent than real though. If we choose a new parameter then it doesn’t
really matter which one we choose. If we choose a different one then the
rest of the computation will proceed exactly the same, just with some pa-
rameters replaced by others. Whether it terminates, and if so whether it
terminates successfully, will remain unchanged. So instead of following
all possible substitutions by a parameter we can follow just a single new
parameter and, in the two cases where it’s allowed, substitution of a pa-
rameter already used in the tableau, of which there are only finitely many
at each stage.
In this way we obtain an algorithm which is guaranteed to prove any valid
statement in finite time. It can prove some invalid statements invalid in
finite time as well, but is not guaranteed to do so.
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Natural deduction for first order logic
It’s possible to extend the natural deduction system we built for zeroeth
order logic to first order logic by introducing new rules of inference, to
include quantifiers. Writing down sound rules is more difficult than you
might expect. At least one textbook, which I will not name, went through
multiple editions, each with a different unsound set of rules, before finally
finding a correct set.
We need four rules of inference, which correspond to the four tableau rules.
The ones corresponding to the twounrestricted tableau rules aremostly un-
problematic. One rule says that from a statement of the form [∀𝑉.(𝑃𝑉)]
we can deduce one of the form (𝑃𝐴) and the other says that from a state-
ment of the form (𝑃𝐴) we can deduce one of the from [∃𝑉.(𝑃𝑉)]. The first
of these is an exact translation of one of our tableau rules and the second
can be thought of as the contrapositive of another of our rules.
There is one subtlety of these rules which should be pointed out. Apply-
ing those two rules in the order stated takes us from [∀𝑉.(𝑃𝑉)] to (𝑃𝐴)
to [∃𝑉.(𝑃𝑉)]. If we allowed interpretations where the domain is empty
then these rules would be unsound. [∀𝑉.(𝑃𝑉)] would always be true, no
matter which variable and expression 𝑉 and 𝑃 represent because a univer-
sal statement is true unless there is some counterexample in the domain
and an empty domain can contain no counterexample. On the other hand
[∃𝑉.(𝑃𝑉)] is false, again no matter which variable and expression 𝑉 and
𝑃 represent, because an existential statement can only be true if there is an
example in the domain and there can be no example in an empty domain.
If you want something like first order logic but which is applicable to do-
mains which are not known in advance to be non-empty then you need in-
clusive logic, which has a different set of rules of inference for quantifiers,
rather than first order logic. Inclusive logic is also known as universally
free logic or just free logic, although the latter name is dangerous because
is is also used for something intermediate between inclusive logic and first
order logic.
Besides not assuming the domain is non-empty inclusive logic also allows
for parameters which might not refer to any element of the domain. This is
more useful than it sounds. You can’t safely apply first order logic to a lan-
guagewhich includes phrases like “the current king of France” but it’s hard
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to build a language which excludes such phrases but includes “the current
king of Norway”, who does exist. English certainly makes no attempt to
do prevent references to things which don’t exist and therefore essentially
all “real world” examples you find in logic textbooks are suspect. Stan-
dard mathematical language also allows provides names for non-existent
objects, like the quotient of a number by zero, the value of a function at
a point not in its domain, the limit of a sequence which doesn’t converge,
etc. Mathematicians go ahead and apply first order logic to mathematics
anyway, and in fact I’ll do so in the next chapter with elementary arith-
metic. That particular application will be harmless because the particular
language I’ll use for arithmetic won’t allow references to non-existent ob-
jects. It will have, for example, a symbol for multiplication but none for
division. It’s hard to do that in any setting more complicated than ele-
mentary arithmetic though so there is a real mismatch between modern
mathematical language and the first order logic which supposedly forms
the basis of mathematical reasoning.
The two rules of inference above are still relatively unproblematic com-
pared to the other two quantifier rules though. The rules in question are
variants of the rule of fantasy, but one of them doesn’t introduce any hy-
pothesis! Roughly we would like to say, for example, that if we enter a new
scope andmanage to derive the statement (𝑃𝐴) within it then we can leave
that scope and have the statement [∀𝑉.(𝑃𝑉)] in the outer scope. The idea
underlying this is that if we can prove 𝑃𝑎 without making any assumptions
on 𝑎 then 𝑃 should be true universally. The problem with this is similar to
the one we encountered in zeroeth order logic with the rule of substitution
and the solution is somewhat similar. We have to restrict our use inside
the scope of variables from outside the scope. In this case we need to avoid
using statements in which the parameter 𝑎 appears. Otherwise we’ve not
kept to the “without making any assumptions on 𝑎” part of the justification
for the rule. Or we could allow the use of such statements, but with the re-
quirement that all occurrences of 𝑎 be replaced by some new parameter.
There is a similar rule of inference corresponding to our remaining tableau
rule. If we have a statement in scope of the form [∃𝑉.(𝑃𝑉)] then this rule al-
lowsus to introduce a hypothesis (𝑃𝐴). Whenwedischarge this hypothesis
we can conclude [(𝑃𝐴) ⊃ 𝑄], provided two restrictions aremet. The first is
the same as in the previous rule: the variable represented by 𝑉 should not
occur in any of the statements we use from any wider scope. The second
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restriction is that it should also not occur in 𝑄.

Soundness, consistency and completeness of first order logic
The formal system described above is sound for any interpretation of the
type discussed earlier. This implies consistency as well. It is also complete.
The easiest way to prove this is by giving an algorithm for converting a
closed tableau into a proof in the natural deduction system. We’ve already
seen how to find, in finite time, a closed tableau for any valid statement so
every valid statement has a proof. If you like complete systems you should
take a moment to enjoy this fact before reading further. This is the last
complete system we will see.

Elementary arithmetic
Logic has been described as “the subject in which nobody knows what one
is talking about, nor whether what one is saying is true.” This means in
logic we don’t analyse the content of statements, or even have a way of
expressing that content, we’re just concerned with how those statements
are connected.
It’s time to startmaking statementswith actual content. We’ll do this in two
settings, elementary arithmetic and set theory. We’ll start with elementary
arithmetic because it’smore familiar, although formal proofs in elementary
arithmetic may not be.

A language for arithmetic
Our language for this is given by the grammar
statement : bool_exp ;
bool_exp : ( ¬ bool_exp) | ( bool_exp b_operator bool_exp )

| ( quantifier variable . bool_exp )
| ( num_exp relation num_exp ) ;
| [ ¬ bool_exp) | [ bool_exp b_operator bool_exp )
| [ quantifier variable . bool_exp )
| [ num_exp relation num_exp ) ;
| { ¬ bool_exp} | { bool_exp b_operator bool_exp }
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| { quantifier variable . bool_exp }
| { num_exp relation num_exp } ;

b_operator : ∧ | ∨ | ⊃ ;
quantifier : ∀ | ∃ ;
variable : letter | variable ! ;
variable : v | w | x | y | z ;
relation : = | ≤ ;
num_exp : 0 | variable | num_exp ' | ( num_exp a_operator num_exp ) ;
a_operator : + | · ;
There are now two types of expressions, boolean and numerical. The nu-
merical ones are meant to have natural numbers as values. The ’ takes a
numerical expression and increments it. We sometimes refer to 𝑥′ as the
successor of 𝑥.
This language doesn’t allow the usual decimal notation for natural num-
bers so the way to represent the natural numbers we’d normally call 0, 1, 2,
3, … is as 0, 0’, 0’‘, 0’’‘, etc. We can also add and multiply numerical expres-
sions, which gives us a few more options. So we don’t have to represent
2023 as a 0 followed by 2023 apostrophes, for example. We could also write
it as

(0‴ + {[0′ + ({0″ + [(0‴ + {[0‴ + (0′ · 0⁗)] · 0⁗}) · 0⁗]} · 0⁗) · 0⁗)] · 0⁗}).

If you’rewonderingwhere this came from it’s just the base 4 representation

(3 + {[1 + ({2 + [(3 + {[3 + (1 · 4)] · 4}) · 4]} · 4)] · 4})

with 1, 2, 3 and 4 replaced by 0’, 0’‘, 0’’‘, and 0’’’‘. There’s nothing special
about 4. We could have used decimal instead but it’s hard to look at 0’’’’’’’’’’
and see what number it is. We could also have used binary but then the
expression would be quite long, though not nearly as long as a 0 followed
by 2023 apostrophes!
It would have been possible to use decimal or binary representations di-
rectly but then we’d have build much of elementary arithmetic into the
axioms and rules of inference. This can be done, as we saw when we con-
sidered languages expressing divisibility properties. In addition to requir-
ing a very complicated set of rules of inference that approach would miss
the point. We want to build a formal system in which to prove statements
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in elementary arithmetic. If we need to assume large parts of elementary
arithmetic to show that our rules of inference are sound then what’s the
point? It’s better to assume as little prior knowledge of arithmetic as we
can get away with.
New to this module, but presumably familiar, are the binary relations =
and ≤. They take a pair of numerical expressions and give a Boolean ex-
pression. This is unlike the Boolean operators, which combine Boolean
expressions to give a Boolean expression or the arithmetic operators + and
· which combine numerical expressions into numerical ones.
Other than this our language for arithmetic is borrowed from first order
logic, but the role of predicates is now played by Boolean expressions and
the role of parameters is played by numerical expressions.
If you’re wondering why the subtraction and division operators are miss-
ing, that’s a consequence of using first order logic. First order logic, asmen-
tioned earlier, does not cope well with names for non-existent objects. We
would quickly encounter problems if we allowed expressions like 0 − 0′ or
0′/0 into our language. Of course 0 − 0′ exists, but not as a natural number.
There is some redundancy in this language. We would suffer no loss of
expressiveness if we removed the ≤ relation, for example. The statement

(𝑥 ≤ 𝑧),

for example, has the same meaning as

{∃𝑦.[(𝑥 + 𝑦) = 𝑧]},

since 𝑥 ≤ 𝑧 if and only if there is a natural number 𝑦 such that 𝑥 + 𝑦 = 𝑧.

Expressing more complex ideas
All of elementary arithmetic can be expressed in this language, but some-
times a bit of ingenuity is required. Sometimes this is relatively straight-
forward. We don’t have a < sign, for example, but we can still express the
idea that 𝑥 < 𝑧. In fact we can do so in many different ways, including

• (𝑥′ ≤ 𝑧),
• {(𝑥 ≤ 𝑧) ∧ [¬(𝑥 = 𝑧)]},
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• [¬(𝑧 ≤ 𝑥)], and
• {∃𝑦.[(𝑥 + 𝑦′) = 𝑧]}.

We can also compensate for the lack of subtraction and division signs.
𝑥 = 𝑧 − 𝑦 can be expressed as [(𝑥 + 𝑦) = 𝑧]. The second statement implies
(𝑦 ≤ 𝑧), without which the first wouldn’t make sense. Similarly, 𝑥 = 𝑧/𝑦
can be expressed as [(𝑥 · 𝑦) = 𝑧].
Knowing that statements about division can be expressed via statements
about multiplication we can see how to express divisibility. The condition
that 𝑧 is divisible by 𝑥, i.e. that 𝑥 is a divisor of 𝑧, for example, can be ex-
pressed as {∃𝑦.[(𝑥 · 𝑦) = 𝑧]}.
We can also express primality. The following sentence is one way of saying
that 𝑧 is prime:

{[∀𝑥.(∀𝑦.{[(𝑥 · 𝑦) = 𝑧] ⊃ [(𝑥 = 𝑧) ∨ (𝑦 = 𝑧)]})] ∧ (0″ ≤ 𝑧)}.

As with all statements, this one is best understood by breaking it into
smaller phrases. Starting with

[∀𝑥.(∀𝑦.{[(𝑥 · 𝑦) = 𝑧] ⊃ [(𝑥 = 𝑧) ∨ (𝑦 = 𝑧)]})]

we can peel off the universal quantifiers and and ask when

{[(𝑥 · 𝑦) = 𝑧] ⊃ [(𝑥 = 𝑧) ∨ (𝑦 = 𝑧)]}

is true. This means if [(𝑥 · 𝑦) = 𝑧], i.e. if 𝑧 is the product of 𝑥 and 𝑦, then
[(𝑥 = 𝑧) ∨ (𝑦 = 𝑧)], i.e. at least one of 𝑥 or 𝑦 is equal to 𝑧. Since the only
way to write a prime as a product of natural numbers is 1 times itself, in
either order, the statement

[∀𝑥.(∀𝑦.{[(𝑥 · 𝑦) = 𝑧] ⊃ [(𝑥 = 𝑧) ∨ (𝑦 = 𝑧)]})]

is true whenever 𝑧 is prime. There are two non-prime values of 𝑧 for which
the statement above is true though, 0 and 1. To exclude these we add the
additional condition

(0″ ≤ 𝑧),
which ensures that 𝑧 is greater than or equal to 2.
We can express even more complicated thoughts. We can say, for example,
that there are infinitely many primes. It’s not immediately obvious how to
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do this. We’ve just seen how to express the fact that any particular number
is prime but how can we make a statement about infinitely many numbers
in language which doesn’t have a notation for sets or infinity? There is a
standard trick for this. To say that there are infinitely many primes we say
that for every number 𝑤 there is a prime number 𝑧 greater than or equal to
𝑤. In our language this is

{∀𝑤.[∃𝑧.({𝑤 ≤ 𝑧}∨{[∀𝑥.(∀𝑦.{[(𝑥·𝑦) = 𝑧] ⊃ [(𝑥 = 𝑧)∨(𝑦 = 𝑧)]})]∧(0″ ≤ 𝑧)})]}.

Arithmetic subsets
Some subsets of the natural numbers can be described by statements in
one or the other of our two languages. As we just saw, the set of prime
numbers can be expressed by such a statement. Some cannot be described
by any statement in our language though. A simple proof of this fact will
be presented in the set theory chapter. A set which can be described by a
statement is called arithmetic. The accent is on the third syllable, in contrast
to its use in phrases like “elementary arithmetic”, where the accent is on
the second syllable.
Note that sets of numbers are not part of our language. The closest we have
is Boolean expressions with one free variable. We can think of the set of
values of the variable which make that expression true but we can’t assign
a name to that set within our language.
An example of an arithmetic set is the set of powers of 2. Our language
doesn’t have any notation for exponentiation so we can’t just say 𝑧 is a
power of 2 if there is some 𝑦 such that 𝑧 = 2𝑦. Instead we can observe that
if 𝑧 is a power of 2 then every divisor of 𝑧 is either 1 or is a multiple of
2, and conversely that every 𝑧 with this property is a power of 2. This is
something we can translate into our language. 𝑥 is a divisor of 𝑧 translates
as

{∃𝑦.[(𝑥 · 𝑦) = 𝑧]}.
𝑥 is 1 is just (𝑥 = 0′). 𝑥 is a multiple of 2 is

{∃𝑦.[𝑥 = (0″ · 𝑦)]}.

So every divisor of 𝑥 is either 1 or a multiple of 2 translates as

[∀𝑥.({∃𝑦.[(𝑥 · 𝑦) = 𝑧]} ⊃ [(𝑥 = 0′) ∨ {∃𝑦.[𝑥 = (0″ · 𝑦)]}])].
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Another example of an arithmetic set is the set of Fibonacci numbers, al-
though proving this will require more work. Let 𝑓𝑛 be the 𝑛’th Fibonacci
number, defined recursively by

𝑓0 = 0, 𝑓1 = 1, 𝑓𝑛+2 = 𝑓𝑛 + 𝑓𝑛+1.

For 𝑛 = 1 we have
𝑓 2
𝑛+1 = 𝑓𝑛𝑓𝑛+2 + (−1)𝑛.

Suppose that the equation above holds for 𝑛 = 𝑚, i.e. that

𝑓 2
𝑚+1 = 𝑓𝑚𝑓𝑚+2 + (−1)𝑚.

Then

𝑓𝑚+3𝑓𝑚+1 = (𝑓𝑚+2 + 𝑓𝑚+1)𝑓𝑚+1
= 𝑓𝑚+2𝑓𝑚+1 + 𝑓 2

𝑚+1
= 𝑓𝑚+2𝑓𝑚+1 + 𝑓𝑚𝑓𝑚+2 + (−1)𝑚

= 𝑓𝑚+2(𝑓𝑚+1 + 𝑓𝑚) + (−1)𝑚

= 𝑓𝑚+2𝑓𝑚+2 + (−1)𝑚

= 𝑓 2
𝑚+2 − (−1)𝑚+1

and therefore
𝑓 2
𝑚+2 = 𝑓𝑚+3𝑓𝑚+1 + (−1)𝑚+1.

So
𝑓 2
𝑛+1 = 𝑓𝑛𝑓𝑛+2 + (−1)𝑛

is true alsowhen 𝑛 = 𝑚 + 1. Since it holds for 𝑛 = 0 andholds for 𝑛 = 𝑚 + 1
whenever it holds for 𝑛 = 𝑚 it must hold for all 𝑛, by induction. Now

𝑓𝑛+2 = 𝑓𝑛 + 𝑓𝑛+1

so we can rewrite our relation above as

𝑓 2
𝑛+1 = 𝑓𝑛(𝑓𝑛 + 𝑓𝑛+1) + (−1)𝑛.

Consider the case where 𝑛 is even, i.e. 𝑛 = 2𝑘, and let

𝑥𝑘 = 𝑓2𝑘, 𝑦𝑘 = 𝑓2𝑘+1.
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Then the equation above becomes

𝑦𝑘 = 𝑥𝑘(𝑥𝑘 + 𝑦𝑘) + 1.

Suppose 𝑧 is a Fibonacci number. Then 𝑧 = 𝑥𝑘 or 𝑧 = 𝑦𝑘 for some value of
𝑘. So, in our language for elementary arithmetic,

[∃𝑥.(∃𝑦.{(𝑦 · 𝑦 = {[𝑥 · (𝑥 + 𝑦)] + 1}) ∧ [(𝑧 = 𝑥) ∨ (𝑧 = 𝑦)]})].

We’ve just seen that if 𝑧 is a Fibonacci number then it makes this statement,
with our usual interpretation, true. The converse is true as well, although
that’s even harder to prove, and I’ll skip this part. So the Fibonacci numbers
are described by a statement in our language and so are an arithmetic set.
There is something a bit unsatisfying about the arguments which showed
that the powers of two and the Fibonacci numbers are arithmetic. For one
thing, we seem to be puttingmore arithmetic into our language thanwe are
getting out of it. Both sequences are very easy to define but in order to show
that their elements are an arithmetic set we needed to borrow some facts
from number theory which are considerably deeper thanwe’d need for the
definitions. The other problem is that it’s not clear how to generalise those
arguments to other simple sequences, even very closely related ones. We
could, for example, use the argument above with only very minor changes
to show that the powers of 3 or of 5 are arithmetic sets. For powers of 4 we
can use the fact that a number is a power of 4 if and only if it is the square
of a power of 2. What about powers of 6, though?
It would be nice to have a general principle saying that, if we can define
a sequence within our language, for example by specifying the initial ele-
ment and a rule for getting from each element to the next, like “start from
1 and keep multiplying by 6”, then the set of values should be arithmetic.
It’s possible to do this, but it requires a great deal of preliminary work.

Encoding
We can encode any formal language into natural numbers. There are in fact
a number of ways to do this. The simplest, which works when the number
of tokens is finite, is to let 𝑏 be the number of tokens, assign each token to
one of the “digits” 1, 2, …, 𝑏, anduse the base 𝑏 + 1 representation of natural
numbers. In more detail, given an element of the given language, i.e. a
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list of tokens which belongs to the language, we replace each token by the
corresponding digit and view the result as a natural number represented
in base 𝑏 + 1. In the other direction, given a natural numberwe can form its
base 𝑏 + 1 representation, which is a list of digits, and, if the digit 0 does not
appear, we can replace those digits by the corresponding tokens, obtaining
a list of tokens. This list may or may not be an element of the language.
This is, of course, the reverse of the process by which we generated natural
numbers from lists of tokens. In thiswaywe can identify the languagewith
a subset of the natural numbers.
You may wonder why I used base 𝑏 + 1 and avoided using the 0 digit in
the encoding above. The reason is technical. If we allowed 0 and the cor-
responding token is one which could occur as the initial token in an ele-
ment of the language then the natural number representation of that string
would startwith a 0. Removing that 0would giveme the samenatural num-
ber, but corresponding to a shorter list of tokens, which might or might not
be an element of the language but certainly isn’t the same element of the
language. Our encoding therefore would be lossy; it would be impossible
to recover lists of tokens uniquely from natural numbers. Since we can’t
use 0 as a digit we have to use base 𝑏 + 1 rather than base 𝑏.
As an example of the encoding above, consider the element (()(())) in
the language of balanced parentheses. This language has two tokens so
we we use base 3. Associating ( to 1 and ) to 2 we replace (()(())) by
11211222, which is the base 3 representation of the number whose decimal
representation is 3536. So this number is the encoding of (()(())).
The method above can be modified to cope with languages with infinitely
many tokens, provided the set of tokens is countable, a term which will be
defined in the next chapter. All the languages we’ll encode will have only
finitely many tokens though.
There are other ways to encode languages as natural numbers. The precise
encoding chosen doesn’t affect the validity of anything I’ll write below, al-
though some encodings make proofs easier and some make them harder.
The particular encoding described above is simple but tends tomake proofs
hard. I generally won’t be providing proofs though so it’s not worth the ef-
fort of setting up an encoding which is better adapted providing proofs.
The most important thing to know about encodings of languages is that
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if the language is defined by a phrase structure grammar then the set of
natural numbers corresponding to lists in the language is arithmetic. This
is quite painful to prove, unfortunately.

Encoding arithmetic in arithmetic
The construction described above is applicable to any context free language.
Our language for arithmetic is a context free language so we can encode
it in the manner just described. This means we are encoding statements
about the natural numbers as natural numbers.
There are a number of useful things this allows us to do. One is to im-
plement the idea discussed at the end of the section on arithmetic sets of
showing that any sequence we can define in our language gives rise to an
arithmetic set. The key idea is that encoding gives us a way to represent
the concept “can define in our language” within the our language. Previ-
ously we’ve scrupulously maintained the distinction between statements
within a language and statements about that language, and that distinction
remains important, but in the case of arithmetic we can now start finding
proxies within the language for statements about the language.

A formal system for arithmetic
As mentioned earlier, a formal system consists of a language, a set of ax-
ioms, and a set of rules of inference. We have a language for arithmetic but
we don’t yet have axioms or rules of inference. There are a variety of possi-
ble choices which tend to known collectively as Peano arithmetic, after the
first person to introduce such a system. The particular version used below
is essentially that of Hofstadter.
There are two types axioms and rules of inference, logical axioms and rules
of inference and arithmetic axioms and rules of inference.
For the logical part we’ll just borrow from the system we’ve already devel-
oped. The only change is that in place of parameters we now have numeri-
cal expressions and instead of predicateswe nowhave Boolean expressions.
In other words, in place of a first order logic statement like

{[∃𝑥.(𝑓 𝑥)] ⊃ [¬(∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]})]}
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we have statements like

{[∃𝑥.(∃𝑦.{𝑥 = 𝑦 + 𝑦})] ⊃ [¬(∀𝑥.{¬[(∃𝑦.{𝑥 = 𝑦 + 𝑦}) ∨ (∃𝑦.{𝑥 = 𝑦′})]})]}.

We’ve replaced the generic predicates (𝑓 𝑥) and (𝑔𝑥) with the specific ex-
pressions (∃𝑦.{𝑥 = 𝑦 + 𝑦}) and (∃𝑦.{𝑥 = 𝑦′}). The first is the translation
into our language of the statement that 𝑥 is even and the second is the trans-
lation of the statement that 𝑥 is positive. We could have replaced themwith
any other Boolean expressions. Indeed that’s the point of logic: to deter-
mine which statements are universally true simply because of their form,
without reference to the meaning of their components.
The rules of inferencewhich dealwith quantifiers involve introducing elim-
inating parameters. As stated above, numerical expressions take the role
of parameters. Those expressions could be variables or could bemore com-
plicated expressions.
For example, one of our arithmetic axioms will be

[∀𝑥.{∀𝑦.[(𝑥 + 𝑦)′ = (𝑥 + 𝑦′)]}]

One of our rules for quantifiers in first order logic allowed us to take a
universal quantifier followed by a variable and an expression, remove the
quantifier and variable, and replace all free occurrences of the variable in
the expression with a parameter. We can do the same in arithmetic, except
now we need to replace the variable with a numerical expression, like 0″.
So from the axiom above we can deduce

{∀𝑦.[(0″ + 𝑦)′ = (0″ + 𝑦′)]}.

The terminology may be unfamiliar but the underlying idea should not be:
since we have a statement which is true for all natural numbers 𝑥 it is true
in particular for 2, a.k.a. 0″.
Other than the two changes described above, for parameters and predi-
cates, the logical structure is just that of first order logic. What’s new is the
arithmetic axioms and rules of inference.
We’ll use the following five axioms for arithmetic:

1. {∀𝑥.[¬(𝑥′ = 0)]}
2. {∀𝑥.[(𝑥 + 0) = 𝑥]}
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3. (∀𝑥.{∀𝑦.[(𝑥 + 𝑦′) = (𝑥 + 𝑦)′]})
4. {∀𝑥.[(𝑥 · 0) = 0]}
5. [∀𝑥.(∀𝑦.{(𝑥 · 𝑦′) = [(𝑥 · 𝑦) + 𝑥]})]

Before reading further you might find it useful to translate each of these
into words and convince yourself that it’s true.
The first axiom says that there’s no natural number which, when incre-
mented, gives 0, i.e. that 0 is not the successor of any natural number. The
second says that 0 is an identity element for addition, or at least is a right
identity element. The fact that it’s a left identity element as well will be a
theorem rather than an axiom The third axiom tells us that incrementing
a sum is the same as incrementing one of the summands, specifically the
second summand. The fact that incrementing the first summand would
also work is again a theorem rather than an axiom. The second and third
axioms together are best thought of as a recursive definition of addition. If
we know how to add 0 to a number and know how to add the successor of
any number to a number then we know how to add any number to it. The
fourth axiom tells us that 0 multiplied by anything is still 0. Again, there’s
a counterpart with the multiplicands in the other order which will be a
theorem rather than an axiom. The fourth and fifth axioms are essentially
a recursive definition of multiplication. The fourth axiom tells us how to
multiply by 0 and the fifth axiom allows us to get, one step at a time, from
multiplication by 0 to multiplication by any natural number.
There are also some arithmetic rules of inference.

1. From a statement of the form (𝑋 = 𝑌) we can deduce (𝑌 = 𝑋).
2. From statements of the form (𝑋 = 𝑌) and (𝑌 = 𝑍) we can deduce

(𝑋 = 𝑍).
3. From a statement of the form (𝑋 = 𝑌) we can deduce (𝑋′ = 𝑌′).
4. From a statement of the form (𝑋′ = 𝑌′) we can deduce (𝑋 = 𝑌).
5. Suppose 𝑉 is a variable and 𝑃 is a Boolean expression. Let 𝑄 be 𝑃

with all free occurrences of 𝑉 replaced by 0 and let 𝑅 be 𝑃 with all
free occurrences of 𝑉 replaced by 𝑉′. From 𝑄 and [∀𝑉.(𝑃 ⊃ 𝑅)] we
can deduce (∀𝑉.𝑃).

The first two rules of inference say that equality is reflexive and transitive.
The third is a special case of a general principle that if two quantities are
equal then the results of applying the same operation to both are also equal.
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The particular special case is that where the operation in question is incre-
menting. The converse of the general principle is not true in general. It’s
not true, for example, that if two numbers give the sameproductwhenmul-
tiplied by 0 then they are equal. The converse does hold for incrementing
though: if two numbers have the same successor then they are equal.

Induction
The fifth rule of inference is the formal version of the principle of mathe-
matical induction, which we used once already informally in showing that
the Fibonacci numbers form an arithmetic set. My preferred way of think-
ing about the principle of mathematical induction is as the statement that
every non-empty set of natural numbers has a least element.
To see why this minimum principle implies the rule above consider the set
of natural numbers which, when substituted for all free occurrences of 𝑉
in 𝑃, yield a false statement. If there are any then there’s a least one. It can’t
be 0 because 𝑄 is true. If it’s not zero then it’s the successor of some natu-
ral number. Call that number 𝑥. So substituting 𝑥′ for 𝑉 in 𝑃 gives a false
statement. But 𝑥′ was the least number with this property so substituting
𝑥 would give a true statement. Substituting 𝑥′ for 𝑉 in 𝑃 is the same as sub-
stituting 𝑥 for 𝑉 in 𝑅 though and we have [∀𝑉.(𝑃 ⊃ 𝑅)]. Substituting 𝑥 for
𝑉 in this, which we are allowed to do by one of logical rules of inference
for quantifiers, would give a contradiction, so our assumption that there is
an integer which, when substituted into 𝑃 for 𝑉 makes the statement false
is incorrect. In other words, substituting any value for 𝑉 gives a true state-
ment. But that’s the same as saying that (∀𝑉.𝑃) is true. So the minimum
principle implies the principle of mathematical induction.
The reverse implication works as well. Suppose we have a set of natural
numbers with no least element. Let 𝑃 be the statement that no natural
number less than the value represented by 𝑉 belongs to the set. This is vac-
uously true when 0 is substituted for 𝑉. Suppose it’s true for some other
value. Then this value does not belong to the given set. If it did then it
would be the least element of the set because the statement 𝑃 tells us that
no smaller number belongs to the set. Since there is no least element this
can’t happen so the value 𝑉 is not in the set. But then all numbers smaller
than the value 𝑉′ are not in the set so from 𝑃 we can deduce 𝑃 with 𝑉 re-
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placed by 𝑉′, i.e. the statement we previously called 𝑅. So we now have 𝑄
and [∀𝑉.(𝑃 ⊃ 𝑅)] and therefore, by the principle of mathematical induc-
tion, (∀𝑉.𝑃). But 𝑃 is the statement that no number less than 𝑉 belongs to
the set. This holdswith 𝑉 replaced by any numerical expression, including
𝑥′, where 𝑥 is a variable. So no number less than 𝑥′; 𝑜 belongs to the set and
in particular 𝑥 does not belong to the set. This holds for all natural numbers
𝑥 so no natural number belongs to the set, which must therefore be empty.
We’ve just seen that a set of natural numbers with no least element is nec-
essarily empty. An equivalent way to say this is that every non-empty set
of natural numbers has a least element, which is our minimum principle.
The proof above is an informal one. Indeed it can’t help but be informal.
Our language for arithmetic has no notation for sets of natural numbers.
We’ve seen how to express particular sets in this language but that’s not
sufficient for the minimum principle, which is a statement about all sets
of natural numbers. So there’s no way within Peano arithmetic to state
the minimum principle, let alone prove its equivalence to the principle of
mathematical induction. Oncewehave a languagewhich includes sets, like
the one we’ll introduce in the next chapter, we can give a formal statement
of the minimum principle.

A formal proof
It is possible, though not very pleasant, to produce formal proofs in Peano
arithmetic.
Consider, for example, the following proof of the fact that 2 + 2 = 4, which
in the language we’re using is written as [(0″ + 0″) = 0⁗].

1. {∀𝑥.[(𝑥 + 0) = 𝑥]}
2. [(0″ + 0) = 0″]
3. [(0″ + 0)′ = 0‴]
4. (∀𝑥.{∀𝑦.[(𝑥 + 𝑦′) = (𝑥 + 𝑦)′]})
5. {∀𝑦.[(0″ + 𝑦′) = (0″ + 𝑦)′]
6. [(0″ + 0′) = (0″ + 0)′]
7. [(0″ + 0′) = 0‴]
8. [(0″ + 0′)′ = 0⁗]
9. [(0″ + 0″) = (0″ + 0′)′]

10. [(0″ + 0″) = 0⁗]
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The first and fourth lines are our second and third arithmetic axioms. The
second line is the result of one of our logical rules of inference, eliminat-
ing the universal quantifier from the first line and replacing the associated
variablewith the numerical expression 0″. Similarly the fifth line is derived
from the fourth by eliminating the universal quantifier and replacing the
variable by 0″. Both the sixth line and the ninth are derived from the fifth
by removing the universal quantifier and replacing the variable, in one case
by 0 and in the other by 0′. The third line is derived from the second by
applying our fourth arithmetic rule of inference and the eighth line is simi-
larly obtained from the seventh. The seventh line is derived from the third
and sixth bymeans of our second arithmetic rule of inference, and the tenth
is similarly derived from the eighth and ninth.
Statements more complicated than 2 + 2 = 4 have correspondingly longer
proofs. Hofstadter, for example, gives a proof that addition is commuta-
tive. It’s 56 lines long. As we saw earlier it’s possible to give a fairly concise
statement within the language of Peano arithmetic of the fact that there are
infinitely primes. It’s possible to give a formal proof as well, but it’s hardly
an enjoyable exercise. Logicians, though, are generally much more inter-
esting in figuring out what can or can’t be proved within a formal system
than with actually supplying proofs. In other words, they tend to live in
the world of semiformal proofs rather than formal proofs.

Gödel’s theorem and Tarski’s theorem.
I’ve already mentioned that formal languages described by phrase struc-
ture grammars have encodings which are arithmetic sets. If we have ax-
ioms and rules of inference as well then we can look at the sublanguage
consisting of theorems in this formal system. The set of the encodings of
theorems also turns out to be arithmetic. This is a theorem of Gödel. The
word “theorem” is used in different senses in the two preceding sentences.
In the first of them it means a statement with a formal proof and in the sec-
ond it means a statement with an informal proof. Gödel’s theorem applies
to Peano arithmetic, but is more general than that.
With an interpretation which enables us to characterise statements as true
of falsewe can also look at the sublanguage of true statements. In particular
we can consider the encodings of true statements in Peano arithmetic. This
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set is not arithmetic. That is a theorem of Tarski.
Gödel’s theorem is based on the insight that it’s not only possible, as we’ve
already discussed, to make statements about Peano arithmetic within
Peano arithmetic but it’s even possible to construct statements in Peano
arithmetic which refer to themselves. In essence you can create statements
with interpretations like “I cannot be proved” or “if I can be proved then
I can also be disproved”. The first of these sentences is roughly the one
at the heart of Gödel’s argument. The second is used in a strengthened
version of that theorem due to Rosser.
Combining the theorems of Gödel and Tarski we see that the set of theo-
rems in Peano arithmetic and the set of true statements cannot be the same
set. The situation is even worse than it appears though. This is not simply
a problem with a particular formal system for arithmetic, which we might
hope to fix by, for example, adding a missing axiom or rule of inference.
Gödel’s theorem is not specific to a particular formal system but applies to
any formal system. Tarski’s theorem doesn’t even mention formal systems.
It is purely a statement about the language of true statements. So nomatter
what replacement formal system we consider for arithmetic the set of true
statements and theorems will always be different.
The combination of Gödel and Tarski tells us theremust be a true statement
which is not a theorem or a theorem which is not a true statement. There
could also be both. The theorems don’t provide any insight into which of
these possibilities occurs. A false theoremwould bemuchmore damaging
than a true but unprovable statement. Most mathematicians and logicians
believe that all theorems in Peano arithmetic are true but that there are true
statementswhich are not theorems. In otherwords, they believe the system
is sound but incomplete. Other than the fact that no one has yet found
a contradiction there is no actual evidence for this belief. Gödel himself
was skeptical of the soundness of arithmetic. His theorem was the result
of an ultimately unsuccessful attempt to prove the inconsistency of Peano
arithmetic.
Although he didn’t succeed in proving the inconsistency of arithmetic
Gödel did succeed in killing the project, dating back to Euclid, of fully
axiomatising all of mathematics. Gödel’s work is generally remembered in
connection with Peano arithmetic but in fact he considered two axiomatic
theories which seemed like candidates for the axiomatisation of mathe-
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matics. One was Peano arithmetic and the other was axiomatic set theory,
which is our next topic.

Set theory
Elementary arithmetic is arithmetic without sets, or, more precisely, arith-
metic with no notation for sets. We can refer to sets indirectly, by means of
the expressions which could be used to define them, but we can’t name a
set and we can’t quantify over sets. This prevents us expressing concepts
like our minimum principle, that every non-empty set of natural numbers
has a least member.
We nowmove on to set theory. Set theory, like first order logic, is generally
used as a base for other, more interesting theories. Just as in first order logic
we didn’t enquire too closely into themeanings of variables and predicates,
in pure set theory we mostly avoid the question “sets of what?” Sets are
sets of members. For now that’s all we need to know.
Set theory is weird. To be more precise, it’s weird in two ways. One is that
various statements each of which individually seem to be intuitively obvi-
ous turn out to be logically inconsistent when combined. This means that
any choice of axioms for set theory will necessarily have some unexpected
consequences. The other way that it’s weird is that the particular set of ax-
iomswhich themathematical world has converged on has somewhat more
unexpected consequences than strictly necessary.

A language for set theory
As usual, we’ll start with a language, and that language will be based on
first order logic. This language is described by the following phrase struc-
ture grammar.
statement : bool_exp ;
bool_exp | [ ¬ bool_exp ] | [ bool_exp b_operator bool_exp ]

| [ quantifier variable . bool_exp ]
| [ quantifier variable ∈ set_exp : bool_exp ]
| [ variable relation variable ] ;

b_operator : ∧ | ∨ | ⊃ ;
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quantifier : ∀ | ∃ ;
relation : ∈ | = | ⊆ ;
set_exp : ∅ | variable | [ ⋂ set_exp ] | [ ⋃ set_exp ]

| [ set_exp ⋂ set_exp ] | [ set_exp ⋃ set_exp ]
| [ set_exp ∖ set_exp ] | [ set_exp × set_exp ]
| [ P set_exp ] | { list } | ( list )
| { variable ∈ set_exp : bool_exp } ;

list : /* empty */ | sequence ;
sequence : set_exp | set_exp , sequence ;
variable : letter | variable ! ;
letter : v | w | x | y | z | A | B | C | D | E | F

| G | H | I | J | K | L | R | S | T | U | V ;
Some of these symbols and rules are familiar from earlier chapters while
others are new, or are used in new ways. The following remarks refer to
the intended interpretation of the language and are not strictly part of the
language.
The symbols (, ), {, and } are no longer used for grouping expressions but
have special meanings. Only [ and ] are used for grouping expressions as
in previous chapters. { and } are used in two different ways of constructing
sets. We write {𝑥, 𝑦, 𝑧} for the set whose only members are 𝑥, 𝑦 and 𝑧, for
example, and {𝑥 ∈ 𝐴∶ [¬[𝑥 ∈ 𝐵]]} for the set of 𝑥 which are members of
𝐴 but not of 𝐵. The ∈ sign denotes set membership. ( and ) are used in
two ways. One is to construct lists. (𝑥, 𝑦, 𝑧) is the list whose first element is
𝑥, whose second element is 𝑦 and whose third element is 𝑧. This is unlike
{𝑥, 𝑦, 𝑧}, where 𝑥 happens to have beenwritten first, 𝑦 happens to have been
written second, and 𝑧 happens to have been written third, but the ordering
is not significant. {𝑥, 𝑦, 𝑧} is the same set as {𝑦, 𝑧, 𝑥} but (𝑥, 𝑦, 𝑧) is not the
same list as (𝑦, 𝑧, 𝑥) unless 𝑥, 𝑦 and 𝑧 are all equal.
In addition to the old notation for quantifiers there is a new notation. We
have expressions like [∀𝑥 ∈ 𝐴 ∶ [[𝑥 ∈ 𝐵] ∨ [𝑥 ∈ 𝐶]]]. This is to under-
stood as a shorthand for [∀𝑥.[[𝑥 ∈ 𝐴] ⊃ [[𝑥 ∈ 𝐵] ∨ [𝑥 ∈ 𝐶]]]]. This, and
the corresponding notation for ∃, are convenient because we often want to
state that all members of a set have some property or that some member
has that property. Such quantifiers are called bounded quantifiers. It’s
possible to do first order logic with bounded quantifiers, provided all
quantifiers are over the same set and this set is known in advance to

118



be non-empty. It’s easy, but dangerous, to forget the non-emptiness
requirement.
We have a new relation ⊆ as well. This is the subset relation. Note that this
is not necessarily a proper subset. Each set is a subset of itself. The distinc-
tion between ∈ and ⊆ was a source of confusion in the early development
of set theory. It’s still often a source of confusion for students. 𝐴 ∈ 𝐵 means
that 𝐴 is a member of 𝐵 while 𝐴 ⊆ 𝐵 means that every member of 𝐴 is a
member of 𝐵.
∅ is the empty set, i.e. the set with no elements. ⋂ and ⋃ indicate inter-
section and union, respectively. These are each used in two different ways.
When not immediately preceded by a set expression⋃ is an operatorwhich
takes a set and gives you its union, i.e. the set whose elements are the el-
ements of its elements. In other words, [𝑥 ∈ [⋃ 𝐴]] if and only if there is
some 𝐵 such that 𝑥 is an element of 𝐵 and 𝐵 is an element 𝐴. The most
common case of unions is one where the set of sets has two elements so
we have a special notation for this. We write [𝐵 ⋃ 𝐶] to mean [⋃{𝐵, 𝐶}],
i.e. the set of all elements which are in 𝐵 or 𝐶. Similar remarks apply to
the intersection. If 𝐴 is a non-empty set then [𝑥 ∈ [⋂ 𝐴]] if and only if 𝑥 is
and element of 𝐵 for every 𝐵 in 𝐴. The restriction to non-empty sets will be
explained later. Again we have a special notation for the intersection of a
pair of sets. [𝐵 ⋂ 𝐶] means [⋂{𝐵, 𝐶}]. Our other two set operations are ∖
for the relative complement and × for the Cartesian product. [𝐴 ∖ 𝐵] is the
set of elements of 𝐴 which are not in 𝐵, i.e. {𝑥 ∈ 𝐴∶ [¬[𝑥 ∈ 𝐵]]}. [𝐴 × 𝐵] is
the set of pairs (𝑥, 𝑦) where 𝑥 is an element of 𝐴 and 𝑦 is an element of 𝐵.
[𝑃𝐴] is the power set of 𝐴, i.e. the set of all subsets of 𝐴.
You may notice that I’ve dropped practice of using separate symbols, out-
side the language, for expressions of various types. Occasionally it will
be convenient to introduce an ad hoc notation but I’ll mosttly do what I’ve
done above, and use a particular variable to stand for any variable, or some-
times any set expression. Hopefully this will not cause confusion.

Simple set theory
We’ll start with a subset of set theory which is almost sufficient for almost
all of mathematics and computer science. What follows is essentially the
set theory of Zermelo, with one axiom removed.
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As we did with elementary arithmetic we’ll borrow first order logic. We
won’t borrow elementary arithmetic itself. In particular we will not as-
sume that numbers exist. You may have noticed that the language I’ve
introduced has no notation for them.

Axioms (informal version)

Our axioms are
• Extensionality: Suppose 𝐴 and 𝐵 are sets and every element of 𝐴 is

an element of 𝐵 and vice versa then 𝐴 = 𝐵.
• Elementary sets: ∅ is a set. For all 𝑥 we have [¬[𝑥 ∈ ∅]]. For all 𝑥

we have a set {𝑥}, of which 𝑥 is an element and there are no other
elements. Similarly, for all 𝑥 and 𝑦 we have a set {𝑥, 𝑦} such that 𝑥 and
𝑦 are elements and there are no other elements.

• Separation: For every variable 𝑥, set 𝐴 and Boolean expression 𝜃 the
set {𝑥 ∈ 𝐴 ∶ 𝜃}, whose elements are those elements of 𝐴 for which 𝜃
is true, exists.

• Power set: For any set 𝐴 the power set [𝑃𝐴] exists. [𝐵 ∈ [𝑃𝐴]] if and
only if every element of 𝐵 is an element of 𝐴.

• Union: For every set 𝐴 the set [⋃ 𝐴] exists. This is the set of all mem-
bers of members of 𝐴.

These are informal statements of the axioms. Their formal equivalents will
be given shortly, but they are hard to read if you don’t know what their
trying to express. Before doing that, there are a few things to notice about
these axioms.

Discussion

The Axiom of Extensionality tells us that sets are characterised purely by
their members. This is something which often causes confusion. We have
many ways of describing sets, but the set is not its description. In terms of
our language, there could be multiple set expressions which describe the
same set. There could also be no set expressionwhichdescribes a particular
set.
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The Axiom of Elementary Sets has some redundancy. The only parts we
really need are are the existence of some set and the fact that for all 𝑥 and
𝑦 there is a set of which 𝑥 and 𝑦 are members. If 𝐴 is such a set then
{𝑤 ∈ 𝐴 ∶ [[𝑤 = 𝑥] ∨ [𝑤 = 𝑦]]} is a set of which they are the only members.
There can only be one such set, by the Axiom of Extensionality. This is
the set we called {𝑥, 𝑦}. We don’t really need to state the existence of {𝑥}
separately. It’s the same as {𝑥, 𝑥}. Also, if 𝐴 is a set {𝑥 ∈ 𝐴 ∶ [¬[𝑥 = 𝑥]]} is
a set, by the Axiom of Separation, and has no members. By the Axiom of
Extensionality there can only be one such set. This is the set we called ∅. So
if there are any sets at all then there is an empty set. What about sets with
more than twomembers? We can show that those exist using this axiom to-
gether with the Axiom of Union. {𝑥, 𝑦, 𝑧}, for example, is [⋃{{𝑥, 𝑦}, {𝑦, 𝑧}}].
The Axiom of Separation is not an axiom. Instead it’s what’s called an ax-
iom schema, i.e. a common pattern for a family, indeed an infinite family,
of axioms, one for each choice of variable, set and expression. It would
have been better to make this into a rule of inference rather than an axiom
but for historical reasons it is called an axiom. Note that the axiom doesn’t
allow us to use an expression to construct a set of everything which makes
that expression true, only to construct a set of those members of a given
set which make the expression true. In other words, it carves out a subset
from a set which is already known to exist. It can’t create sets from nothing.
If you’ve been reading carefully you’ll have realised that there’s something
wrongwithmy informal description of the Axiom of Separation. I referred
to members for which a statement is true. Truth has no place in a formal
system. The formal version of the axiom, or rather axiom schema, does not
refer to the concept of truth.
The Axiom of Separation is useful for constructing particular subsets but
it doesn’t assure us that the subsets of a given set form a set. For that we
need the Power Set Axiom. I haven’t actually said what a subset is but you
can probably guess. 𝐴 is a subset of 𝐵, written [𝐴 ⊆ 𝐵] if every member of
𝐴 is a member of 𝐵. As with various other axioms, instead of assuming the
existence of the power set itself we could just assume the existence of some
set such that all the subsets of 𝐴 are members of it and then use the Axiom
of Separation to remove any members which aren’t subsets of 𝐴.
The Axiom of Union is used to create unions. That’s straightforward
enough. As with most other axioms we could just assume the existence of
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some set such that every member of every member of 𝐴 is a member of it,
and then use the Axiom of Separation to remove any other members.
What may seem odd is the absence of any Axiom of Intersection. We don’t
need one. We can define [⋂ 𝐴] as

{𝑥 ∈ [⋃ 𝐴] ∶ [∀𝐵 ∈ 𝐴 ∶ [𝑥 ∈ 𝐵]]}.

In other words, 𝑥 belongs to [⋂ 𝐴] if and only if it is a member of some
member of 𝐴 which is also a member of all members of 𝐴. If 𝐴 is a non-
empty set then the condition that it’s amember of all members of 𝐴 implies
that it’s a member of some member of 𝐴. We couldn’t just have defined it
as

{𝑥.[∀𝐵 ∈ 𝐴 ∶ [𝑥 ∈ 𝐵]]}
though. The Axiom of Separation requires us to restrict 𝑥 to a set. If 𝐴 is
not a non-empty set then the definition above gives [[⋂ 𝐴] = ∅]. This has
some unfortunate consequences, but fewer such consequences than any
other definition. Really, the only reason we define the intersection at all in
this case is that first order logic can’t cope with expressions which don’t
denote anything in the domain. In general if you’re taking an intersection
of a set of sets then you should probably add a hypothesis that that set of
sets is non-empty.
The axioms above mix assumptions about the existence of sets with nota-
tions for them. Strictly speaking the axioms are just the part which assert
the existence of a set. One important point to understand is that having a
notation for something doesn’t mean it exists. Mathematics is full of nota-
tions for things which don’t exist, like 1/0. The axioms of set theory are
arranged in such a way that everything we have a notation for will in fact
exist, but it exists as a consequence of the axioms, not just because we hap-
pen to have included it in our language. We have a number of notations for
which there are no axioms. The intersection symbol, which we just consid-
ered, is such a notation. Others are the notations for set differences, lists
and Cartesian products. We’ll need to give definitions for those, just as we
did for the intersection.

Axioms (formal version)

Here are the formal versions of the axioms.
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• Extensionality:

[∀𝐴.[∀𝐵.[[∃𝑥.[𝑥 ∈ 𝐴]]
⊃ [[∀𝑦.[[[𝑦 ∈ 𝐴] ⊃ [𝑦 ∈ 𝐵]] ∧ [[𝑦 ∈ 𝐵] ⊃ [𝑦 ∈ 𝐴]]]] ⊃ [𝐴 = 𝐵]]]]]

• Elementary Sets:
[∀𝑥.[¬[𝑥 ∈ ∅]]]

and
[∀𝑥.[∀𝑦.[∃𝐴.[[𝑥 ∈ 𝐴] ∧ [𝑦 ∈ 𝐴]]]]]

• Separation:

[∃𝐵.[∀𝑥.[[[𝑥 ∈ 𝐵] ⊃ [[𝑥 ∈ 𝐴] ∧ 𝜃]] ∧ [[[𝑥 ∈ 𝐴] ∧ 𝜃] ⊃ [𝑥 ∈ 𝐵]]]]]

Here 𝑥 can be replaced by any variable, 𝐴 by any set expression and
𝜃 by any Boolean expression in which 𝐵 has no free occurrences.

• Power Set:

[∀𝐴.[∃𝐵.[∀𝐶.[[∀𝑥.[[𝑥 ∈ 𝐶] ⊃ [𝑥 ∈ 𝐴]]] ⊃ [𝐶 ∈ 𝐵]]]]]

• Union:
[∀𝐴.[∃𝐵.[∀𝐶 ∈ 𝐴 ∶ [∀𝑥 ∈ 𝐶 ∶ [𝑥 ∈ 𝐵]]]]]

These aren’t quite the axioms as they appeared initially. Instead I have in-
corporated some of the observations from the discussion section to shorten
the axioms. For example, the formal version of the Axiom of Elementary
Sets just says that∅ is the empty set and that for all 𝑥 and 𝑦 there is a setwith
both 𝑥 and 𝑦 as members, not that there is a set with only those members,
and doesn’t say anything about sets with only one member. The axiom
above is therefore also known as Axiom of Pairing.

Non-sets

There is no set of all sets. This follows directly from the axioms. Suppose
there were a set 𝐴 such that every set is a member of 𝐴. By the Axiom of
Separation then we can form the set

𝐵 = {𝐶 ∈ 𝐴 ∶ [¬[𝐶 ∈ 𝐶]]}.
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In other words 𝐶 is the set of all sets which are not members of themselves.
Is 𝐵 amember of 𝐵? If not then 𝐵 is a set which is not amember of itself, but
then by the definition of 𝐵 it is a member of 𝐵. Similarly, if 𝐵 is a member of
𝐵 then it doesn’t satisfy the definition of 𝐵 and so isn’t a member of 𝐵. So
the assumption that there is a set of all sets leads to a contradiction.
More generally, there is no such thing as the complement of a set. The
complement of the empty set would be the set of all sets, andwe’ve already
seen that that doesn’t exist. The same holds for any set though. Suppose
the complement of 𝐴 existed, i.e. that there was a set 𝐶 such that every
member of 𝐴 is not a member of 𝐶, and vice versa. By the Axiom of Pairing
there is then a set 𝐵 with both 𝐴 and 𝐶 as members. By the Axiom of
Union there’s then a set 𝐷 such that every member of every member of 𝐵
is a member of 𝐷, and in particular every member of 𝐴 or 𝐶 is a member
of 𝐷. Everything is either in 𝐴 or 𝐶 though and therefore in 𝐷. I’ve been
deliberately rather vague about whether our language is meant to include
objects which are not sets, a point we’ll need to return to later, but in either
case we can use the Axiom of Separation to define

𝐸 = {𝑥 ∈ 𝐷 ∶ [[𝑥 = ∅] ∧ [∃𝑦.[𝑦 ∈ 𝑥]]]}.

This 𝐸 is the set of those members of 𝐷 which are sets, and so is the set of
all sets, which we’ve already seen doesn’t exist. So there can be no such set
𝐵.
Relative complements are meaningful though. [𝐴 ∖ 𝐵] is easily defined as

[𝐴 ∖ 𝐵] = {𝑥 ∈ 𝐴 ∶ [¬[𝑥 ∈ 𝐵]]}.

In some contexts we’re only concerned with subsets of one given set. We
might, for example, be discussing subsets of the natural numbers, and only
subsets of the natural numbers. In such a case it’s common to drop the
word “relative” and just say “complement”. This is just shorthand though
and the set described in this way is still a relative complement.
In the discussion of first order logic I described a class of interpretations
where the variables were to be understood as members of a set and men-
tioned that these were not the only interpretations. We can now see why.
We’re applying first order logic to set theory, and the variables are allowed
to range over all sets, but there is no set of all sets, so this cannot be an
interpretation of the type described earlier.
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The non-existence of the set of all sets has some other awkward conse-
quences. Suppose that for all members 𝐴 of a set 𝐵 𝑥 is a member of 𝐴.
Does it follow that [𝑥 ∈ [⋂ 𝐵]]? Yes, if 𝐵 is a non-empty set of sets. No, if
𝐵 is the empty set. In that case every 𝑥 would vacuously satisfy the con-
dition that for all members 𝐴 of a set 𝐵 𝑥 is a member of 𝐴, but we can’t
have a set which contains all 𝑥. The options are to leave [⋂ ∅] undefined or
to impose a restriction as above. Since first order logic can’t cope with ex-
pressions whose value is undefinedwe have to impose the restriction. This
restriction then propagates to a number of other statements. For example,
it’s true that if [𝐴 ⊆ 𝐵] then [[⋂ 𝐵] ⊆ [⋂ 𝐴]], but only under the restriction
that 𝐴 is a non-empty set of sets.

Set operations and Boolean operations

We can derive a number of set theory identities from zeroeth order logic
identities. The basis for this is the following facts.

• [𝐴 ⊆ 𝐵] if and only if [𝑥 ∈ 𝐴] ⊃ [𝑥 ∈ 𝐵]. Indeed this is just the defi-
nition of the ⊆ relation.

• If [𝐴 ⊆ 𝐵] and [𝐵 ⊆ 𝐴] then [𝐴 = 𝐵]. This is a consequence of Exten-
sionality.

• [[𝑥 ∈ [𝐴 ⋂ 𝐵]] if and only if [[𝑥 ∈ 𝐴] ∧ [𝑥 ∈ 𝐵]]]. This is more or
less the definition of the ⋂ operator.

• [[𝑥 ∈ [𝐴 ⋃ 𝐵]] if and only if [[𝑥 ∈ 𝐴] ∨ [𝑥 ∈ 𝐵]]]. This is more or
less the definition of the ⋃ operator.

• [[𝑥 ∈ [𝐴 ∖ 𝐵]] if and only if [¬[[𝑥 ∈ 𝐴] ⊃ [𝑥 ∈ 𝐵]]]]. This is more
or less the definition of the ∖ operator.

So the three set operators ⋂, ⋃ and ∖ are expressible in terms of the four
Boolean operators ∧, ∨, ¬, and ⊃. ⋂ corresponds to ∧ and ⋃ corresponds
to ∨, which is fairly easily to remember. ∖ corresponds to a particular
combination of ¬ and ⊃, but no set operator corresponds to ¬ or ⊃ indi-
vidually. In some sense the complement operator, if there were one, would
correspond to ¬.
As an example, consider the associativity of the union operation, i.e. the
identity [[[𝐴 ⋃ 𝐵] ⋃ 𝐶] = [𝐴 ⋃[𝐵 ⋃ 𝐶]]]. [[𝑝 ∨ [𝑞 ∨ 𝑟]] ⊃ [[𝑝 ∨ 𝑞] ∨ 𝑟]] is
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a tautology in zeroeth order logic. Substituting [𝑥 ∈ 𝐴] for 𝑝, [𝑥 ∈ 𝐵] for 𝑞,
and [𝑥 ∈ 𝐶] for 𝑟 gives

[[[𝑥 ∈ 𝐴] ∨ [[𝑥 ∈ 𝐵] ∨ [𝑥 ∈ 𝐶]]] ⊃ [[[𝑥 ∈ 𝐴] ∨ [𝑥 ∈ 𝐵]] ∨ [𝑥 ∈ 𝐶]]].

Wecan replace [[𝑥 ∈ 𝐵] ∨ [𝑥 ∈ 𝐶]]with [𝑥 ∈ [𝐵 ⋃ 𝐶]] and [[𝑥 ∈ 𝐴] ∨ [𝑥 ∈ 𝐵]]
with [𝑥 ∈ [𝐴 ⋃ 𝐵]], so

[[[𝑥 ∈ 𝐴] ∨ [𝑥 ∈ [𝐵 ⋃ 𝐶]]] ⊃ [[[𝑥 ∈ [𝐴 ⋃ 𝐵]]] ∨ [𝑥 ∈ 𝐶]]].

Then we can replace [[𝑥 ∈ 𝐴] ∨ [𝑥 ∈ [𝐵 ⋃ 𝐶]]] by [𝑥 ∈ [𝐴 ⋃[𝐵 ⋃ 𝐶]]] and
[[[𝑥 ∈ [𝐴 ⋃ 𝐵]]] ∨ [𝑥 ∈ 𝐶]] by [𝑥 ∈ [[𝐴 ⋃ 𝐵] ⋃ 𝐶]], so

[[𝑥 ∈ [𝐴 ⋃[𝐵 ⋃ 𝐶]]] ⊃ [𝑥 ∈ [[𝐴 ⋃ 𝐵] ⋃ 𝐶]]]

and hence
[[𝐴 ⋃[𝐵 ⋃ 𝐶]] ⊆ [[𝐴 ⋃ 𝐵] ⋃ 𝐶]].

Similarly, [[[𝑝 ∨ 𝑞] ∨ 𝑟] ⊃ [𝑝 ∨ [𝑞 ∨ 𝑟]]] is a tautology so

[[[𝐴 ⋃ 𝐵] ⋃ 𝐶] ⊆ [𝐴 ⋃[𝐵 ⋃ 𝐶]]].

Combining that with the inclusion already obtained gives

[[[𝐴 ⋃ 𝐵] ⋃ 𝐶] = [𝐴 ⋃[𝐵 ⋃ 𝐶]]].

The following facts about sets can similarly be proved using tautologies
borrowed from zeroeth order logic.

• [[𝐴 ⋂ 𝐵] ⊆ 𝐴]
• [[𝐴 ⋂ 𝐵] ⊆ 𝐵]
• [𝐴 ⊆ [𝐴 ⋃ 𝐵]]
• [𝐵 ⊆ [𝐴 ⋃ 𝐵]]
• [[𝐴 ∖ 𝐵] ⊆ 𝐴]
• [[𝐴 ⋂ 𝐴] = 𝐴]
• [[𝐴 ⋃ 𝐴] = 𝐴]
• [[𝐴 ⋂ 𝐵] = [𝐵 ⋂ 𝐴]]
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• [[𝐴 ⋃ 𝐵] = [𝐵 ⋃ 𝐴]]
• [[[𝐴 ⋂ 𝐵] ⋂ 𝐶] = [𝐴 ⋂[𝐵 ⋂ 𝐶]]]
• [[[𝐴 ⋃ 𝐵] ⋃ 𝐶] = [𝐴 ⋃[𝐵 ⋃ 𝐶]]]
• [[[𝐴 ⋂[𝐵 ⋃ 𝐶]] = [[𝐴 ⋃ 𝐶] ⋂[𝐵 ⋃ 𝐶]]]
• [[[𝐴 ⋃[𝐵 ⋂ 𝐶]] = [[𝐴 ⋂ 𝐶] ⋃[𝐵 ⋂ 𝐶]]]
• [[𝐴 ⋂[𝐴 ⋃ 𝐵]] = 𝐴]
• [[𝐴 ⋃[𝐴 ⋂ 𝐵]] = 𝐴]
• [[𝐴 ∖ [𝐴 ∖ 𝐵]] = [𝐴 ⋂ 𝐵]]
• [[𝐶 ∖ [𝐴 ⋂ 𝐵]] = [[𝐶 ∖ 𝐵] ⋃[𝐶 ∖ 𝐴]]]
• [[𝐶 ∖ [𝐴 ⋃ 𝐵]] = [[𝐶 ∖ 𝐵] ⋂[𝐶 ∖ 𝐴]]]
• [[𝐴 ∖ [𝐵 ∖ 𝐶]] = [[𝐴 ⋂ 𝐶] ⋃[𝐵 ∖ 𝐶]
• [[[𝐴 ∖ 𝐵] ∖ 𝐶] = [𝐴 ∖ [𝐵 ⋃ 𝐶]]]
• [[[𝐴 ∖ 𝐵] ⋂ 𝐶] = [𝐴 ⋂[𝐶 ∖ 𝐵]]]

Finite sets
There are a few different ways to define finiteness of sets. The method be-
low is due to Tarski. It requires some preliminary definitions. To improve
readability I’ll start being less strict about the bracketing of expressions.

Definitions

A minimal member of a set 𝐴 is a set 𝐶 such that 𝐶 ∈ 𝐴 and if 𝐵 ∈ 𝐴 and
𝐵 ⊆ 𝐶 then 𝐵 = 𝐶. In otherwords, 𝐶 is amember of 𝐴 and no proper subset
of 𝐶 is a member of 𝐴. A maximal member of a set 𝐴 is a set 𝐵 such that
𝐵 ∈ 𝐴 and if 𝐶 ∈ 𝐴 and 𝐵 ⊆ 𝐶 then 𝐵 = 𝐶. In other words, 𝐵 is a member
of 𝐴 and is not a proper subset of any member of 𝐴. Sets can have more
than one minimal or maximal member. Suppose 𝑥 ≠ 𝑦. Then {𝑥} and {𝑦}
are both minimal and maximal members of the set {{𝑥}, {𝑦}}.
A set 𝐸 is said to be finite if every non-empty set of subsets of 𝐸 has both a
minimal and a maximal member. It is said to be infinite if it is not finite.
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Your intuitive notion of finiteness probably involves associating a natural
number to each finite set, the number of members in the set. This assign-
ment probably has the property that if 𝐴 is a proper subset of a finite set 𝐵
then 𝐴 is also finite and the number of members of 𝐴 is less than the num-
ber of members of 𝐵. Assuming for a moment that your intuition is correct
we can see that every set which is finite according to your intuition is also
finite according to the definition above. Let 𝐸 be finite according to your
intuition and let 𝐴 be a non-empty set of subsets of 𝐸. The set of numbers
of members of members of 𝐴 is a non-empty set of natural numbers and
therefore has a least member. This number is the number of members of
some member of 𝐴. Call that member 𝐶. If 𝐵 ∈ 𝐴 and 𝐵 ⊆ 𝐶 then 𝐵 can’t
have fewer members than 𝐶 because the number of members of 𝐶 is the
least possible number of members for a member of 𝐴. It is therefore not
a proper subset, so 𝐵 = 𝐶. In other words 𝐵 is a minimal member of 𝐴.
The argument to show that 𝐴 has a maximal member is very similar. We
look for a member 𝐶 of 𝐴 with the largest possible number of members. Of
course subsets of the natural numbers don’t have to have a largest mem-
ber but in this case we only need to consider subsets of 𝐸 and they have at
most as manymembers as 𝐸 has, so there is an upper bound on this set and
therefore there is a largest member.
The intuitive notion of finiteness considered above can’t be turned into a
definition. It requires a number of facts about sets which we haven’t yet
proved. In particular it requires one fact about sets, that proper subsets
have a strictly smaller number of members than the whole set, which is
only true of finite sets, so even if we had the notions of integers and cardi-
nalities of sets and all their properties we would still be left with a circular
definition. That’s why we need a definition like the one above.
The argument above just showed that sets you would intuitively regard as
finite are finite according to the definition. It didn’t show that sets you
would intuitively regard as infinite are infinite according to the definition.
Part of your intuition for infinite sets is probably that they have arbitrar-
ily large finite subsets. In other words, if 𝐸 is infinite according to your
intuition then we can find a subset 𝐷𝑚 with 𝑚 members for each natural
number 𝑚. Let 𝐵𝑚 be the union of 𝐷𝑘 for each 𝑘 ≤ 𝑚 and let 𝐴 be the set
of all 𝐵𝑚’s. If 𝐸 were finite according to the definition then some member
of 𝐴 would be maximal. It would have to be 𝐵𝑚 for value of 𝑚 because
those are the only members of 𝐴. Let 𝑛 be the number of members of 𝐵𝑚.
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𝑚 ≤ 𝑛 because 𝐵𝑚 has 𝑚 members and is a subset of 𝐶. Let 𝐶 = 𝐵𝑛+1. Then
𝐶 ∈ 𝐴. Also, 𝐵𝑚 ⊆ 𝐶 because 𝐵𝑚 is the union of 𝐷𝑘 for 𝑘 ≤ 𝑚 and 𝐶 is the
union of 𝐷𝑘 for 𝑘 ≤ 𝑛 + 1 and 𝑚 < 𝑛 + 1. Since we’ve assumed 𝐵𝑚 is max-
imal it follows that 𝐵𝑚 = 𝐶. But 𝐵𝑚 has 𝑛 members and 𝐷𝑛+1, which is a
subset of 𝐶, has 𝑛 + 1 members, so we have a subset with more members
than the whole set, which is impossible. So our assumption that 𝐸 is finite
according to the definition is untenable. In other words, every set which is
infinite according to your intuition is also infinite according the definition.
As with the previous argument this one can’t really be formalised because
the intuitive notion of finiteness is vague and, if pushed too far, circular.
That’s why we need a formal definition, which is necessarily somewhat
unintuitive. There are two standard choices. One is the definition above,
due to Tarski. The other choice, due toDedekind, is to define infinite sets to
be those which have a proper subsets with the same number of members
as the whole set, and then to define infinite to mean not finite. Tarski’s
definition is better adapted to proving that finite sets have the properties
you would expect them to have, e.g. that every subset of a finite set is finite.
Our definition says that 𝐸 is finite if every member of 𝑃𝑃𝐸 ∖ ∅ has a maxi-
mal member and that everymember of 𝑃𝑃𝐸 ∖ ∅ has aminimal member. In
fact either of these conditions implies the other. Suppose, for example, that
every 𝐴 ∈ 𝑃𝑃𝐸 ∖ ∅ has a maximal member and that 𝐵 ∈ 𝑃𝑃𝐸 ∖ ∅. Since
every 𝐴 ∈ 𝑃𝑃𝐸 ∖ ∅ has a maximal member it follows that

𝐴 = {𝐶 ∈ 𝑃𝐸 ∶ ∃𝐷 ∈ 𝐵 ∶ 𝐶 = 𝐸 ∖ 𝐷}

has a maximal member. This 𝐴 is just the set of relative complements of
the members of 𝐵. If 𝐶 is a maximal member of 𝐴 then 𝐸 ∖ 𝐶 is a minimal
member of 𝐵, so 𝐵 has a minimal member. The argument above shows that
if every member of 𝑃𝑃𝐸 ∖ ∅ has a maximal member then every member of
𝑃𝑃𝐸 ∖ ∅ has a minimal member. The same argument, but with the words
minimal and maximal switched, shows that if every member of 𝑃𝑃𝐸 ∖ ∅
has aminimalmember then everymember of 𝑃𝑃𝐸 ∖ ∅ has amaximalmem-
ber. So in order to prove that a set is finite it suffices to prove one condition
or the other; we don’t have to prove both.
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Elementary properties of finite sets.

The empty set is finite. Indeed, 𝑃∅ = {∅} and 𝑃𝑃∅ = {∅, {∅}}. The only
non-empty member of 𝑃𝑃∅ is {∅}. It has ∅ as both a minimal and maximal
member.
A set with only one member is finite. Let 𝐴 = {𝑎}. Then 𝑃𝐴 = {∅, 𝐴} and
𝑃𝑃𝐴 = {∅, {∅}, {𝐴}, {∅, 𝐴}}. The non-empty members are {∅}, {𝐴} and
{∅, 𝐴}}. The first of these has ∅ as a minimal and maximal member. The
second has 𝐴 as a minimal and maximal member. The third has ∅ as a
minimal member and 𝐴 as a maximal member.
We could do a similar case by case analysis to show that sets with twomem-
bers are finite but it’s better just to prove that the union of two finite sets is
finite and use the fact that a set with two members is the union of two sets
with one member.
Before considering unions we consider subsets, intersections and relative
complements, all of which are easier. We start with subsets. Suppose 𝐸 is
finite and 𝐷 ⊆ 𝐸. If 𝐴 ∈ 𝑃𝑃𝐷 ∖ ∅ then 𝐴 ∈ 𝑃𝑃𝐸 ∖ ∅. 𝐸 is finite so 𝐴 has a
minimal member. So every non-empty set of subsets of 𝐷 has a minimal
member. We’ve already seen that if every non-empty set of subsets of a set
has a minimal member then that set is finite. So 𝐷 is finite.
As an easy consequence if 𝐴 or 𝐵 is finite then 𝐴 ⋂ 𝐵 is finite because
𝐴 ⋂ 𝐵 ⊆ 𝐴 and 𝐴 ⋂ 𝐵 ⊆ 𝐵. More generally, if 𝐶 is a set of sets at least one
member of which is finite then ⋂ 𝐶 is finite, because it’s a subset of that
member and subsets of finite sets are finite.
Similarly, if 𝐴 is finite then 𝐴 ∖ 𝐵 is finite for any set 𝐵 because 𝐴 ∖ 𝐵 is a
subset of 𝐴.
Now we turn our attention to unions. Suppose 𝐴 and 𝐵 are finite sets and
that 𝐶 is a non-empty set of subsets of 𝐴 ⋃ 𝐵. Define

𝐷 = {𝐸 ∈ 𝑃𝐴 ∶ ∃𝐹 ∈ 𝐶 ∶ 𝐴 ⋂ 𝐹 = 𝐸}.

In other words, 𝐷 is the set of sets which are intersections of 𝐴 with mem-
bers of 𝐶. This is a set of subsets of 𝐴. It’s a non-empty set because 𝐶 is
non-empty and taking a member of 𝐶 and intersecting it with 𝐴 gives a
member of 𝐷. 𝐴 is finite so 𝐷 has a minimal member. Let 𝐺 be such a
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member. Now let
𝐻 = {𝐼 ∈ 𝑃𝐵 ∶ 𝐺 ⋃ 𝐼 ∈ 𝐶}.

This is a set of subsets of 𝐵. Since 𝐺 ∈ 𝐷 there must be some 𝐹 ∈ 𝐶 such
that 𝐴 ⋂ 𝐹 = 𝐺. Let 𝐽 = 𝐹 ∖ 𝐴 for such an 𝐹. Now 𝐽 ⊆ 𝐹 and 𝐹 ∈ 𝐶 and
𝐶 ∈ 𝑃𝑃[𝐴 ⋃ 𝐵] so 𝐽 ⊆ 𝐴 ⋃ 𝐵. But no member of 𝐽 is a member of 𝐴 so they
are all members of 𝐵. In other words 𝐽 ⊆ 𝐵. Also 𝐺 ⋃ 𝐽 = [𝐴 ⋂ 𝐹] ⋃[𝐹 ∖ 𝐴]
so 𝐺 ⋃ 𝐽 = 𝐹 and hence 𝐺 ⋃ 𝐽 ∈ 𝐶. Therefore 𝐽 ∈ 𝐻 and so 𝐻 is a non-
empty set of subsets of 𝐵. 𝐵 is finite so 𝐻 must have aminimal member. Let
𝐾 be such a member. Now 𝐾 ∖ 𝐴 ∈ 𝐻 and 𝐾 was minimal so 𝐾 ∖ 𝐴 = 𝐾
and therefore 𝐴 ⋂ 𝐾 = ∅. I claim that 𝐺 ⋃ 𝐾 is a minimal member of
𝐶. First of all, it is a member of 𝐶 because 𝐾 ∈ 𝐻 and the definition of
𝐻 requires the union of any member of 𝐻 with 𝐺 to be in 𝐶. Suppose
𝐿 is a member of 𝐶 such that 𝐿 ⊆ 𝐺 ⋃ 𝐾. Then 𝐴 ⋂ 𝐿 ⊆ 𝐴 ⋂[𝐺 ⋃ 𝐾].
Also, 𝐴 ⋂[𝐺 ⋃ 𝐾] = [𝐴 ⋂ 𝐺] ⋃[𝐴 ⋂ 𝐾]. Now 𝐺 ⊆ 𝐴 so 𝐴 ⋂ 𝐺 = 𝐺 and
𝐴 ⋂ 𝐾 = ∅ so 𝐴 ⋂ 𝐿 ⊆ 𝐺. 𝐿 ∈ 𝐶 so 𝐴 ⋂ 𝐿 ∈ 𝐷 and 𝐺 was a minimal
member of 𝐷 so 𝐴 ⋂ 𝐿 = 𝐺. Then 𝐺 ⋃[𝐿 ∖ 𝐴] = 𝐿. Since 𝐿 ∈ 𝐶 it follows
that 𝐿 ∖ 𝐴 ∈ 𝐻. Now 𝐿 ∖ 𝐴 ⊆ 𝐾 and 𝐾 is a minimal member of 𝐻 so
𝐿 = 𝐴 ⊆ 𝐾. From 𝐿 = [𝐴 ⋂ 𝐿] ⋃[𝐿 ∖ 𝐴] we see that 𝐿 = 𝐺 ⋃ 𝐾. In other
words we’ve shown that if 𝐿 ∈ 𝐶 and 𝐿 ⊆ 𝐺 ⋃ 𝐾 then 𝐿 = 𝐺 ⋃ 𝐾, i.e. that
𝐺 ⋃ 𝐾 is a minimal member of 𝐶. 𝐶 was an arbitrary non-empty set of
subsets of 𝐴 ⋃ 𝐵 so every such set of subsets has a minimal member.
Therefore 𝐴 ⋃ 𝐵 is finite.
From this and the fact that {𝑥} is finite we find that if 𝐴 is finite then so is
𝐴 ⋃{𝑥} for any 𝑥. One consequence of this that if every proper subset of a
set is finite then the set itself is finite. Indeed, suppose 𝐵 is a set such that
every proper subset of 𝐵 is finite. Either 𝐵 is empty or there is some 𝑥 ∈ 𝐵.
If 𝐵 is empty then we’re done, because we already know the empty set is
finite. If 𝑥 ∈ 𝐵 then let 𝐴 = 𝐵 ∖ {𝑥}. Then 𝐴 ⊆ 𝐵 and 𝑥 is a member of 𝐵 but
not of 𝐴 so 𝐴 is a proper subset of 𝐵 and therefore is finite. But we just saw
that if 𝐴 is finite then so is 𝐴 ⋃{𝑥}, which in this case is 𝐵, so 𝐵 is finite.

Induction for finite sets

The following is the counterpart for finite sets to the principle of mathemat-
ical induction for integers:
Suppose 𝐴 is a finite set and 𝐵 is a set of sets such that ∅ ∈ 𝐵 and for all
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𝐶 ∈ 𝐵 and 𝑥 ∈ 𝐴 we have 𝐶 ⋃{𝑥} ∈ 𝐵. Then 𝐴 ∈ 𝐵.
To prove this, first set 𝐷 = 𝐵 ⋂ 𝑃𝐴. Then 𝐷 is a set of subsets of 𝐴. It’s non-
empty because ∅ ∈ 𝐷. It therefore has a maximal member. Let 𝐸 be such a
member. 𝐸 is a subset of 𝐴. If it were a proper subset there would be an 𝑥
which is in𝐴 but not in𝐸. Let 𝐹 = 𝐸 ⋃{𝑥}. Since𝐸 ⊆ 𝐴 and {𝑥} ⊆ 𝐴wehave
𝐹 ⊆ 𝐴. Also, 𝐸 ∈ 𝐷 so 𝐸 ∈ 𝐵. From the properties which 𝐵 was assumed
to have it follows that 𝐸 ⋃{𝑥}𝐵, i.e. that 𝐹 ∈ 𝐵. Now 𝐷 = 𝐵 ⋂ 𝑃𝐴 and 𝐹 ∈ 𝐵
and 𝐹 ∈ 𝑃𝐴 so 𝐹 ∈ 𝐷. 𝐸 is a proper subset of 𝐹 since 𝑥 is a member of 𝐹
but not of 𝐸. But 𝐸 was a maximal member of 𝐷. This is impossible, so our
assumption that 𝐸 is a proper subset of 𝐴 is untenable.
The statement above has a sort of converse:
Suppose 𝐴 is a member of every set of sets 𝐵 such that ∅ ∈ 𝐵 and for all
𝐶 ∈ 𝐵 and 𝑥 ∈ 𝐴 we have 𝐶 ⋃{𝑥} ∈ 𝐵. Then 𝐴 is finite.
To prove thiswe just take 𝐵 to be the set of finite subsets of 𝐴. We’ve already
proved that it has the required properties. By what we’ve just proved it
follows that 𝐴 ∈ 𝐵 and therefore that 𝐴 is finite.
We can use induction on sets to generalise our earlier theorem about the
union of two finite sets being finite to finite unions of finite sets. Suppose
𝐴 is a finite set and each member of 𝐴 is also a finite set. Let 𝐵 be the set
of subsets of 𝐴 such that ⋃ 𝐵 is finite. We have ⋃ ∅ = ∅ and ∅ is finite so
∅ ∈ 𝐵. If 𝐶 ∈ 𝐵 and 𝐷 ∈ 𝐴 then

⋃[𝐶 ⋃{𝐷}] = [⋃ 𝐶] ⋃ 𝐷

and ⋃ 𝐶 and 𝐷 are both finite so ⋃[𝐶 ⋃{𝐷}] is finite. In other words, if
𝐶 ∈ 𝐵 and 𝐷 ∈ 𝐴 then ⋃[𝐶 ⋃{𝐷}] ∈ 𝐵. The set 𝐵 therefore satisfies the
conditions from our induction principle for sets and we can therefore con-
clude that 𝐴 ∈ 𝐵, i.e. that ⋃ 𝐴 is finite.
Another thing we can prove by induction is that the power set of a finite
set is finite. For this we first need a preliminary lemma saying that if 𝑃𝐴 is
finite then for any 𝑥 the set 𝐵 = 𝑃[𝐴 ⋃{𝑥}] ∖ 𝑃𝐴 is also finite. Either 𝑥 is a
member of 𝐴 or it isn’t. If it is then 𝐵 = ∅ and we’ve already seen that ∅ is
finite. Suppose then that 𝑥 is not a member of 𝐴. If 𝐶 is a non-empty set
of subsets of 𝐵 then we construct a set 𝐷 of sets of subsets of 𝑃𝐴 by saying
that 𝐸 ∈ 𝐷 if and only if 𝐸 ⋃{𝑥} ∈ 𝐶. 𝐶 was assumed to be non-empty so
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there is an 𝐹 in 𝐶. Then 𝐹 ∖ {𝑥} ∈ 𝐷 so 𝐷 is also non-empty. 𝐴 is finite
so 𝐷 has a minimal member. Let 𝐺 be such a member. Then 𝐺 ⋃{𝑥} is
a minimal member of 𝐶. So every non-empty set 𝐶 of subsets of 𝐵 has a
minimal member and therefore 𝐵 is finite.
We’ve just seen that if 𝑃𝐴 is finite then so is 𝑃[𝐴 ⋃{𝑥}] ∖ 𝑃𝐴 for any 𝑥. But

𝑃[𝐴 ⋃{𝑥}] = 𝑃𝐴 ⋃[𝑃[𝐴 ⋃{𝑥}] ∖ 𝑃𝐴]

and the union of two finite sets is finite so 𝑃[𝐴 ⋃{𝑥}] is finite. Now
𝑃∅ = {∅} is finite so by induction on sets we can conclude that if 𝐵 is finite
then so is 𝑃𝐵.
For reference here are the main finiteness properties we’ve proved so far:

• ∅ is finite, as is {𝑥} for any 𝑥.
• If 𝐴 ⊆ 𝐵 and 𝐵 is finite then so is 𝐴.
• If 𝐴 is finite then so is 𝐴 ∖ 𝐵 for any 𝐵.
• If 𝐴 is a set of sets at least one of which is finite then ⋂ 𝐴 is finite. In

particular 𝐵 ⋂ 𝐶 is finite if 𝐵 or 𝐶 is finite.
• If 𝐴 is a finite set of sets all of which are finite then ⋃ 𝐴 is finite. In

particular 𝐵 ⋃ 𝐶 is finite if 𝐵 or 𝐶 is finite.
• If 𝐴 is finite then so is 𝑃𝐴.

Lists
The main goals of this section is make precise what we mean by a list, and
to define various other useful objects in terms of them.

Chains and pairs

A chain is a set 𝐴 such that for all 𝐵 ∈ 𝐴 and 𝐶 ∈ 𝐴 we have 𝐵 ⊆ 𝐶 or 𝐶 ⊆ 𝐵.
Any subset of a chain is also a chain. Every non-empty finite chain has a
least member, i.e. a member which is a subset of every other member, and
a greatest member, i.e. a member such that every other member is a subset
of it. This can be proved by induction on sets. The least member is ⋂ 𝐴 and
the greatest member is ⋃ 𝐴.
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As an example, for any 𝑥 and 𝑦 the set {{𝑥}, {𝑥, 𝑦}} is a chain, with {𝑥} as its
least member and {𝑥, 𝑦} its greatest member. This is true even in the case
𝑥 = 𝑦, although then {𝑥} and {𝑥, 𝑦} are the same set. As another example,
for each natural number 𝑚 we can consider the set of all natural numbers
𝑛 such that 𝑚 ≤ 𝑛. The set of such sets, one for each 𝑚, form a chain. This
chain has a greatest member, the set of all natural numbers, but no least
element. That doesn’t contradict the result above because this chain is not
finite. This example, of course, assumes that the set of natural numbers
exists.
Every subset of a chain is a chain and every subset of a finite set is a finite
set so every subset of a finite chain is a finite chain.
Suppose 𝐴 is a finite chain of non-empty sets and 𝐷 ∈ 𝐴. Then

𝐸 = {𝐵 ∈ 𝐴 ∶ [[𝐵 ⊆ 𝐷] ∧ [¬[𝐵 = 𝐷]]]},

i.e. the set of elements of 𝐴 which are proper subsets of 𝐷, is a subset of 𝐴
and so is a finite chain. It follows from what we showed earlier that if 𝐸 is
non-empty then it has a greatest member, which we’ll call 𝐶, and 𝐶 = ⋃ 𝐸.
Now 𝐶 ∈ 𝐸 so 𝐶 is a proper subset of 𝐷. Therefore 𝐷 ∖ 𝐶, which is the
same as

𝐷 ∖ ⋃{𝐵 ∈ 𝐴 ∶ [[𝐵 ⊆ 𝐷] ∧ [¬[𝐵 = 𝐷]]]},
is non-empty. If𝐸 is empty then the set above is just𝐷, which is amember of
𝐴 and hence is also non-empty. So in either case the set above is non-empty.
So for each 𝐷 ∈ 𝐴 the set above has at least one member. We say that 𝐴 is a
Kuratowski chain if each of these sets also has atmost onemember. In other
words, a set 𝐴 is a Kuratowski chain if and only if it satisfies the following
conditions.

• 𝐴 is finite, i.e.,

[∀𝐵 ∈ [𝑃𝑃𝐴 ∖ ∅] ∶ [[∃𝐶 ∈ 𝐵 ∶ [∀𝐷 ∈ 𝐵 ∶ [[𝐶 ⊆ 𝐷] ⊃ [𝐶 = 𝐷]]]]
∧ [∃𝐷 ∈ 𝐵 ∶ [∀𝐶 ∈ 𝐵 ∶ [[𝐶 ⊆ 𝐷] ⊃ [𝐶 = 𝐷]]]]]]

• 𝐴 is a chain, i.e.

[∀𝐵 ∈ 𝐴 ∶ [∀𝐶 ∈ 𝐴 ∶ [[𝐵 ⊆ 𝐶] ∨ [𝐶 ⊆ 𝐵]]]]
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• Every member of 𝐴 is a non-empty set, i.e.

[∀𝐵 ∈ 𝐴 ∶ [∃𝑥.[𝑥 ∈ 𝐵]]]

• Each of the sets discussed previously has at most one element, i.e.

[∀𝐶.[𝐶 = 𝐷 ∖ ⋃{𝐵 ∈ 𝐴 ∶ [[𝐵 ⊆ 𝐷] ∧ [¬[𝐵 = 𝐷]]]}]
⊃ [[[𝑥 ∈ 𝐶] ∧ [𝑦 ∈ 𝐶]] ⊃ [𝑥 = 𝑦]]].

The set {{𝑥}, {𝑥, 𝑦}} considered earlier is an example of a Kuratowski chain.
It is called the Kuratowski pair with initial element 𝑥 and final element 𝑦.
More generally, if 𝐴 is a non-empty Kuratowski chain then we call the
unique member of ⋂ 𝐴 the initial element of 𝐴 and the unique element
of

[⋃ 𝐴] ∖ ⋃{𝐵 ∈ 𝐴 ∶ [[𝐵 ⊆ 𝐴] ∧ [¬[𝐵 = 𝐴]]]}
the final element of 𝐴. The fact that these sets have exactly one element is
built into the definition of Kuratowski chains. The initial and final element
could be the same, as happens, for example, with the chain {𝑥}. This is the
only way that can happen though.
Suppose 𝐴 is a non-empty Kuratowski chain with at most two elements.
Let 𝑥 be the initial element and let 𝑦 be the final element. Let 𝐶 be the least
member of 𝐴. By the definition of a chain the set

𝐶 ∖ ⋃{𝐵 ∈ 𝐴 ∶ [[𝐵 ⊆ 𝐶] ∧ [¬[𝐵 = 𝐶]]]}

has only one member. 𝐶 is a least member of 𝐴 so the set

{𝐵 ∈ 𝐴 ∶ [[𝐵 ⊆ 𝐶] ∧ [¬[𝐵 = 𝐶]]]}

is empty and therefore

𝐶 ∖ ⋃{𝐵 ∈ 𝐴 ∶ [[𝐵 ⊆ 𝐶] ∧ [¬[𝐵 = 𝐶]]]} = 𝐶

and 𝐶 has only one member. Since 𝑥 is a member of all members of 𝐴 and
𝐶 is a member of 𝐴 it follows that 𝐶 = {𝑥}. So

{𝑥} ∈ 𝐴.
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𝑦 is the final element of 𝐴 so

[⋃ 𝐴] ∖ ⋃{𝐵 ∈ 𝐴 ∶ [[𝐵 ⊆ 𝐴] ∧ [¬[𝐵 = 𝐴]]]} = {𝑦}.

Now

⋃ 𝐴 = [[⋃{𝐵 ∈ 𝐴 ∶ [[𝐵 ⊆ 𝐴] ∧ [¬[𝐵 = 𝐴]]]}]
⋃[[⋃ 𝐴] ∖ ⋃{𝐵 ∈ 𝐴 ∶ [[𝐵 ⊆ 𝐴] ∧ [¬[𝐵 = 𝐴]]]}]

so
⋃ 𝐴 = [⋃{𝐵 ∈ 𝐴 ∶ [[𝐵 ⊆ 𝐴] ∧ [¬[𝐵 = 𝐴]]]}] ⋃{𝑦}.

𝐴 has at most two members so [⋃{𝐵 ∈ 𝐴 ∶ [[𝐵 ⊆ 𝐴] ∧ [¬[𝐵 = 𝐴]]]}] is ei-
ther empty or has 𝐶 as its only member. In the first case 𝑥 = 𝑦 so ⋃ 𝐴 = {𝑦}
is the same as

⋃ 𝐴 = {𝑥, 𝑦}.
In the second case ⋃ 𝐴 = 𝐶 ⋃{𝑦} is the same as

⋃ 𝐴 = {𝑥, 𝑦}.

So we get ⋃ 𝐴 = {𝑥, 𝑦} in either case. For any Kuratowski chain ⋃ 𝐴 ∈ 𝐴
so

{𝑥, 𝑦} ∈ 𝐴.
We already had {𝑥} ∈ 𝐴 so

{{𝑥}, {𝑥, 𝑦}} ⊆ 𝐴.

𝐴 has at most two members so

{{𝑥}, {𝑥, 𝑦}} = 𝐴.

Therefore all non-empty Kuratowski chains with at most two members are
Kuratowski pairs. We’ve already seen the converse, that all Kuratowski
pairs are non-empty Kuratowski chains with at most two members.

Ordered pairs

If two Kuratowski chains are equal then they must have the same initial
element and same final element. The applies in particular to pairs. What
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we’ve just shown implies that if two pairs have the same initial and final
elements then they are equal.
Note that it’s not meaningful to talk about the initial or final member of
the two element set {𝑥, 𝑦} since {𝑥, 𝑦} = {𝑦, 𝑥} but {{𝑥}, {𝑥, 𝑦}} is not equal to
{{𝑦}, {𝑦, 𝑥}} unless 𝑥 = 𝑦. Because we can uniquely identify an initial and
final element Kuratowski pairs are often called ordered pairs.
It’s tempting to try to define ordered triples analogously, so that
{{𝑥}, {𝑥, 𝑦}, {𝑥, 𝑦, 𝑧}} would be the ordered triple with 𝑥 as its initial ele-
ment, 𝑦 as its middle element and 𝑧 as its final element. Unfortunately this
doesn’t work. Consider the ordered triple with 𝑣 as both its initial and
middle elements and 𝑤 as its final element. According to the proposed
definition above this would be {{𝑣}, {𝑣, 𝑣}, {𝑣, 𝑣, 𝑤}}, which is the same as
{{𝑣}, {𝑣, 𝑤}}. Now consider the ordered triple whose initial element is 𝑣
and whose middle and final elements are 𝑤. According to the proposed
definition above this would be {{𝑣}, {𝑣, 𝑤}, {𝑣, 𝑤, 𝑤}}, which is also the
same as {{𝑣}, {𝑣, 𝑤}}. These triples have distinct middle elements though
and should therefore be distinct. So the Kuratowski construction works
for pairs but the analogous construction for triples does not work.
Soon we will have chains whose elements are Kuratowski pairs, each of
which has initial and final elements. To avoid confusion, or at least reduce
it, fromnowon I’ll refer to the initial element of a pair as the left component
and the final element as the right component.

Lists

We can still build ordered triples, and lists more generally, using Kura-
towski chains. We just have to go about it in a more complicated way.
We’ll say that 𝐴 is a list if it satisfies the following conditions:

• 𝐴 is a finite Kuratowski chain
• for each 𝐵 ∈ 𝐴 the unique member of the set

𝐵 ∖ ⋃{𝐶 ∈ 𝐵 ∶ [[𝐶 ⊆ 𝐵] ∧ [¬[𝐵 = 𝐶]]]}.

is an ordered pair, the right component of which is

{𝐶 ∈ 𝐵 ∶ [[𝐶 ⊆ 𝐵] ∧ [¬[𝐵 = 𝐶]]]}.
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The items in the list are the left components of the pairs

𝐵 ∖ ⋃{𝐶 ∈ 𝐵 ∶ [[𝐶 ⊆ 𝐵] ∧ [¬[𝐵 = 𝐶]]]}.

These form a set.
The empty set ∅ is a list, called the empty list, with no items. The first item
of a non-empty list is the left component of the initial element of the list.
The last item of a non-empty list is the left component of the final element
of the list. The definition of lists implies that if 𝐴 is a list and 𝐵 is its final
element then the right component of 𝐵 is a list with one element fewer than
𝐴. We’ll call this the truncation of 𝐴. For any list 𝐴 and any 𝑥 there is a
unique list whose last item is 𝑥 and whose truncation is 𝐴, namely

𝐵 = 𝐴 ⋃{{{𝑥}, {𝑥, 𝐴}}}.

We say that𝐵 is the result of appending the item 𝑥 to the list𝐴. We can build
up lists by starting with the empty set and successively appending items.
The result of appending the items 𝑥, 𝑦, and 𝑧, in that order, to the empty
set will be denoted (𝑥, 𝑦, 𝑧), and similarly for any other list. The empty list
is written as ().
The precise details aren’t terribly important but I’ll write out what the list
(𝑥, 𝑦, 𝑧) is as a set, using this technique of successively appending items.

() = ∅,

(𝑥) = {{{𝑥}, {𝑥, ∅}}},
(𝑥, 𝑦) = {{{𝑥}, {𝑥, ∅}}, {{𝑦}, {𝑦, {{{𝑥}, {𝑥, ∅}}}}}}

(𝑥, 𝑦, 𝑧) = {{{𝑥}, {𝑥, ∅}}, {{𝑦}, {𝑦, {{{𝑥}, {𝑥, ∅}}}}},
{{𝑧}, {𝑧, {{{𝑥}, {𝑥, ∅}}, {{𝑦}, {𝑦, {{{𝑥}, {𝑥, ∅}}}}}}}}}

This looks rather complicated but all we really need to know is the follow-
ing.

• There is a Boolean expression in our language which tells us whether
something is a list.

• There is a Boolean expression in our language which tells us whether
a list is empty.
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• There is awaywithin our language to get the last item in a non-empty
list.

• There is a way within our language to get a list with all but the last
item.

• There is a way to take a list and append one more item at the end.
• There is a way to get the set whose members are the items of a list.

These are all the operations we need to perform on lists. More complicated
operations, like reversing the order of the items on a list or concatenating
two lists, can be defined from these basic operations. In fact LISP, whose
main data structure is lists, does exactly this, with the inconsequential dif-
ference that it builds lists starting from the empty list by adding new items
at the start of the list rather than the end.

Interfaces

A fundamental organising principle in programming is to define interfaces,
the fundamental operations whose semantics the user of an object can rely
upon, and to hide as much as possible the implementation of these in-
terfaces, so that one implementation can be replaced by another without
breaking anything, assuming users aren’t relying on anything about the ob-
jects beyond the fact that they implement one or more of these interfaces.
As an example, we now have two different ways we could implement or-
dered pairs, either as Kuratowski pairs or as lists with two elements. The
first option might seem more efficient, since

{{𝑥}, {𝑥, 𝑦}}

is simpler than

{{{𝑥}, {𝑥, ∅}}, {{𝑦}, {𝑦, {{{𝑥}, {𝑥, ∅}}}}}}.

This is irrelevant though ifwe only operate on lists using the primitive oper-
ations considered earlier, as we should. This is one respect in whichmathe-
matics differs from programming. Efficiency of implementation matters to
users in programming. There is a notion of efficiency in mathematics but
it involves the ease with which we can prove that the objects constructed
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implement the given interface. Implementations are generally called defi-
nitions in mathematics.
In fact there are a number of other implementations of ordered pairs be-
sides the two given above but we won’t consider any of those.
Often one interface can be implemented in terms of another. If you look
at the list of operations on lists defined above you may notice that by com-
bining the third and fourth operations and removing the last one standard
interface for a stack:

• We can check whether an object is a stack.
• We can check whether a stack is empty.
• We can pop the top item off a non-empty stack, leaving a stack with

the remaining items.
• We can push an item onto the top of the stack, leaving a stack with

that item as its top.
Which implementation of ordered pairs should we choose? Perhaps the
most useful answer is that it shouldn’t matter. If we ever do anything
which works for one implementation but not the other then we are doing
the mathematical equivalent of accessing objects outside of their public
interfaces, which in programming is either forbidden or strongly discour-
aged, depending on the language. Still, we do need some implementation
so we have to choose one. Efficiency, in the mathematical sense rather than
the programming one, is not really an issue for us. We need lists for a num-
ber of other purposes, including the definition of a language, so we can’t
avoid defining lists and establishing their main properties, even if we ul-
timately decide not to define ordered pairs in terms of them. We need
Kuratowski pairs for the implementation of lists above, so we also needs
those definitions and properties. So the same amount of work is required
no matter which option we choose. I’ll use the list definition primarily be-
cause we need a notation for ordered pairs and a notation for lists and if
ordered pairs are lists then we can use the same notation for both, so (𝑥, 𝑦)
is the two-element list whose first and last items are 𝑥 and 𝑦 respectively
and also the ordered pair whose first and second coordinates are 𝑥 and 𝑦,
since those are the same thing. Mathematicians traditionally choose the
other interpretation, as Kuratowski pairs, because they need ordered pairs
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but don’t really need lists. In that situation Kuratowski pairs are a more
efficient implementation. As mentioned before though, it doesn’t really
matter.

Cartesian products

The set of ordered pairs (𝑥, 𝑦) with 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵 is called the Cartesian
product of𝐴 and𝐵, written𝐴 × 𝐵. In the common special casewhere𝐴 = 𝐵
we often write 𝐴2 rather than 𝐴 × 𝐴. In a similar way we define 𝐴3 to be
the list of ordered triples, i.e. lists of the form (𝑥, 𝑦, 𝑧), where each of 𝑥, 𝑦
and 𝑧 is an element of 𝐴.
𝐴 × 𝐵 is indeed a set, as are 𝐴2 and 𝐴3. This is less obvious than it might
seem, but still true.
If 𝐴 and 𝐵 are finite sets then 𝐴 × 𝐵 is finite. This can be proved fairly easily
by induction on sets. In particular, if 𝐴 is finite then so are 𝐴2 and 𝐴3.

Relations
A binary relation is a set of ordered pairs. From now on I’ll just use rela-
tion as shorthand for binary relation unless otherwise specified since we’re
mostly concernedwith binary relations. The definition above is too general
to be of much use. We really need to impose more conditions to get any in-
teresting properties but there are a few useful definitions that make sense
in this level of generality.

Basic definitions

A relation 𝑅 is called diagonal if (𝑥, 𝑦) ∈ 𝑅 implies 𝑥 = 𝑦. For any set 𝐴 we
can define the relation Δ𝐴 as the set of all ordered pairs (𝑥, 𝑥) for 𝑥 ∈ 𝐴.
This is a diagonal relation and is called the diagonal relation on 𝐴. These
are in fact the only examples of diagonal relations.
The domain of a relation𝑅 is the set of 𝑥 such that there is a 𝑦 with (𝑥, 𝑦) ∈ 𝑅.
The range of 𝑅 is the set of 𝑦 such that there is an 𝑥 with (𝑥, 𝑦) ∈ 𝑅. The
range and domain of Δ𝐴 are just 𝐴.
The inverse of a relation 𝑅 is the set of all ordered pairs (𝑥, 𝑦) such that
(𝑦, 𝑥) ∈ 𝑅. I’ll denote it by 𝑅−1. Note that 𝑅−1 is a set of ordered pairs
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so it is also a relation. We can therefore take its inverse, 𝑅−1−1. Now
(𝑥, 𝑦) ∈ 𝑅−1−1 if and only if (𝑦, 𝑥) ∈ 𝑅−1, which happens if and only if
(𝑥, 𝑦) ∈ 𝑅. By the Axiom of Extensionality it follows that

𝑅−1−1 = 𝑅.

Given two relations 𝑅 and 𝑆 we can define their composition, which is writ-
ten 𝑅 ∘ 𝑆, defined to be the set of ordered pairs (𝑥, 𝑧) such that there is a
𝑦 with (𝑥, 𝑦) ∈ 𝑆 and (𝑦, 𝑧) ∈ 𝑅. The name is standard and the notation
somewhat standard, but most authors reverse the roles of 𝑅 and 𝑆 in the
definition. The problem with doing that is that functions, as we’ll see, are
a kind of relation and the standard notation for composition of functions
writes them in reverse order, i.e. 𝑓 ∘ 𝑔 is the result of applying 𝑔 and then 𝑓 .
To accommodate this convention, which is unfortunate but too well estab-
lished to attempt to change, it’s necessary to do composition of relations
in the reverse order as well. The composition of relations is also a relation,
and so can be composed with other relations. This has the associativity
property

(𝑅 ∘ 𝑆) ∘ 𝑇 = 𝑅 ∘ (𝑆 ∘ 𝑇).
If the domain of 𝑅 is a subset of 𝐴 then 𝑅 ∘ Δ𝐴 = 𝑅. If the range of 𝑅 is a
subset of 𝐴 then Δ𝐴 ∘ 𝑅 = 𝑅.
Another useful identity is

(𝑅 ∘ 𝑆)−1 = (𝑆−1) ∘ (𝑅−1).

A relation 𝑅 is said to be symmetric if 𝑅 = 𝑅−1, i.e. if (𝑥, 𝑦) ∈ 𝑅 if and only
(𝑦, 𝑥) ∈ 𝑅. It’s said to be transitive if 𝑅 ∘ 𝑅 ⊆ 𝑅, i.e. if (𝑥, 𝑧) ∈ 𝑅 whenever
(𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑧) ∈ 𝑅. The diagonal relation on a set is always symmet-
ric and transitive. If 𝑅 is transitive then so is 𝑅−1.
A relation 𝑅 is said to be antisymmetric if 𝑅 ⋂ 𝑅−1 is diagonal or, equiva-
lently if (𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑥) ∈ 𝑅 imply 𝑥 = 𝑦. The terminology is unfor-
tunate since antisymmetric is not the opposite of symmetric. A relation
can be symmetric and antisymmetric. Diagonal relations, for example, are
both symmetric and antisymmetric. It’s also possible for a relation to be
neither symmetric nor antisymmetric. Note that if 𝑅 is antisymmetric then
so is 𝑅−1.
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A relation 𝑅 is said to be left unique if 𝑅−1 ∘ 𝑅 is diagonal. In otherwords, if
𝑥 = 𝑧 whenever there is a 𝑦 such that (𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑧) ∈ 𝑅−1 or, equiv-
alently, whenever (𝑥, 𝑦) ∈ 𝑅 and (𝑧, 𝑦) ∈ 𝑅. In other words, for any 𝑦 there
is at most one ordered pair has 𝑦 as its right element. Similarly 𝑅 is said
to be right unique if 𝑅 ∘ 𝑅−1 is diagonal, which is equivalent to saying that
for any 𝑥 there is at most one ordered pair with 𝑥 as its left element. This
may seem backwards but this use of left and right is standard.
If the relation 𝑅 is a subset of the Cartesian product 𝐴 × 𝐵 then we say that
it’s a relation from 𝐴 to 𝐵 and if 𝑅 is a subset of 𝐴 × 𝐴 then we say that it’s
a relation on 𝐴. If 𝑅 is a relation from 𝐴 to 𝐵 then 𝑅−1 is a relation from 𝐵
to 𝐴. In particular if 𝑅 is a relation on 𝐴 then so is 𝑅−1. If 𝑅 is a relation
from 𝐵 to 𝐶 and 𝑆 is a relation from 𝐴 to 𝐵 then 𝑅 ∘ 𝑆 is a relation from 𝐴
to 𝐶. In particular if 𝑅 and 𝑆 are relations on 𝐴 then so is 𝑅 ∘ 𝑆.

Examples

As examples of the properties above, consider the following relations on
the set of natural numbers:

• 𝑅 is the set of (𝑥, 𝑦) with 𝑥 = 𝑦.
• 𝑆 is the set of (𝑥, 𝑦) with 𝑥 ≤ 𝑦.
• 𝑇 is the set of (𝑥, 𝑦) with 𝑥 < 𝑦.
• 𝑈 is the set of all (𝑥, 𝑦).
• 𝑉 is the set of (𝑥, 𝑦) with 𝑥 ≠ 𝑦.

The domain of 𝑅, 𝑆, 𝑇, 𝑈, and 𝑉 is the set of natural numbers. The range
is also the set of natural numbers in each case, except that of 𝑇, whose
range is the set of positive integers since every positive integer is greater
than some natural number and every natural numberwhich is greater than
some natural number is a positive integer.
𝑅 is diagonal. None of the other relations are. It is also the only one which
is left or right unique.
Now

• 𝑅−1 is the set of (𝑥, 𝑦) with 𝑥 = 𝑦, i.e. just 𝑅, so 𝑅 is symmetric and
antisymmetric. As mentioned above, diagonal relations are always
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symmetric and antisymmetric.
• 𝑆−1 is the set of (𝑥, 𝑦) with 𝑥 ≥ 𝑦, which is not the same as 𝑆, so 𝑆 is

not symmetric. 𝑆 ⋂ 𝑆−1 = 𝑅 and 𝑅 is diagonal so 𝑆 is antisymmetric.
• 𝑇−1 is the set of (𝑥, 𝑦) with 𝑥 > 𝑦, which is not the same as 𝑇, so 𝑇 is

also not symmetric. 𝑇 ⋂ 𝑇−1 = ∅ and ∅ is diagonal so 𝑇 is antisym-
metric.

• 𝑈−1 is the set of all (𝑥, 𝑦), which is the same as 𝑈, so 𝑈 is symmetric.
𝑈 ⋂ 𝑈−1 = 𝑈 and 𝑈 is not diagonal, so 𝑈 is not antisymmetric.

• 𝑉−1 is the set of (𝑥, 𝑦) with 𝑥 ≠ 𝑦, which is the same as 𝑉, so 𝑉 is also
symmetric. 𝑉 ⋂ 𝑉−1 = 𝑉 and 𝑉 is not diagonal so 𝑉 is not antisym-
metric.

and
• 𝑅 ∘ 𝑅 is the set of (𝑥, 𝑦) with 𝑥 = 𝑦, i.e. 𝑅, which is a subset of 𝑅, so

𝑅 is transitive. As mentioned above diagonal relations are always
transitive.

• 𝑆 ∘ 𝑆 is the set of (𝑥, 𝑦) with 𝑥 ≤ 𝑦, i.e. 𝑆, so 𝑆 is transitive.
• 𝑇 ∘ 𝑇 is the set of (𝑥, 𝑦) with 𝑥 + 1 < 𝑦, which is a subset of 𝑇, so 𝑇

is transitive. Note that 𝑇 ∘ 𝑇 is a proper subset of 𝑇, unlike what we
saw for 𝑅 and 𝑆, but the relation is still transitive.

• 𝑈 ∘ 𝑈 is the set of all (𝑥, 𝑦), i.e. 𝑈, so 𝑈 is transitive.
• 𝑉 ∘ 𝑉 is the set of all (𝑥, 𝑦), i.e. 𝑈, which is not a subset of 𝑉 so 𝑉 is

not transitive.
Most of these are fairly straightforward. If (𝑥, 𝑧) ∈ 𝑆 ∘ 𝑆 then there is a 𝑦
such that (𝑥, 𝑦) ∈ 𝑆 and (𝑦, 𝑧) ∈ 𝑆, i.e. such that 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧. It follows
that 𝑥 ≤ 𝑧, i.e. that (𝑥, 𝑧) ∈ 𝑆. So 𝑆 ∘ 𝑆 ⊆ 𝑆. This is all we need for tran-
sitivity, but if we want to prove the statement made above that 𝑆 ∘ 𝑆 = 𝑆
then we also need to show the reverse inclusion 𝑆 ⊆ 𝑆 ∘ 𝑆. In other words
we need to show that if 𝑥 ≤ 𝑧 then there is a 𝑦 such that 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧.
This is easy. Either 𝑦 = 𝑥 or 𝑦 = 𝑧 will work. The argument for 𝑇 is sim-
ilar. If (𝑥, 𝑧) ∈ 𝑇 ∘ 𝑇 then there is a 𝑦 such that (𝑥, 𝑦) ∈ 𝑇 and (𝑦, 𝑧) ∈ 𝑇,
i.e. such that 𝑥 < 𝑦 and 𝑦 < 𝑧. It follows that 𝑥 < 𝑧, i.e. that (𝑥, 𝑧) ∈ 𝑇. So
𝑇 ∘ 𝑇 ⊆ 𝑇 and 𝑇 is transitive. To prove the stronger statement given above
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we note that since we’re dealing with natural numbers 𝑥 < 𝑦 and 𝑦 < 𝑧 im-
ply 𝑥 + 1 ≤ 𝑦 and 𝑦 + 1 ≤ 𝑧, fromwhichweget 𝑥 + 2 ≤ 𝑧 and then 𝑥 + 1 < 𝑧.
To see that 𝑉 ∘ 𝑉 = 𝑈, note that if (𝑥, 𝑧) ∈ 𝑈 then there is a natural number
𝑦 distinct from 𝑥 and 𝑧. To be more concrete, the numbers 0, 1, and 2 are all
distinct so at least one of them is unequal to either 𝑥 or 𝑧. Call the least such
number 𝑦. Then (𝑥, 𝑦) ∈ 𝑉 and (𝑦, 𝑧) ∈ 𝑉 so (𝑥, 𝑧) ∈ 𝑉 ∘ 𝑉. So 𝑈 ⊆ 𝑉 ∘ 𝑉.
The reverse inclusion is trivial since every relation on the natural numbers
is a subset of 𝑈, essentially by definition.

Functions

If 𝑅 is a relation from 𝐴 to 𝐵 then the domain of 𝑅 is a subset of 𝐴 and the
range of 𝑅 is a subset of 𝐵. We say that 𝑅 is left total if the domain of 𝑅 is
all of 𝐴 and that it’s right total if the range of 𝑅 is all of 𝐵. It follows that
𝑅−1 is left total if 𝑅 is right total and vice versa.
Some properties of a relation from 𝐴 to 𝐵 depend only on the relation,
i.e. the set of ordered pairs and others depend on the sets 𝐴 and 𝐵. Left
and right uniqueness, for example, depend only on the relation while left
and right totality depend on 𝐴 and 𝐵 as well.
A relation which is left total and right unique is called a function. If 𝐹 a
function from 𝐵 to 𝐶 and 𝐺 is a function from 𝐴 to 𝐵 then 𝐹 ∘ 𝐺 is a function
from 𝐴 to 𝐶.
Every function is left total by definition. Functions which are also right to-
tal are called surjective. Every function is right unique by definition. Func-
tions which are also left unique are called injective. Functions which are
both right total and left unique are called bijective, or invertible. Every
function is a relation and so has an inverse, which is also a relation. For
bijective relations this inverse relation is also a function. If 𝐹 is a function
from 𝐴 to 𝐵 then 𝐹 ∘ 𝐹−1 = Δ𝐵 and 𝐹−1 ∘ 𝐹 = Δ𝐴.
If you’re accustomed to thinking of functions as being defined by algo-
rithms then the definition above does not correspond to your intuition. Dif-
ferent algorithms can certainly give the same function. For example, taking
a number and adding it to itself and taking a number and multiplying it
by two are different algorithms but they correspond to the same function
according to the definition above. Later we will see that there are func-
tions for which there is no corresponding algorithm as well. If you’re used

145



to thinking of functions in terms of graphs, on the other hand, then the
definition above is exactly your intuition. Functions are simply defined as
graphs. Note that this is the one place in these notes where I use the word
graph in the sense that it’s used in algebra and calculus. Everywhere else
it will by used in the same sense as in graph theory.
There are relatively few terminological conflicts between computer science
and related fields like mathematics, logic and linguistics. Sometimes com-
puter scientists use a different term for the same concept but its rare for
them to use the same term for a different concept. This is unfortunately
one of the exceptions. Computer scientists refer to the algorithmic notion
of functions as functions. What word do they use for the graph notion of
functions? Also function! This is confusing, but less of a problem than it
might appear since the algorithmic notion is much more common. Logi-
cians are the only people who have an adequate terminology. They refer
to the algorithmic notion as intensional functions and the graph notion as
extensional functions. Function without an adjective normally means ex-
tensional unless otherwise specified. Note that intensional is not a typo for
intentional. The term from logic has an s rather than a t.
A useful fact about finite sets is that if 𝐴 is a finite set and 𝐹 is an injective
function from 𝐴 to 𝐴 then 𝐹 is also a surjective function from 𝐴 to 𝐴. This
can be proved by set induction. The only function from ∅ to ∅ is ∅, because
there are no ordered pairs (𝑥, 𝑦) with 𝑥 ∈ ∅ and 𝑦 ∈ ∅. Now ∅ is trivially
right total so every injective function ∅ to ∅ is a surjective function from
∅ to ∅. It therefore suffices to prove that if every injective function from
𝐴 to itself is surjective then every injective function from 𝐴 ⋃{𝑥} to itself
is surjective. This is certainly true if 𝑥 ∈ 𝐴 so we can limit our attention
the case where 𝑥 is not a member of 𝐴. Assume then that 𝐹 is an injective
function from 𝐴 ⋃{𝑥} to itself and 𝑥 is not a member of 𝐴. 𝐹 is left total so
there is a 𝑦 ∈ 𝐴 such that (𝑥, 𝑦) ∈ 𝐹. 𝐹 is left unique so there is no 𝑤 ∈ 𝐴
such that (𝑤, 𝑦) ∈ 𝐹. 𝐹 is left total and right unique so for all 𝑤 ∈ 𝐴 there is
a unique 𝑧 ∈ 𝐴 ⋃{𝑥} such that (𝑤, 𝑧) ∈ 𝐹. If 𝑦 = 𝑥 then this 𝑧 is not 𝑥 and so
must be in 𝐴. In this case the set of pairs (𝑤, 𝑧) with 𝑤 ∈ 𝐴 is an injective
function from 𝐴 to itself. It must therefore be surjective. There is then,
for each 𝑧 ∈ 𝐹 a 𝑤 ∈ 𝐴 such that (𝑤, 𝑧) ∈ 𝐹. 𝐹 is injective so we can’t have
(𝑥, 𝑧) ∈ 𝐹. and therefore 𝑦 = 𝑥. In other words, 𝑥 = 𝑦 if and only if there is,
for each 𝑤 ∈ 𝐴, a 𝑧 ∈ 𝐴 such that (𝑤, 𝑧) ∈ 𝐹, and in this case everymember
of 𝐴 is in the range of 𝐹 and so is 𝑥 so 𝐹 is a surjective function from 𝐴 ⋃{𝑥}
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to itself. It remains to consider the case where 𝑦 is not equal to 𝑥, and so
is member of 𝐴, and there is some 𝑤 ∈ 𝐴 for which there is no 𝑧 ∈ 𝐴 with
(𝑤, 𝑧) ∈ 𝐹. 𝐹 is left total so there is some 𝑧 ∈ 𝐴 ⋃{𝑥} with (𝑤, 𝑧) ∈ 𝐹 and so
we must have 𝑧 = 𝑥 for such 𝑤. Since 𝐹 is left unique there is at most one
such 𝑤 and we already know there’s at least one so there must be exactly
one. Let

𝐺 = 𝐹 ⋃{(𝑤, 𝑦)} ∖ {(𝑤, 𝑥), (𝑥, 𝑦)}.
This is an injective function from 𝐴 to itself and so is also a surjective func-
tion. So for all 𝑧 ∈ 𝐴 there is a 𝑣 ∈ 𝐴 such that (𝑣, 𝑧) ∈ 𝐺. If 𝑧 is not 𝑦 then
(𝑣, 𝑧) ∈ 𝐹 so 𝑧 is in the range of 𝐹. If 𝑧 is 𝑦 then 𝑧 is also in the range of 𝐹
because then (𝑥, 𝑧) ∈ 𝐹. So all members of 𝐴 are in the range of 𝐹. 𝑥 is also
in the range of 𝐹 since (𝑤, 𝑥) ∈ 𝐹 so all of 𝐴 ⋃{𝑥} is in the range of 𝐹, which
therefore must be surjective. 𝐹 was an arbitrary injective function from
𝐴 ⋃{𝑥} to itself so all injective functions from 𝐴 ⋃{𝑥} to itself are surjective.
We’ve shown that all injective functions from ∅ to itself are surjective and
that if all injective functions from 𝐴 to itself are surjective then all injective
functions from𝐴 ⋃{𝑥} to itself are surjective. By induction on sets it follows
that all injective functions from a finite set to itself are surjective.

Order relations, equivalence relations

A relation 𝑅 on a set 𝐴 is called reflexive if Δ𝐴 ⊆ 𝑅, i.e. if (𝑥, 𝑥) ∈ 𝑅 for all
𝑥 ∈ 𝐴. Note that if 𝑅 is reflexive then so is 𝑅−1. Of our earlier examples 𝑅,
𝑆 and 𝑈 are reflexive while 𝑇 and 𝑉 are not.
A relationwhich is reflexive, transitive and antisymmetric is called a partial
order. We just noted that if 𝑅 is reflexive then so is 𝑅−1. We’ve previously
seen that if 𝑅 is transitive then so is 𝑅−1 and that if 𝑅 is antisymmetric then
so is 𝑅−1. It follows that if 𝑅 is a partial order then so is 𝑅−1. It’s said to be
a total order if in addition 𝑅 ⋃ 𝑅−1 = 𝐴 × 𝐴, i.e. if for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐴
at least one of (𝑥, 𝑦) ∈ 𝑅 or (𝑦, 𝑥) ∈ 𝑅 holds.
Of our earlier example relations, 𝑅 and 𝑆 are partial orders and 𝑆 is a total
order. None of the others are partial orders and 𝑅 is not a total order.
A relation 𝑅 on a set 𝐴 is said to be an equivalence relation if it is reflex-
ive, transitive and symmetric. Of our earlier examples, both 𝑅 and 𝑈 are
equivalence relations, while 𝑆, 𝑇 and 𝑉 are not. There is an important
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equivalence relation, equivalence modulo 𝑛, on the set of natural num-
bers, defined for each natural number 𝑛. This is the set of ordered pairs
(𝑥, 𝑦) for which there is a natural number 𝑚 such that either 𝑥 = 𝑦 + 𝑚 · 𝑛
or 𝑥 + 𝑚 · 𝑛 = 𝑦. The special case 𝑛 = 0 gives the relation 𝑅 from earlier
and the special case 𝑛 = 1 gives the relation 𝑈 but the cases where 𝑛 > 1,
and particularly where 𝑛 is prime, are more important.
Suppose 𝑅 is a partial order on 𝐴. 𝑦 ∈ 𝐴 is said to be a greatest member
of 𝐴 if (𝑥, 𝑦) ∈ 𝑅 for all 𝑥 ∈ 𝐴. 𝑦 ∈ 𝐴 is said to be a maximal member if
𝑧 ∈ 𝐴 and (𝑦, 𝑧) ∈ 𝑅 imply 𝑦 = 𝑧. 𝑥 ∈ 𝐴 is said to be a least member of 𝐴
if (𝑥, 𝑦) ∈ 𝑅 for all 𝑦 ∈ 𝐴. 𝑥 is said to be a minimal member of 𝐴 if 𝑤 ∈ 𝐴
and (𝑤, 𝑥) ∈ 𝑅 imply 𝑤 = 𝑥.
If there is a greatest member then there is only one and it is also a maximal
member. If there is a least member then there is only one and it is also a
minimal member.
If 𝐴 is a set of sets then 𝑅 = {(𝐵, 𝐶) ∈ 𝐴 × 𝐴 ∶ 𝐵 ⊆ 𝐶} is an order relation
since 𝐵 ⊆ 𝐵 for all 𝐵 ∈ 𝐴, 𝐵 ⊆ 𝐷 if 𝐵 ⊆ 𝐶 and 𝐶 ⊆ 𝐷, and 𝐵 ⊆ 𝐶 and 𝐶 ⊆ 𝐵
imply 𝐵 = 𝐶.
As an example of the definitions above, suppose 𝐴 is the set of non-empty
finite subsets of some non-empty set 𝐸.
For any 𝑥 ∈ 𝐸 we have {𝑥} ∈ 𝐴. {𝑥} is in fact a minimal member since if 𝐵
is a finite non-empty subset of {𝑥} then 𝐵 = {𝑥}. If 𝑥 is the only member of
𝐸 then {𝑥} is also a least member of 𝐴, but if there is some 𝑦 ∈ 𝐸 with 𝑥 ≠ 𝑦
then 𝐴 has no least member. A least member would have to be a subset of
every member of 𝐴 and hence a subset of both {𝑥} and {𝑦}. The only set
with this property is ∅, but it is not a member of 𝐴.
If 𝐸 is finite then 𝐸 ∈ 𝐴 and 𝐸 is a greatestmember of 𝐴 since everymember
of 𝐴 is a subset of 𝐸. If 𝐸 is infinite then 𝐸 is not a member of 𝐴 and so
can’t be greatest member or maximal member. In fact there is no maximal
member in this case and hence also no greatest member. Suppose 𝐵 is a
member of 𝐴. Then 𝐵 is finite and 𝐸 is infinite so 𝐵 is not 𝐸. 𝐵 is a member
of 𝐴 and all members of 𝐴 are subsets of 𝐸 so 𝐵 is a subset of 𝐸 andmust be
a proper subset since 𝐵 is not equal to 𝐸. There is therefore some 𝑥 which is
a member of 𝐸 but not of 𝐵. Let 𝐶 = 𝐵 ⋃{𝑥}. Then 𝐵 is a subset of 𝐶 and 𝐶
is a subset of 𝐸. It’s a finite subset. We proved that earlier. It’s non-empty
since 𝑥 ∈ 𝐶. So 𝐶 ∈ 𝐴. From this and 𝐵 ⊆ 𝐶 it would follow that 𝐵 = 𝐶 if
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𝐵 were maximal, but 𝑥 is a member of 𝐶 and not of 𝐵 so this is impossible.
Therefore𝐵 is notmaximal. Since𝐵was an arbitrarymember of𝐴 it follows
that no member of 𝐴 is maximal.
When defining finiteness earlier I used the terms minimal and maximal.
You can check that the definitions given there agree with the definitions of
minimal andmaximal given above, with the relation being the set inclusion
relation.
For any non-empty finite set 𝐴 and partial order 𝑅 on 𝐴 there is a mini-
mal member and a maximal member. This is proved by induction on sets.
Let 𝐵 be the set of subsets 𝐶 of 𝐴 such that 𝐶 is empty or has a minimal
and maximal member. Then ∅ ∈ 𝐵. If 𝐶 ∈ 𝐵 then 𝐶 ⋃{𝑥} ∈ 𝐵 for all 𝑥 ∈ 𝐴.
This is proved as follows. If 𝐶 = ∅ then 𝑥 is both a minimal and maximal
member of 𝐶 ⋃{𝑥}. If 𝐶 is not empty then it has a minimal and maximal
member. Let 𝑧 be aminimalmember of 𝐶. Then 𝑦 ∈ 𝐶 and (𝑦, 𝑧) ∈ 𝑅 imply
𝑦 = 𝑧. (𝑥, 𝑧) either is or isn’t a member of 𝑅. If it isn’t then 𝑦 ∈ 𝐶 ⋃{𝑥} and
(𝑦, 𝑧) ∈ 𝑅 imply 𝑦 = 𝑧 so 𝑧 is a minimal member of 𝐶 ⋃{𝑥}. If (𝑥, 𝑧) ∈ 𝑅
then for any 𝑦 ∈ 𝐶 such that (𝑦, 𝑥) ∈ 𝑅 we have (𝑦, 𝑧) ∈ 𝑅 by the transitiv-
ity of 𝑅 and so 𝑦 = 𝑧, since 𝑧 is a minimal member of 𝐶. But (𝑥, 𝑧) ∈ 𝑅 so
(𝑥, 𝑦) ∈ 𝑅. 𝑅 is antisymmetric so (𝑥, 𝑧) ∈ 𝑅 and (𝑧, 𝑥) ∈ 𝑅 imply 𝑧 = 𝑥. In
otherwords, whenever 𝑦 ∈ 𝐶 such that (𝑦, 𝑥) ∈ 𝑅 wehave 𝑦 = 𝑥. Therefore
𝑦 ∈ 𝐶 ⋃{𝑥} and (𝑦, 𝑥) ∈ 𝑅 imply 𝑦 = 𝑥. In other words 𝑥 is a minimal mem-
ber of 𝐶 ⋃{𝑥}. So either 𝑥 or 𝑧 is a minimal member of 𝐶 ⋃{𝑥}. A similar
argument shows that 𝐶 ⋃{𝑥} has a maximal member.
If𝑅 is an equivalence relation on a set𝐴 thenwe say that𝐵 is an equivalence
class if 𝐵 is a subset of 𝐴, for all 𝑥 ∈ 𝐵 and 𝑦 ∈ 𝐵 we have (𝑥, 𝑦) ∈ 𝑅, and if
(𝑥 ∈ 𝐵) and 𝑦 ∈ 𝐵 then 𝑥 ∈ 𝐵.
Every element of 𝐴 is a member of exactly one equivalence class. In fact, if
𝑥 ∈ 𝐴 then 𝐵 = {𝑦 ∈ 𝐴 ∶ (𝑥, 𝑦) ∈ 𝑅} is an equivalence class of which 𝑥 is a
member and if 𝐶 is an equivalence class with 𝑥 ∈ 𝐶 then 𝐶 = 𝐵.
From a partial order we can construct an equivalence relation in a natural
way. If 𝑅 is a partial order on 𝐴 then 𝑆 = 𝑅 ⋂ 𝑅−1 is an equivalence relation.
Another way to state this equation is to say that (𝑥, 𝑦) ∈ 𝑆 if and only if
(𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑥) ∈ 𝑅.
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Notation

You have no doubt noticed that this is not the usual way to write functions
or relations. In place of (𝑥, 𝑦) ∈ 𝐹 or (𝑥, 𝑦) ∈ 𝑅 weusuallywrite 𝑦 = 𝐹(𝑥) or
𝑥𝑅𝑦. This is convenient, but dangerous. As I’ve mentioned before, first or-
der logic does not copewell withmeaningless expressions, like 𝐹(𝑥) where
𝑥 is not in the domain of 𝐹. For this reason I’ll be careful not to use the usual
notation in this chapter, although I will use it in later chapters. You should
be aware though that some rules of inference which are sound if we stick
to the ordered pair notation become unsound when the usual functional
notation is used. Themost important of these is substitution. For real num-
bers, for example, we have the basic fact, known as the Law of Trichotomy,
that

[∀𝑦.[[𝑦 < 0] ∨ [𝑦 = 0] ∨ [𝑦 > 0]]].
If we substitute the numerical expression 𝐹(𝑥) for 𝑦 we get

[[𝐹(𝑥) < 0] ∨ [𝐹(𝑥) = 0] ∨ [𝐹(𝑥) > 0]]].

This is fine if 𝑥 is in the domain of 𝐹 but the usual way of interpreting a
statement like 𝐹(𝑥) = 0 is what we’ve written above as (𝑥, 0) ∈ 𝐹, i.e. that
𝑥 is in the domain of 𝐹 and the value of 𝐹 at 𝑥 is 0. So the statement

[[𝐹(𝑥) < 0] ∨ [𝐹(𝑥) = 0] ∨ [𝐹(𝑥) > 0]]]

carries an implicit assumption that 𝑥 is in the domain of 𝐹, which may not
be true. This turns substitution from a mechanical process into one which
requires actual thought, checking that the expressions which are given as
arguments to functions represent values within the domains of those func-
tions. Mathematicians generally consider the ease of use of the usual func-
tional notation to be worth the extra work but it’s important to realise that
there is a trade-off here.

Infinite sets
With the axioms above we have no way to prove the existence of an infinite
set. The various operations we have, union, intersection, relative comple-
ment, power set and Cartesian product, all have the property that when
applied to finite sets they produce finite sets.
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We have a number of things thoughwhich, if they are sets, must be infinite.
One is the natural numbers. If the natural numbers are a set then the set
pairs (𝑥, 𝑦) with 𝑥 ≤ 𝑦 is a partially ordered set with no greatest element.
We’ve already seen that any partial order on a finite set has a greatest ele-
ment, so the natural numbers can’t be a finite set.
You might object that I’ve used the set of natural numbers in examples. Ex-
amples are meant to guide your intuition though so I sometimes presup-
pose things we don’t yet know to be true. I’ve been careful to confine the
natural numbers to examples though and not to use the existence of such
a set in proving theorems.
Another set which, if is exits, must be infinite is that set of lists of items
in a given non-empty set 𝐴. Any set which contains all such lists must be
infinite, which we can see as follows.
Suppose 𝐴 is a non-empty set and 𝐵 is a set which contains all lists whose
items are members of 𝐴. We can write down a Boolean expression which
identifies which elements of 𝐵 are actually lists all of whose items are mem-
bers of 𝐴 so we can use Selection to conclude that there is a set 𝐶 whose
members are precisely such lists. 𝐴 is non-empty, so there is an 𝑥 ∈ 𝐴. Let
𝐹 be the set of pairs of lists (𝐷, 𝐸) where 𝐸 is the list obtained by appending
𝑥 onto 𝐷. Then 𝐹 is an injective function from 𝐶 to itself. It is not surjective
because the empty list ∅ is not in its range. But we’ve already shown that
every injective function from a finite set to itself is surjective, so 𝐶 cannot
be finite. Subsets of finite sets are finite so 𝐵 can’t be finite either.
There are a number of ways to get infinite sets but all of them involve in-
troducing some new axiom. We could just introduce an axiom saying that
there is an infinite set. This turns out not to be sufficient to establish the
existence of all the infinite sets that we want. The usual procedure is to
introduce an axiom establishing the existence of one particular infinite set
which is in some sense large enough.

Natural numbers

There are multiple ways to implement natural numbers within set theory.
The most common way is via the von Neumann ordinals. Consider the
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operation ′ on sets defined by

𝐴′ = 𝐴 ⋃{𝐴}.

Then
∅′ = {∅}, ∅″ = {∅, {∅}}, ∅‴ = {∅, {∅}, {∅, {∅}}}, ...

In general the set represented by ∅ followed by 𝑛 apostrophes has 𝑛 mem-
bers, each of which is one of the sets represented by ∅ followed by 𝑚 apos-
trophes where 𝑚 is a natural number less than 𝑛. We will call the sets of
this form finite ordinals.
It is possible to define operations + and · on sets in such a way that when-
ever 𝐵 and 𝐶 are finite ordinals we have the properties.

• {∀𝐵.[¬(𝐵′ = ∅)]}
• {∀𝐵.[(𝐵 + ∅) = 𝐵]}
• (∀𝐵.{∀𝐶.[(𝐵 + 𝐶′) = (𝐵 + 𝐶)′]})
• {∀𝐵.[(𝐵 · ∅) = ∅]}
• [∀𝐵.(∀𝐶.{(𝐵 · 𝐶′) = [(𝐵 · 𝐶) + 𝐵]})]

The first of these doesn’t reference the operations + and · at all and is easily
proved. 𝐵 is a member of 𝐵′ and ∅ has no members so 𝐵 and ∅ cannot be
equal. To prove the other four properties one needs the definitions of +
and ·, which are rather complicated. Wewon’t do this. Insteadwe note that
the properties listed above correspond exactly to the five axioms of Peano
arithmetic. Peano arithmetic had rules of inference as well as axioms but
the rules of inference also carry over. The most complicated of those rules
of inference, the rule of induction, follows from the induction property of
finite sets discussed earlier. In this way it is possible to build a model of
Peano arithmetic entirely within simple set theory.
An alternative method to construct natural numbers is via lists. Choose
some 𝑥. The choice doesn’t matter but a convenient one is 𝑥 = ∅, since we
have an axiom which says it exists. Then a natural number is just a list all
of whose items are 𝑥. The intuition is that the length of the list is a natural
number and there is one such list for each natural number so we can use
the lists as representatives for the number. From this point of view it’s
clear how we should define 0, incrementation and addition. 0 is just the
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empty list (). 𝐴′ is the result of appending an 𝑥 to 𝐴. 𝐴 + 𝐵 is the result of
concatenating 𝐴 and 𝐵. Multiplication is somewhat trickier to define but
this can be done in such away that the axioms of arithmetic are all satisfied.
The standard point of view in mathematics and logic is not that the finite
ordinals have the same behaviour as the natural numbers but rather that
they are the natural numbers. At least this is the point of view most math-
ematicians and logicians claim to have. It’s debatable how many really
believe this. One property of the definitions above is that ∅′ ∈ ∅‴ or, in
the usual notation for natural numbers 1 ∈ 3. With the interpretation de-
scribed above this is simply a theorem about the natural numbers but it
would be hard to find amathematician who would be comfortable describ-
ing 1 ∈ 3 as a true statement, or even a meaningful one.
The situation here is similar to the onewe encountered earlier with ordered
pairs. A computer science perspective is more useful here than a mathe-
matical or logical one. The natural numbers have an interface. Some oper-
ations, like + and ·, are defined on them, as are some relations, like = and ≤.
These operations and relations are guaranteed to have certain properties,
described by the Peano axioms.
Operators outside the public interface of the natural numbers, like ⋂ and
⋃ may behave differently in different implementations, as may relations
like ∈ and ⊆. In practice once the implementation has been set up and
the required properties have been proved one only ever uses the public
interface. One doesn’t, and shouldn’t, write down statements like 1 ∈ 3.
The fact that we can implement Peano arithmetic within set theory has an
important consequence. Peano arithmetic is either inconsistent or incom-
plete. As a result set theory must also be either inconsistent or incomplete.

The set of natural numbers

It’s important to understand what we have and haven’t done above. We’ve
found objects which behave like the natural numbers. We haven’t shown
that they form a set. In fact we can’t show this with the axioms we have
because these sets, if they exist, are infinite and our axioms are not sufficient
to show the existence of any infinite set. We need a new axiom in order to
have not just natural numbers but a set of natural numbers, which is what
we need if we’re to extend arithmetic beyond Peano arithmetic.
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The simplest approach is just to assume these sets exist as an axiom.
For the von Neumann implementation of the natural numbers this means
taking the following as an axiom:

• Infinity: There is a set 𝐴 such that ∅ ∈ 𝐴 and and 𝐵 ⋃{𝐵} ∈ 𝐴 when-
ever 𝐵 ∈ 𝐴. Formally,

[∃𝐴.[[∅ ∈ 𝐴] ∧ [∀𝐵 ∈ 𝐴 ∶ 𝐵 ⋃{𝐵} ∈ 𝐴]]].

The set 𝐵 is not necessarily the set 𝑁 that we’re looking for. As with a
number of previous axioms we’ve assumed the existence of a set which
is large enough to contain everything we want, but might contain other
things. To remove those we use the axiom of separation, selecting only
those 𝐵 ∈ 𝐴 which are finite and satisfy the condition

[∀𝐶 ∈ 𝐵 ∶ [∀𝐷 ∈ 𝐶 ∶ [[𝐷 ∈ 𝐵] ∧ [∀𝐸 ∈ 𝐷 ∶ 𝐸 ∈ 𝐶]]]].

If we use the list implementation of the natural numbers then it’s more
natural to use the following axiom

• Infinity (alternative version): For every set 𝐶 there is a set 𝐷 whose
members are the lists all of whose items are members of 𝐶.

The formal version of this axiom is rather long since it needs to incorporate
the definition of a list.
Although these axioms were designed for the same purpose they are not
quite equivalent, in the sense that we can’t prove either from the other and
our other axioms and rules of inference. They become equivalent though
if you assume the following additional axiom schema.

• Replacement: For any Boolean expression 𝑃 in which 𝑥, 𝑦, and 𝐴 ap-
pears freely but 𝐵 does not the statement that for each 𝐴 if 𝑥 ∈ 𝐴
implies that there is a unique 𝑦 such that 𝑃 then there is a set 𝐵 such
that 𝑦 ∈ 𝐵 if and only if there is an 𝑥 ∈ 𝐴 such that 𝑃. Formally this
is
[∀𝐴.[[∀𝑥 ∈ 𝐴 ∶ [[∃𝑦.𝑃] ∧ [[𝑃 ∧ 𝑄] ⊃ 𝑦 = 𝑧]]]

⊃ [∃𝐵.[∀𝑦.[[[𝑦 ∈ 𝐵] ⊃ [∃𝑥 ∈ 𝐴 ∶ 𝑃]] ∧ [[∃𝑥 ∈ 𝐴 ∶ 𝑃] ⊃ [𝑦 ∈ 𝐵]]]]]]].

Here 𝑧 is a variable which does not occur in 𝑃 and 𝑄 is the result of
replacing all free occurrences of 𝑦 in 𝑃 with 𝑧.
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The Axiom of Replacement can be understood as follows. If we have sets
𝐴 and 𝐵 and a Boolean expression involving variables 𝑥 and 𝑦 then we can
form a relation from 𝐴 to 𝐵 which is the set of pairs (𝑥, 𝑦) where 𝑥 ∈ 𝐴 and
𝑦 ∈ 𝐵. There are some conditions, i.e. Boolean expressions, which need to
be satisfied for this relation to be a surjective function, in which case 𝐴 is
its domain and 𝐵 is its range. The Axiom of Replacement says that if 𝐴 is a
set andwe have such a Boolean expression satisfying those conditions then
there is indeed a set 𝐵 such that the relation defined as above is a surjective
function from 𝐴 to 𝐵.
The Axiom of Replacement was not part of Zermelo’s set theory. It was
introduced later by Fraenkel. It is often convenient, but rarely necessary,
to assume it in order to prove standard mathematical theorems. It forms
part of what’s called Zermelo-Fraenkel set theory, which is the version of
set theory most mathematicians use.
Since it’s rarely used I don’t want to spend too much time on it but I will
sketch how you can prove the alternative version of the Axiom of Infinity
from the first version and the Axiom of Replacement.
One nice property of both implementations of the natural numbers is that
the natural number 𝑛 is a set with 𝑛 members. With either implementation
we can therefore prove that for every finite set there is a bijective function
from that set to a natural number, considered as a set. This is in fact fairly
straightforward to prove by set induction.
Since we’re assuming the first version of the Axiom of Infinity we’ll use the
implementation of the natural numbers as von Neumann ordinals, so that
the set of natural numbers is known to exist. We can write down a Boolean
expression with free variables 𝑥 and 𝑤 expressing the following:

• 𝑥 is a natural number, i.e. a von Neumann ordinal, and
• 𝑤 is a list all of whose items are members of 𝐶,
• there is a bijective function from 𝑥 to 𝑤.

Each of these statements individually is straightforward, if rather tedious,
to express in our language and we just need to combine them with ∧’s.
Using this combined Boolean expression we can construct a second expres-
sion, with free variables 𝑥 and 𝑦 expressing the fact that 𝑦 is a set and 𝑤 ∈ 𝑦
if and only if the first expression is satisfied. This second expression then
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has the interpretation that 𝑦 is the set of all lists with 𝑥 items, all of which
are members of 𝐶. We then apply the Axiom of Replacement with 𝐴 = 𝑁
and 𝑃 being the Boolean expression we just constructed. This gives us a set
𝐵 whose members are the 𝑦’s make the expression true for some 𝑥 ∈ 𝑁. In
other words they are the sets of lists of each length. Every list is a finite set
so by the theorem from the preceding paragraph it’s a member of one of
these sets. So the set of all lists of items in 𝐶 is 𝐷 = ⋃ 𝐵.
There’s a similar, slightly easier argument which shows that the alternative
formofAxiomof Infinity, togetherwith theAxiomof Replacement, implies
the first form.

Cardinality
Set inclusion provides a notion of size of sets. A set is at least as large
as any of its subsets and is strictly larger than any of its proper subsets.
Inclusion is reflexive, transitive and antisymmetric, since𝐴 ⊆ 𝐴, 𝐴 ⊆ 𝐵 and
𝐵 ⊆ 𝐶 imply 𝐴 ⊆ 𝐶 and 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 imply 𝐴 = 𝐵. If therewere a set of
all sets then 𝑅 = {(𝐴, 𝐵) ∶ 𝐴 ⊆ 𝐵} would be a partial order on it, but we’ve
already seen that there can be no such set. The construction above does
work for any set of sets though and was in fact one of our examples in the
section on partial orders. It just doesn’t make sense to apply it to the set of
sets because there is no such thing.
Inclusion doesn’t really provide a notion of size which agrees with our in-
tuitive notion of size though. If 𝑥, 𝑦 and 𝑧 are distinct then we would like
to be able to say that the set {𝑥} is strictly smaller than the set {𝑦, 𝑧}, even
though it’s not one of its proper subsets. The obvious way to do this is to
count the members, but we would like a definition which also works for
infinite sets. The standard way to do this is to define the notion of size in
terms of the existence of injective functions. There is an injective function
from {𝑥} to {𝑦, 𝑧}. In fact there are two, {(𝑥, 𝑦)} and {(𝑥, 𝑧)}. There is no
injective function from {𝑦, 𝑧} to {𝑥}.
Motivated by this example, we say that 𝐴 is no larger than 𝐵 if there is an
injective function from 𝐴 to 𝐵. We say that 𝐴 is of the same size as 𝐵 if 𝐴 is
no larger than 𝐵 and 𝐵 is no larger than 𝐴. We say that 𝐴 is strictly smaller
than 𝐵 if 𝐴 is no larger than 𝐵 and there is not an injective function from 𝐵
to 𝐴.
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One casewherewe know there is an injective function is when 𝐴 is a subset
of 𝐵. In this case Δ𝐴 is an injective function from 𝐴 to 𝐵. So we get the
rather unsurprising result that a subset is no larger than the set of which
it’s a subset.
Unwrapping the definitions, 𝐴 is of the same size as 𝐵 if there is an injective
function from 𝐴 to 𝐵 and an injective function from 𝐵 to 𝐴. This is certainly
true if there is a bijective function from 𝐴 to 𝐵. If 𝐹 is such a function then
𝐹 is an injective function from 𝐴 to 𝐵 and 𝐹−1 is an injective function from
𝐵 to 𝐴. For finite sets this is the only way for two sets to have the same size.
In other words, if 𝐴 and 𝐵 are finite sets and 𝐹 is an injective function from
𝐴 to 𝐵 and 𝐺 is an injective function from 𝐵 to 𝐴 then 𝐹 and 𝐺 are bijective,
although it’s not necessarily the case that 𝐺 = 𝐹−1.
For infinite sets the situation is more complicated. It’s possible for
there to be an injective but not bijective function function 𝐹 from 𝐴
to 𝐵 and an injective but not bijective function 𝐺 from 𝐵 to 𝐴. In fact
it’s possible to give a simple example. Let 𝐴 = 𝑁 and 𝐵 = 𝑁 and let
𝐹 = 𝐺 = {(𝑥, 𝑦) ∈ 𝑁 × 𝑁 ∶ 𝑦 = 𝑥 + 1}. This is the increment function. It’s
injective because for any natural number 𝑥 there is a natural number 𝑦 such
that 𝑦 = 𝑥 + 1. It’s not surjective because there is a natural number 𝑦 for
which there is no natural number 𝑥 with 𝑦 = 𝑥 + 1. 𝑦 = 0 is such a number,
and is in fact the only such number. So we can certainly have an injective
but not bijective function function 𝐹 from 𝐴 to 𝐵 and an injective but not
bijective function 𝐺 from 𝐵 to 𝐴. There is however a useful theorem, the
Schröder-Bernstein theorem, which says that in such a case there is always
some bijective function 𝐻 from 𝐴 to 𝐵. It follows that 𝐴 and 𝐵 are of the
same size if and only if there is a bijective function from 𝐴 to 𝐵. This isn’t
the definition of having the same size but it is equivalent to that definition
as a consequence of the Schröder-Bernstein theorem.
One other difference between finite and infinite sets, or perhapsmore accu-
rately the same difference from a different point of view, is that an infinite
set can be of the same size as one of its proper subsets. For example the
set of natural numbers and the set of positive integers are of the same size
since the increment function is a bijective function from one to the other,
but it is a proper subset.
The notion of size based on injective functions is called cardinality. Sets
of the same size are said to have the same cardinality and a set which is
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strictly smaller than another set is said to have a lower cardinality than it.
Cardinality behaves somewhat like a partial order. It is reflexive in the
sense that any set 𝐴 is of the same size as itself, since the identity function
is injective. It is transitive in the sense that if 𝐴 is no larger than 𝐵 and 𝐵
is no larger than 𝐶 then 𝐴 is no larger than 𝐶. This is a consequence of
the fact that the composition of an injective function from 𝐴 to 𝐵 with an
injective function from 𝐵 to 𝐶 is an injective function from 𝐴 to 𝐶. It is sort
of antisymmetric in the sense that if 𝐴 is no larger than 𝐵 and 𝐵 is no larger
than 𝐴 then 𝐴 is of the same size as 𝐵. For true antisymmetry this would
have to imply that 𝐴 = 𝐵 rather than merely that they’re of the same size.
Of course “is no larger than” isn’t a true relation because there is no set of
sets for it to be a relation on. When we restrict it to subsets of a given set it
does become a relation though.
The distinction between a partial order on a set and a total order on a set
is that the latter has the additional requirement that for all 𝑥 and 𝑦 either
(𝑥, 𝑦) or (𝑦, 𝑥) is a member. Even though there is no set of sets we can still
ask whether for all sets 𝐴 and 𝐵 it is true that 𝐴 is no larger than 𝐵 or 𝐵 is
no larger than 𝐴. The answer is yes if at least one of the sets is finite. For
infinite sets the answer, based on the axioms presented so far, is maybe. It
is not possible to prove this but it is also not possible to disprove it.

Diagonalisation

Suppose 𝐴 is a set and 𝐵 is 𝑃𝐴, i.e. the set of subsets of 𝐴. Let 𝐹 be the set
of ordered pairs of the form (𝑥, {𝑥}) for 𝑥 in 𝐴. It’s easy to check that 𝐹 is
both left total and right unique so it is a function. It’s also easy to see that
it is left unique and so is an injective function. It is not right total though
because there is no 𝑤 ∈ 𝐴 such that (𝑤, ∅) ∈ 𝐹. So 𝐹 is not surjective. Since
there is an injective function from 𝐴 to 𝐵 we conclude that 𝐴 is no larger
than 𝐵.
Is there some other function 𝐺 from 𝐴 to 𝐵 which is surjective? If there
were then we could form the set

𝐶 = {𝑥 ∈ 𝐴 ∶ ∃𝐷 ∈ 𝐵 ∶ (𝑥, 𝐷) ∈ 𝐺 ∧ [¬𝑥 ∈ 𝐷]}.

𝐺 was assumed to be surjective so there is a 𝑦 ∈ 𝐴 such that (𝑦, 𝐶) ∈ 𝐺.
Either 𝑦 is a member of 𝐶 or it isn’t. If 𝑦 is a member of 𝐶 then there is a
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𝐷 such that (𝑦, 𝐷) ∈ 𝐺 and ¬𝑦 ∈ 𝐷. Now 𝑦 is a member of 𝐶 but not of 𝐷
so 𝐶 and 𝐷 are not equal. But (𝑦, 𝐶) and (𝑦, 𝐷) belong to 𝐺, which is right
unique, so 𝐶 must be equal to 𝐷. So the assumption that 𝑦 is a member of
𝐶 leads to a contradiction. Suppose then that 𝑦 is not a member of 𝐶. Then
there is a set 𝐷 such that (𝑦, 𝐺) ∈ 𝐺 and ¬𝑦 ∈ 𝐷. Indeed 𝐷 = 𝐶 has both
these properties. But then the definition of 𝐶 tells us that 𝑦 ∈ 𝐶, which
contradicts our assumption that 𝑦 is not a member of 𝐶. So 𝑦 is neither a
member of 𝐶 nor not a member of 𝐶. The only way to resolve this paradox
is that the set 𝐶 does not in fact exist. But the existence of 𝐶 follows from
that of 𝐺 by Separation, so 𝐺 does not exist either. In other words there is
no surjective function from 𝐴 to 𝐵.
The argument above is known as the Cantor diagonalisation argument.
Using the Schröder-Bernstein theorem one can sharpen this result some-
what. We’ve already seen that there is an injective function from 𝐴 to 𝐵. If
there were an injective function from 𝐵 to 𝐴 then the Schröder-Bernstein
theorem would imply the existence of a bijective function from 𝐴 to 𝐵 and
hence a surjective function from 𝐴 to 𝐵. We’ve just seen that there is no
such function so there can’t be an injective function from 𝐴 to 𝐵. In other
words 𝐴 is strictly smaller than 𝐵.
For finite sets the size is determined by the number of members and if 𝐴
has 𝑚 members then 𝐵 has 2𝑚 members. We can conclude that 𝑚 < 2𝑚

for all 𝑚. This is indeed true, but hardly surprising. For infinite sets we
get a more interesting conclusion. If 𝐴 is an infinite set then 𝑃𝐴 is strictly
larger than 𝐴, so there are infinite sets which are not of the same size. We
don’t have to stop there though. 𝑃𝑃𝐴 is strictly larger than 𝑃𝐴 and 𝑃𝑃𝑃𝐴
is strictly larger than 𝑃𝑃𝐴. There is no limit on the number of infinite sets
of different sizes we can construct.
Incidentally, this gives us a different proof of the fact that there is no set
of all sets. If there were then every subset of it would be a set and hence a
member of itself so the set of setswould contain its ownpower set. It would
therefore have a power set which is no larger than itself, in contradiction
to what we’ve just proved.
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Countable sets

We’ve just seen that there are infinite sets of different sizes. We want a
notion of sets which are not too infinite. A set is said to be countable if it is
no larger than the set of natural numbers.
There are unfortunately two conflicting terminologies in use. One conven-
tion is the one given above. The other defines the countable sets to be those
which are of the same size as the set of natural numbers. Under the conven-
tion I’m using finite sets are countable. Under the other convention they
are not. Both conventions agree on calling a set uncountable if the set of
natural numbers is strictly smaller than it. The alternative convention has
the rather unfortunate property that “uncountable” and “not countable”
are not synonyms. Finite sets are neither countable nor uncountable in
this convention. Perhaps more importantly, the condition that a set is no
larger than the set of natural numbers arises more frequently in both the
hypotheses and conclusions of theorems than the condition that a set if of
the same size as the set of natural numbers so it’s much more convenient
to have a short name for the former condition than for the latter.
There are two unfortunate consequences of this terminological confusion.
First, if you read the word countable by itself somewhere other than these
notes you can’t be sure what the authors mean unless they have explicitly
said which convention they follow. Second, if you write the word count-
able by itself and don’t specify which convention you follow then no one
can be surewhat youmean. The standardway to avoid the second problem
is to refer to sets which are countable according to the definition at the be-
ginning of this section as “at most countable” and to refer to sets which are
countable according to the other convention as “countably infinite”. This
involves some redundancy. According to the convention of these notes the
words “at most” in “at most countable” are redundant. According to the
other convention the word “infinite” in “countably infinite” is redundant.

Properties of countable sets

Using the convention described above, finite sets are countable. This is
reasonably straightforward to prove by induction on sets. ∅ satisfies all the
requirements to be an injective function from ∅ to 𝑁 so ∅ is no larger than
𝑁 and is therefore countable. Suppose 𝐴 is a countable set. Then there is
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an injective function from 𝐴 to 𝑁. If 𝑥 is a member of 𝐴 then 𝐴 ⋃{𝑥} = 𝐴
and so 𝐹 is also an injective function from 𝐴 ⋃{𝑥} to 𝑁. If 𝑥 is not a member
of 𝐴 then we can define a set of ordered pairs 𝐺 whose members are (𝑥, 0)
and (𝑦, 𝑚 + 1) for all (𝑦, 𝑚) in 𝐹. This 𝐺 is an injective function from 𝐴 ⋃{𝑥}
to 𝑁. So in either case there is an injective function from 𝐴 ⋃{𝑥} to 𝑁 and
so 𝐴 ⋃{𝑥} is countable. So ∅ is countable and if 𝐴 is countable then so is
𝐴 ⋃{𝑥}. By induction on sets it follows that all finite sets are countable.
Subsets of countable sets are countable. Suppose that 𝐴 is a subset of 𝐵
and 𝐵 is countable, i.e. there is an injective function 𝐺 from 𝐵 to 𝑁. Define
𝐹 to be the subset of ordered pairs in 𝐺 whose left element is a member of
𝐴. Then 𝐹 is an injective function from 𝐴 to 𝑁, so 𝐴 is countable. It follows
from this that if 𝐵 is countable and 𝐶 is a set then both 𝐵 ⋂ 𝐶 and 𝐵 ∖ 𝐶 are
countable, since they are subsets of 𝐵.
The union of two countable sets is countable. To see this, suppose 𝐴 and 𝐵
are countable. We’ve just seen above that 𝐴 ∖ 𝐵 is then countable, i.e. that
there is an injective function from 𝐴 ∖ 𝐵 to 𝑁. Let 𝐹 be such a function. 𝐵
is countable so there is an injective function 𝐺 from 𝐵 to 𝑁. Define 𝐻 to be
the set of pairs either of the form (𝑥, 2 · 𝑚) where (𝑥, 𝑚) ∈ 𝐹 or of the form
(𝑦, 2 · 𝑚 + 1) where (𝑦, 𝑚) ∈ 𝐺. Then 𝐻 is an injective function from 𝐴 ⋃ 𝐵
to 𝑁 so 𝐴 ⋃ 𝐵 is countable.
𝑁 itself is countable since Δ𝑁 is an injective function from 𝑁 to 𝑁. Perhaps
surprisingly 𝑁 × 𝑁 is also countable. It’s possible to write down an injec-
tive function from 𝑁 × 𝑁 to 𝑁 explicitly. Such a function is given by the set
of ordered pairs ((𝑖, 𝑗), 𝑘) where

𝑘 = (𝑖 + 𝑗)(𝑖 + 𝑗 + 1)/2 + 𝑗.

The division by two is permissible because (𝑖 + 𝑗)(𝑖 + 𝑗 + 1) is always even,
as we can prove by induction.
The function above may appear mysterious but it is easily explained by the
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following picture.

⋮
5 20
4 14 19
3 9 13 18
2 5 8 12 17
1 2 4 7 11 16
0 0 1 3 6 10 15

0 1 2 3 4 5 ⋯

The horizontal axis is labelled by the 𝑖 values, the vertical axis by the 𝑗 val-
ues and the element in the 𝑖’th column, 𝑗, row, counting from the bottom
left and starting at 0, is the corresponding 𝑘 value. You can see that these
numbers are obtained by visiting the pairs in a particular order, working
one diagonal at a time and going from the lower right to the upper left
within that diagonal. Working out how many points in the grid are visited
before the given point gives exactly the expression above. and the fact that
this function is injective is simply the fact that this procedure never reuses
a natural number. This is visually obvious but rather tedious to prove.
More generally, if 𝐴 and 𝐵 are countable then so is 𝐴 × 𝐵. To see this note
that in this case there are injective functions 𝐹 from 𝐴 to 𝑁 and 𝐺 from 𝐵 to
𝑁. Define 𝐻 to be set of pairs of pairs ((𝑥, 𝑦), (𝑚, 𝑛)) such that (𝑥, 𝑚) ∈ 𝐹
and (𝑦, 𝑛) ∈ 𝐺. Then 𝐻 is an injective function from 𝐴 × 𝐵 to 𝑁 × 𝑁. Com-
posing this with the injective function we already have from 𝑁 × 𝑁 to 𝑁
gives an injective function from 𝐴 × 𝐵 to 𝑁, so 𝐴 × 𝐵 is countable.
In particular, if 𝐴 is countable then so is 𝐴2. Since the Cartesian product of
two countable sets is countable it follows that 𝐴2 × 𝐴 is countable. There
is an injective function from 𝐴3 to 𝐴2 × 𝐴 consisting of the ordered pairs of
the form ((𝑥, 𝑦, 𝑧), ((𝑥, 𝑦), 𝑧)). This function is also surjective, but we won’t
need that. The fact that it is injective means, together with the fact we just
proved that 𝐴2 × 𝐴, implies that 𝐴3 is countable.
Less obviously, if 𝐴 is countable then so is the set of all lists all of whose
items are members of 𝐴. This fact is of great importance in the study of for-
mal languages. Since subsets of countable sets are countable and languages
are sets of lists of tokens it follows that every language with a countable
number of tokens is countable.
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Here is a sketch of a proof of the statement above. 𝐴 is countable so there
is an injective function 𝐹 from 𝐴 to 𝑁. Define a function 𝐺 from 𝐴∗ to 𝑁3

as follows. (𝑤, (𝑥, 𝑦, 𝑧)) ∈ 𝐺 if 𝑥 is the number of elements in the list 𝑤, 𝑦 is
the least natural number 𝑛 such that if 𝑣 is an item in 𝑤 and (𝑣, 𝑚) ∈ 𝐹 then
𝑚 < 𝑛, and 𝑧 is natural number whose base 𝑛 representation has as it’s 𝑗’th
digit the number 𝑘 where (𝑣, 𝑘) ∈ 𝐹 and (𝑣) is the 𝑗’th item in the list. This
𝐺 is an injective function. There is an injective function 𝐻 from 𝑁3 to 𝑁.
Then 𝐻 ∘ 𝐺 is an injective functions from 𝐴∗ to 𝑁, so 𝐴∗ is countable.

Uncountable sets

It’s easy to produce uncountable sets. 𝑃𝑁 is uncountable. If it were count-
able then there would be an injective function from 𝑃𝑁 to 𝑁 but we’ve
already seen that there can be no such function.
Let 𝐴 be the set of arithmetic sets, i.e. subsets of 𝑁 for which there is a
Boolean expression in our language for arithmetic which is a necessary
and sufficient condition for membership in the set. Choose some encod-
ing of that language into 𝑁. Consider those pairs (𝐵, 𝑥) with 𝐵 ∈ 𝐴 and
𝑥 ∈ 𝑁 such that 𝑥 is the natural number which encodes a Boolean expres-
sion characterising membership in 𝐵. The set of such pairs is an injective
function from 𝐴 to 𝑁, so 𝐴 is countable.
𝐴 is not 𝑃𝑁 because 𝐴 is countable and 𝑃𝑁 is uncountable. 𝐴 is a subset
of 𝑃𝑁 so there must therefore be a member of 𝑃𝑁 which is not a member
of 𝐴. In other words there is a subset of 𝑁 which is not arithmetic. We’ve
already seen an example, without a proof, of such a set, namely the set
of encodings of true statements. That’s a hard theorem though while the
proof above, while it doesn’t provide any examples, is quite easy.
A similar argument shows that there is a language which has no phrase
structure grammar. We choose as our set of tokens a non-empty countable
set. Let 𝐴 be the set of lists of tokens. 𝐴 is then countable. We can say a bit
more than that though. Since the set of tokens is non-empty we can choose
one and look at the set of lists using only that token. This, as we discussed,
is essentially a copy of 𝑁. So 𝑁 is no larger than 𝐴 but 𝐴 is also no larger
than 𝑁 because it’s countable. Therefore 𝐴 is of the same size as 𝑁. It
follows that 𝑃𝐴, which is the list of languages using only those tokens, is
uncountable. Any phrase structure grammar for 𝐴 is a list of tokens. These
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tokens belong to the original list of tokens or are tokens like “:”, “|”, or “;”
which belong to our language for describing languages. There are only
finitely many of the latter though so the full set of tokens is still countable
and therefore the set of phrase structure grammars is countable. There are
fewer phrase structure grammars than languages so there is a language
without a grammar.
Aswith arithmetic sets, it is possible to give concrete examples of languages
with no phrase structure grammar but the proofs aremuch harder than the
simple counting argument above.

Axiom(s) of choice
There are a variety of axioms with similar names, all of which involve the
word choice in some way. It’s unclear whether any of them are really
needed for Computer Science. Large parts of mathematics also don’t re-
quire any of thembut certain subjects need at least theAxiomofDependent
Choice in order to prove some of their main theorems. There is a stronger
axiom, known just as the Axiom of Choice which is often assumed. As
we’ll see though, it has some disturbing consequences.

Computational paths

One way to think of the Axiom of Dependent Choice is in terms of the
computational paths of non-deterministic state machines. We’ll consider
a particular simple type of such machines. These do not read any input.
They have a well defined initial state and for each possible state there are
one or more possibilities for the next state. Because there is at least one
possibility in each state the computation will never terminate. To model
such a machine we need a set 𝐴 of possible states, a particular 𝑤 ∈ 𝐴 to
serve as the initial state and a relation 𝑇 on 𝐴 describing the possible state
transitions. More precisely (𝑥, 𝑦) ∈ 𝑇 if and only if the machine can tran-
sition from 𝑥 to 𝑦 in a single step. The condition that there is at least one
possible transition from each state is then equivalent to the statement that
𝑇 is left total. The machine is deterministic if there is also at most one pos-
sible transition from each state, i.e. if 𝑇 is right unique. In this case it is a
function from 𝐴 to 𝐴.
A simple deterministic state machine of this kind can compute the pow-
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ers of two. We just take 𝐴 = 𝑁, 𝑤 = 1 and take 𝐹 to be the set of pairs of
the form (𝑥, 2 · 𝑥). A more interesting example is the Fibonacci sequence.
This might not seem to fit the pattern described above because the 𝑛’th Fi-
bonacci number depends on the 𝑛 − 1’st and the 𝑛 − 2’nd. This is easily
fixed though. we take 𝐴 = 𝑁2 and take 𝑤 = (0, 1). 𝑇 is the set of pairs of
the form ((𝑗, 𝑘), (𝑘, 𝑗 + 𝑘)). The left element of the state after 𝑛 steps is then
the 𝑛’th Fibonacci number.
By a computational path we will mean a sequence, finite or infinite, of
states through which the process can proceed starting from the initial state
andmaking only those transitions allowed by the transition relation. More
formally, it’s a function 𝐹 whose domain is either all of 𝑁 or a subset of the
form {0, 1, … , 𝑛} with the properties that

• (0, 𝑤) ∈ 𝐹
• If (𝑚, 𝑥) ∈ 𝐹 and (𝑚 + 1, 𝑦) ∈ 𝐹 then (𝑥, 𝑦) ∈ 𝑇.

The interpretation is that (𝑚, 𝑥) ∈ 𝐹 means that the machine is in the state
𝑥 after 𝑚 steps. The first of the statements above expresses the condition
that the initial state is 𝑤 while the second expresses the condition that the
transitions from one state to the next are only those allowed by 𝑇. We also
need to express the condition on the domain of 𝐹 stated above. The simplest
way to do this is as follows.

• If 𝑚 ≤ 𝑛 and there is a 𝑦 ∈ 𝐴 such that (𝑛, 𝑦) ∈ 𝐹 then there is an
𝑥 ∈ 𝐴 such that (𝑚, 𝑥) ∈ 𝐹.

This says that if 𝑛 is in the domain of 𝐹 then so are all smaller numbers. Fi-
nally we need to express the fact that 𝐹 is right unique, i.e. that themachine
can only be in one state at a given time.

• For any 𝑛 ∈ 𝑁, 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐴, if (𝑛, 𝑥) ∈ 𝐹 and (𝑛, 𝑦) ∈ 𝐹 then
𝑥 = 𝑦.

A computational path is any subset of 𝑁 × 𝐴 satisfying the conditions
above. I’ll denote the set of all computational paths by 𝐵.
The first thing I’ll show is that there is no upper bound on the length of
computational paths. More precisely, for any 𝑛 ∈ 𝑁 there is an 𝐹 ∈ 𝐵 and
an 𝑥 in 𝐴 such that (𝑛, 𝑥) ∈ 𝐹. This is proved by induction on 𝑛. For 𝑛 = 0
it’s true because 𝑥 = 𝑤 and 𝐹 = {(0, 𝑤)} has the required properties. If it’s

165



true for 𝑛 then we can prove it for 𝑛 + 1 as follows. Let 𝐺 be the set consist-
ing of (𝑘, 𝑧) where either 𝑘 ≤ 𝑛 and (𝑘, 𝑧) ∈ 𝐹 or 𝑘 = 𝑛 + 1 and 𝑧 = 𝑦, where
𝑦 is such that (𝑥, 𝑦) ∈ 𝑇. We know there is such a 𝑦 because 𝑇 is left total.
Then 𝐺 ∈ 𝐵 and (𝑛 + 1, 𝑦) ∈ 𝐺. This establishes the inductive step.
It would also have been possible to use set induction rather than arithmetic
induction above but arithmetic induction is probably more familiar.
If 𝐹 and 𝐺 are both members of 𝐵 their union 𝐹 ⋃ 𝐺 may fail to be a mem-
ber for a variety of reasons, including not being right unique. This can’t
happen for deterministic machines though. If 𝑇 is right unique, 𝐹 ∈ 𝐵 and
𝐺 ∈ 𝐵 then 𝐹 ⋃ 𝐺 ∈ 𝐵. The hardest part of showing this is the proof that
𝐹 ⋃ 𝐺 is right unique. This is proved by induction. More precisely, we
show by induction on 𝑛 that if (𝑛, 𝑣) ∈ 𝐹 and (𝑛, 𝑥) ∈ 𝐺 then 𝑣 = 𝑥. For
𝑛 = 0 this is certainly true because then we must have 𝑣 = 𝑤 and 𝑥 = 𝑤. If
it’s true for 𝑛 then it’s true for 𝑛 + 1. To see this we note that if (𝑛 + 1, 𝑧) ∈ 𝐹
and (𝑛 + 1, 𝑦) ∈ 𝐺 then (𝑣, 𝑧) ∈ 𝑇 and (𝑥, 𝑦) ∈ 𝑇. But 𝑣 = 𝑥 so the assumed
right uniqueness of 𝑇 implies that 𝑦 = 𝑧.
Still assuming that 𝑇 is right unique, we have ⋃ 𝐵 ∈ 𝐵. Again the right
uniqueness is the hardest part to prove. If (𝑛, 𝑣) ∈ ⋃ 𝐵 and (𝑛, 𝑥) ∈ ⋃ 𝐵
then there must be 𝐹 ∈ 𝐵 and 𝐺 ∈ 𝐵 such that (𝑛, 𝑣) ∈ 𝐹 and (𝑛, 𝑥) ∈ 𝐺.
But we’ve just seen that this implies 𝑣 = 𝑥, so ⋃ 𝐵 is right unique.
We’ve already seen that for every 𝑛 ∈ 𝑁 there is an 𝐹 ∈ 𝐵 and and 𝑥 ∈ 𝐴
such that (𝑛, 𝑥) ∈ 𝐹. We then also have (𝑛, 𝑥) ∈ ⋃ 𝐵. So 𝑛 is amember of the
domain of ⋃ 𝐵. This is true for all 𝑛 ∈ 𝑁 so the domain of ⋃ 𝐵 is therefore
all of 𝑁. Thus ⋃ 𝐵 is a computational path of infinite length. Previously
we knew that there was no upper bound on the lengths of computational
paths butwe didn’t know therewas a computational path of infinite length.
Compared to a deterministic state machine a non-deterministic state ma-
chine offers at least as many options at each step so it might seem intuitive
that if every deterministic statemachine has an infinite computational path
then so does every non-deterministic one. The proof above used the as-
sumption that 𝑇 is right unique in an essential way though.
In the case where 𝐴 is countable one can still prove the existence of infinite
computational paths without the assumption that 𝑇 is right unique. If 𝐴 is
uncountable then this is no longer possible. If we want the statement to be
true then we need to add it as an axiom.
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Dependent choice

Our new axiom is as follows.
• Dependent Choice: For every set 𝐴, member 𝑤 ∈ 𝐴 and left total re-

lation 𝑇 on 𝐴 there is a function 𝐹 from 𝑁 to 𝐴 such that if (𝑛, 𝑥) ∈ 𝐴
and (𝑛 + 1, 𝑦) ∈ 𝐴 then (𝑥, 𝑦) ∈ 𝑇.

As you can see, this is an exact translation of the statement that non-
deterministic state machines of the type considered in the previous section
have infinite computational paths.
This formulation of the axiom, which is the standard one, has an intuitive
appeal but it’s formalisation is quite complicated because it has buried in it
notions like functions and relations and the set of natural numbers. There
are equivalent axioms which are less intuitively appealing but easier to for-
malise. The following simple one appears to be due to Wolk:

• Dependent Choice (alternative formulation): If every chain in a par-
tially ordered set is finite, then it contains a maximal element.

By chain here we amean subset such that the partial order, when restricted
to the subset, is a total order. You can check that this usage is consistent
with the definition of Kuratowski chains given earlier, in the sense that ev-
ery Kuratowski chain is a chain, with the partial order being given by set
inclusion.
It’s worth noting that for the application to state machines we only really
need the Axiom of Dependent Choice when the set of states is uncountat-
ble. If 𝐴 is countable and 𝑇 is a left unique function from 𝐴 to 𝐴 we can
construct a function 𝐹 from 𝐴 to 𝐴 as follows. The countability of 𝐴 means
there is an injective function 𝐺 from 𝐴 to 𝑁. For any 𝑥 ∈ 𝐴 the set of 𝑧 ∈ 𝑁
forwhich there is a 𝑦 ∈ 𝐴 with (𝑥, 𝑦) ∈ 𝑇 and (𝑦, 𝑧) ∈ 𝐺 is non-empty, since
𝑇 and 𝐺 are left total, and so has a least member. If we call this least mem-
ber 𝑧 then there is only one 𝑦 ∈ 𝐴 such that ${ (𝑦, 𝑧) ∈ 𝐺, since 𝐺 is injective.
We take (𝑥, 𝑦) to be a member of 𝐹, and do not take any other ordered pair
whose left component is 𝑥. Then 𝐹 is a function and 𝐹 ⊆ 𝑇. Because 𝐹 is a
function the deterministic state machine for which it is the transition rela-
tion must an infinite computional path, even without assumine the Axiom
ofDependent Choice. Because 𝐹 is a subset of𝑇 any computational path for
this deterministic state machine is also a valid computational path for the
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non-deterministic machine with transition relation 𝑇. There aren’t many
situations in computer science where you’d want to consider a state ma-
chine with uncountably many states. There are quite a few in mathematics
though.

The Axiom of Choice

Zermelo had one further axiom, which is not generally included in what
we now call Zermelo-Fraenkel set theory. This is the Axiom of Choice. In
his initial formulation this axiom said that for any set of disjoint non-empty
sets there is a set which has precisely one member from each of those sets.
The restriction to non-empty sets is clearly necessary since you can’t have
precisely one member from a set with no members.
It turns out that there are many different axioms one could take which are
equivalent to this one, in the sense that if one assumes any one of themas an
axiom then the rest all become theorems. Some of these formulations have
more intuitive appeal than others. Zermelo’s version at least has the ad-
vantage that it’s clear why it’s named the Axiom of Choice. The set whose
existence it asserts is obtained by choosing one element from each of the
sets in our set. There are whole books devoted to equivalents of the Axiom
of Choice.
The Axiom of Choice is known to give a consistent formal system, at least
if we assume that Zermelo-Fraenkel is a consistent system. It’s also known
not to be a theorem in the Zermelo-Fraenkel system, assuming ZF is con-
sistent. In other words one can prove that it can’t be proved. The same,
of course, applies to any of the statements known to be equivalent to the
Axiom of Choice.
For the Axiom of Dependent Choice there was an equivalent statement in
terms of chains. There is one for the Axiom of Choice as well. It goes by the
name of Zorn’s lemma, even though it is often taken as an axiom in place
of the Axiom of Choice.

• Zorn’s Lemma: If every chain in a partially ordered set is bounded,
then it contains a maximal element.

A subset 𝐵 of a set 𝐴 with a partial order 𝑅 is said to be bounded if there
is a 𝑦 ∈ 𝐴 such that (𝑥, 𝑦) ∈ 𝑅 for all 𝑥 ∈ 𝐵. This might look like the defini-
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tion of a greatest element but there is a crucial difference. We only require
𝑦 to be a member of 𝐴, not of 𝐵. An example of a bounded subset is the
set of rational numbers 𝑥 such that 0 < 𝑥 and 𝑥 < 1. this is a bounded sub-
set of the rationals, with the partial order given by ≤, because 𝑥 ≤ 1 for all
such 𝑥. In fact this set is also a chain. You may wonder whether this exam-
ple contradicts Zorn’s lemma, since the rationals do not have a maximal
element. It doesn’t. The hypothesis in Zorn’s lemma is that every chain
is bounded. This particular one is but some others are not. 𝑁, the set of
natural numbers, is an example of an unbounded chain.

Banach-Tarski

Unfortunately the Axiom of Choice has some rather unsettling conse-
quences. Perhaps the most counterintuitive of these is the Banach-Tarski
Paradox in geometry. Assuming Zermelo-Fraenkel plus the Axiom of
Choice one can show that there are sets 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐵1, 𝐵2, 𝐵3, 𝐶1,
𝐶2, 𝐶3, 𝐶4 and 𝐶5 in three dimensional Euclidean space with the following
properties.

• 𝐵1, 𝐵2 and 𝐵3 are disjoint balls of radius 1.
• 𝐴1 is congruent to 𝐶1, 𝐴2 is congruent to 𝐶2, 𝐴3 is congruent to 𝐶3,

𝐴4 is congruent to 𝐶4, and 𝐴5 is congruent to 𝐶5.
• 𝐴1, 𝐴2, 𝐴3, 𝐴4 and 𝐴5 are disjoint and their union is 𝐵1 ⋃ 𝐵2.
• 𝐶1, 𝐶2, 𝐶3, 𝐶4 and 𝐶5 are disjoint and their union is 𝐵3.

In otherwords, we can take a ball, split it into five pieces, move those pieces
via a rigid motion, i.e. a combination of translations, reflections and rota-
tions, and reassemble them to form two balls of the same radius as the
original one.
Mostmathematicians are not particular bothered by paradoxes like the one
above. In their view it shows that it’s possible to find really weird bounded
subsets of Euclidean space, weird enough that one can’t attach a notion
of volume to them in any consistent way, but not as a problem with set
theory. Some mathematicians reject the Axiom of Choice entirely. Others
accept onlyweaker versions, like theAxiomofDependent choice, which do
not imply the existence of the paradoxical sets appearing in Banach-Tarski
theorem.
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Additional axioms
Foundation

The following was not part of Zermelo set theory but is often taken as an
axiom.

• Foundation: Every non-empty set has a member which is disjoint
from it, i.e. shares no members with it. Formally

[∀𝐴.[[∃𝐵.𝐵 ∈ 𝐴] ⊃ [∃𝐶 ∈ 𝐴 ∶ [𝐴 ⋂ 𝐶] = ∅]]].

I’m not sure I’ve ever seen anyone present an argument that this statement
is true, as opposed to simply convenient.
Some programming languages provide a set data type, which generally
means a finite set data type, natively while there are library implementa-
tions in some others. Most of those do not appear to satisfy the Axiom of
Foundation, which makes it hard to argue that this axiom reflects people’s
intuitive understanding of sets, even when restricted to finite sets. Even
the arguments that Foundation is convenient are somewhat suspect since
it is generally assumed by mathematicians but never really used by them.
It is at least safe to assume it, in the sense that if it is possible to prove a
contradiction using this axiom then it is also possible to prove one without
it.

Extensionality, again

There is another, stronger, form of the Axiom of Extensionality.
• Extensionality (stronger version): Suppose every member of 𝐴 is a

member of 𝐵 and vice versa. Then 𝐴 = 𝐵.
Formally,

[∀𝐴.[∀𝐵.[[∀𝑥.[[[𝑥 ∈ 𝐴] ⊃ [𝑥 ∈ 𝐵]]∧[[𝑥 ∈ 𝐵] ⊃ [𝑥 ∈ 𝐴]]]]] ⊃ [𝐴 = 𝐵]]].

The difference between this version and the previous version is that one
began with the words “Suppose 𝐴 and 𝐵 are sets” and the formal version
had some additional conditions expressing that assumption. So the strong
version of the axiom implies that if 𝐴 has no members then 𝐴 is the empty
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set. This might seem innocuous but it means that for all 𝐴, 𝐴 is a set, which
is an additional assumption we haven’t made previously. Assuming this
axiom, whenever we see a statement of the form 𝑥 ∈ 𝐴 not only must 𝐴
be a set but so must 𝑥. I’ve been deliberately vague about what can be a
member of a set but with this version of Extensionality the answer is that
the only things which can be members of sets are sets.
Can we have a set of natural numbers? That is compatible with the strong
version of Extensionality because we’ve implemented natural numbers as
sets. We can also implement integers, rational numbers, real numbers and
complex numbers as sets. The usual way to implement the integers, for ex-
ample, is as equivalence classes of ordered pairs of natural numbers, where
the equivalence relation is the set of pairs of pairs ((𝑣, 𝑤), (𝑥, 𝑦)) for which
𝑣 + 𝑦 = 𝑤 + 𝑥.
In general this version of Extensionality is compatible with modern math-
ematics. Whether it’s a good idea or not is another question. It forces us to
implement everything as a set. The fact that we can do this doesn’t neces-
sarily mean we want to be forced to.
Assuming this version of Extensionality, if we start with a set then all of
its members, if it has any, are sets. All of their members, if they have any,
are sets. The same applies to their members. Starting from a set, choosing
one of its members, then one of its members, etc. we get a sequence of sets
which is either infinite or terminates with the empty set. If we assume the
Axiom of Foundation and the Axiom of Replacement as well then it cannot
give an infinite sequence and so must terminate with the empty set. So in
some sense all sets are built from only the empty set.

Zermelo-Fraenkel

The most common choice of axioms for set theory is
• the strong version of Extensionality
• Elementary Sets, without assuming the existence of the empty set,

which we can get from Separation and Infinity
• Separation
• Power Set
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• Union
• Infinity, in the first of the two versions I presented
• Replacement
• Foundation
• possibly Choice

The version without the Axiom of Choice is known as Zermelo-Fraenkel,
or just ZF. The versionwith Choice is just called Zermelo-Fraenkel with the
Axiom of Choice, or ZFC.
Most introductions to set theory start with examples from outside mathe-
matics, e.g. the set of students in a particular class, the set of people in a
building, etc. In view of the comments on the strong version of Extension-
ality none of these things are sets in Zermelo-Fraenkel, with or without
the Axiom of Choice. In fact Zermelo-Fraenkel set theory has no possible
application outside of mathematics.
A version of set theory sufficient for large parts of mathematics and nearly
all of computer science, and less openly hostile to other applications would
be

• the original version of Extensionality
• Elementary Sets
• Separation
• Power Set
• Union
• Infinity, in the second of the two versions I presented

You don’t really need any form of Choice for computer science but Depen-
dent Choice is useful. The axioms above, together with Dependent Choice,
are also sufficient for nearly all of classical mathematics, i.e. calculus, num-
ber theory, etc.
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Graph theory
The word “graph” has multiple, unrelated, meanings in mathematics.
What we’re concerned with here is not graphs of functions but rather
graphs as they are understood in the field known, appropriately enough,
as graph theory. A graph is a set of vertices and edges. The edges connect
vertices. There are, in fact, two different ways to make this notion precise,
depending on whether we regard the connections between vertices to
have a direction or not. These are called directed graphs and undirected
graphs.

Examples
Before giving definitions, it may be helpful to consider examples of each.
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Figure 10: An undirected graph

The first example is of land borders within the EU. Vertices are countries
and edges are land borders between them. This is an undirected graph,
because there is no preferred direction for border crossings.
The second example has as its vertices the substrings of the word mathe-
matics which are themselves words. There is an edge from one word to
another if the second occurs as a proper substring of the first without any
other word appearing in between. This is a directed graph because the “is
a proper substring of” relation is not symmetric. Youmight notice that this
graph is very nearly a tree. It only fails to be because the wordmat appears
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Figure 11: A directed graph

twice in mathematics. The first occurrence is a proper substring of mathe-
matics but not a proper substring of any proper substring which is a word.
The second occurrence is a proper substring of the word thematic.
Note that the graph is defined by which vertices are connected by an edge,
not by its visual representation in a particular diagram. There are edges
which cross in our directed graph example. This could have been avoided
by rearranging the positions of some vertices and edges but the crossings
are in any case just artifacts of the particular visual representation, not fea-
tures of the graph. A graph which can be drawn in the plane without
edge crossings is called planar. So the EU border graph is planar, even
though this particular diagram has edge crossings. Not all graphs are pla-
nar though. Our third example, with seven vertices and an edge between
each pair of vertices, is not. Proving that a graph isn’t planar is not straight-
forward though, since the presence of edge crossings in some particular
diagram doesn’t really tell you anything. The only way to prove this is to
prove that all planar graphs have some property which all planar graphs
have and then show that this graph doesn’t have it.
You can find a number of other examples of graphs in earlier chapters. All
trees are graphs. Also, all of our state diagrams for idealised machines are
graphs, provided we make one change, which is described below.

Different notions of a graph
Graph theory is really a collection of closely related theories which differ
in some details, depending on a few basic choices:
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• Are our graphs directed or undirected?
• How many vertices and edges do we allow? Finitely many? Count-

ably many, uncountably many?
• Are self-loops, i.e. edges connecting a vertex to itself, allowed?
• Can there be more than one edge between a pair of vertices?

For different applications different combinations of these are useful. We
don’t have time to cover all of them though and so will have to make some
choices.
I’ll take graphs to be directed unless otherwise specified. Most of the
graphs we’ve encountered are best thought of as directed graphs. State
transitions in an idealised machine often go in one direction only. Undi-
rected trees are sometimes useful but most of our trees, e.g. abstract
syntax trees or trees representing possible paths for a non-deterministic
computation, have a natural direction to their edges, from parent to child.
There is no real loss of generality in considering graphs to be directed. We
can always think of an undirected graph as a special case of a directed
graph where for each edge from on vertex to another there is a corre-
sponding edge in the reverse direction. It’s linguistically a bit unfortunate
that undirected graphs are directed graphs but a lot of mathematical
terminology has similar properties. The only real disadvantage of this
point of view is that you have to be careful reading works which deal
only with undirected graphs. They will use the word edge to refer to
what we’re considering a pair of edges. Later we’ll consider Eulerian
paths in an undirected graph, for example. In a text devoted solely to
undirected graphs these would usually be described as traversing each
edge exactly once. If you’re considering undirected graphs as directed
graphs then you need to modify this to say that a path is Eulerian if from
each pair of oppositely directed edges it traverses one edge exactly once
and the other not at all. To avoid clutter in diagrams, whenever we have
an undirected graph I will show a single edge without arrows rather than
a pair with arrows, as I did in the first and third examples above. That
convention is limited to undirected graphs however. For graphs which
are not undirected I will show both edges where there are two.
We’ll stick to finite graphs. This covers the graphs associated to finite
state automata, abstract syntax trees, and computational paths of pro-
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cesses guaranteed to terminate. It excludes computational paths of some
non-terminating processes, which is unfortunate, but the theory of finite
graphs is much simpler.
I will allow self loops in the definition, because they arise naturally in
graphs for finite state automata. For some theorems though it will be nec-
essary to add a hypothesis that the graph has no self loops.
I’ll exclude the possibility of havingmore than one edge from one vertex to
another. This means that for a finite state automaton where there is more
than one input token which causes a given transition we need to list all of
those in the label on a single edge rather than having multiple edges each
labelled by a different token. Note that the restriction is only on multiple
edges from one vertex to another. We are allowed to have two edges be-
tween a pair of edges as long as they go in different directions.
The choices above are motivated mainly by applications to the theory of
computation. Graph theorists tend to make a different set of choices, pre-
ferring undirected graphs with no self loops.

Definition
With the conventions chosen abovewe can define a graph as a finite set, the
set of vertices, and a relation on that set, the set of order pairs of vertices for
which there is an edge connecting the left component of the pair to the right
component. From this point of view graph theory is the study of relations
on finite sets, but the questions we ask when considering such a relation as
a graph are different from the ones we normally ask about relations.
With this definition a graph is undirected if and only if it is symmetric,
i.e. if and only if (𝑥, 𝑦) belongs to the edge relation whenever (𝑦, 𝑥) does.
Self loops are just pairs of the form (𝑥, 𝑥).
This definition is easily adapted to infinite graphs–you just drop the as-
sumption that the set of vertices is finite–but it would require more serious
modifications to cope with multiple edges from one vertex to another.
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Ways to describe graphs
All the examples so far have been given via diagrams. This works well for
human viewers and small graphs, but becomes unwieldy for larger graphs
or for machine processing. There are several alternative ways to describe
graphs. As an example, consider the graph whose diagram has vertices
labelled a to e and edges labelled 1 to 6.
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Figure 13: An undirected graph with labelled edges

One way to describe this is with what’s called an incidence table, as shown
below

1 2 3 4 5 6
𝑎 1 1 0 0 0 0
𝑏 0 0 1 1 0 0
𝑐 1 0 1 0 1 0
𝑑 0 0 0 0 1 1
𝑒 0 1 0 1 0 1

There is a row for each vertex and a column for each edge. There is a 1
in the row corresponding to a vertex and the column corresponding to an
edge if that vertex is an endpoint of that edge, and a 0 otherwise. If we
remove the row and column labels then we get an incidence matrix:

⎡⎢⎢⎢⎢⎢
⎣

1 1 0 0 0 0
0 0 1 1 0 0
1 0 1 0 1 0
0 0 0 0 1 1
0 1 0 1 0 1

⎤⎥⎥⎥⎥⎥
⎦
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There isn’t a particularly good analogue of this for directed graphs. Some-
times people use an incidence matrix with a −1 entry for the initial end-
point and 1 for the final endpoint.
An alternative way to describe a graph is with an adjacency table. This has
a row and a column for each vertex. There is a 1 in a row and column if the
graph has an edge from the vertex corresponding to that row to the vertex
corresponding to that column and a 0 otherwise.

𝑎 𝑏 𝑐 𝑐 𝑒
𝑎 0 0 1 0 1
𝑏 0 0 1 0 1
𝑐 1 1 0 1 0
𝑑 0 0 1 0 1
𝑒 1 1 0 1 0

Again, we can remove the labels to get a matrix, the adjacency matrix:

⎡⎢⎢⎢⎢⎢
⎣

0 0 1 0 1
0 0 1 0 1
1 1 0 1 0
0 0 1 0 1
1 1 0 1 0

⎤⎥⎥⎥⎥⎥
⎦

This is a symmetric matrix, reflecting the fact that our graph is undirected.
It has 0’s along the main diagonal, reflecting the fact that the graph has no
loops.
This representation works well in the case of graphs which are not undi-
rected as well. For our earlier example of a directed graph, the one with
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substrings of the word mathematics, the adjacency matrix is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

For each representation, we need an order relation to determine the order
of the rows and columns. For the adjacency matrix we need an ordering of
the vertices. For the incidence matrix we need that and an ordering of the
edges. Different choice of order relation will require permuting the rows
and columns of the matrices. In the particular case above I chose to order
the strings first by length and then lexicographically within those of each
possible length. A more traditional choice for ordering words would be
just to use lexicographic ordering, but this would disguise an important
property of our graph: the fact that it is possible to order the vertices in
such a way that all edges go from vertices earlier in the order to vertices
later in the ordering. Graphs with this property are called directed acyclic
graphs. The come up in a variety of contexts. With such an ordering the
adjacency matrix is lower triangular.
As often happens there differing conventions here. For directed graphs
I’ve chosen to make the rows of the adjacency matrix correspond to initial
endpoints of an edges and make the columns correspond to the terminal
endpoints. Roughly half the world seems to use that convention and half
uses the reverse convention. The effect of changing conventions is to trans-
pose the matrices.

Bipartite graphs, complete graphs
A graph is called complete if it has no self loops but otherwise has an edge
from each vertex to each other vertex. Complete graphs are undirected.
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The graph I gave earlier as an example of a non-planar graph is complete.
The adjacencymatrix of a complete graph looks like an identitymatrixwith
the 1’s and 0’s reversed. A complete graph with 𝑛 vertices, known as a 𝐾𝑛.
Our example graph is therefore a 𝐾7.
A graph is called bipartite if the set of vertices can be partitioned into two
subsets, such that all the edges connect a vertex from one subset to a ver-
tex from the other. An example is the graph above with labelled edges.
The two subsets of vertices are {𝑎, 𝑏, 𝑑} and {𝑐, 𝑒}, in the labeling from that
diagram. This bipartite graph has the property that for every vertex in
the first subset and every vertex in the second there is an edge connecting
them. That is not a requirement of the definition. A bipartite graph with
𝑝 vertices in one set and 𝑞 in the other is called a 𝐾𝑝,𝑞. These graphs are
often referred to as “complete bipartite” graphs. This terminology is un-
fortunate, because these graphs are not in fact complete graphs for 𝑝 > 1
or 𝑞 > 1, so I won’t use it.
Bipartite graphs arise in a variety of contexts. Consider, for example, a
graphwhose vertices are the possibleways to list themembers of a finite set
with edges between lists which differ only by swapping the order of a pair
of items. This is shown in the diagram. For simplicity I’ve chosen the set of
the four letters a, b, c, andd, andhave omitted the parentheses and commas
from our usual list notation, so (𝑎, 𝑏, 𝑐, 𝑑), for example, is represented by
𝑎𝑏𝑐𝑑.
It’s not obvious staring at this graph that it’s bipartite. One way to show
this would be to use different coloured labels for the vertices in the two
different sets. Another way to show it is to draw a directed graph which
has one edge from each pair in the graph above, chosen consistently to that
the set goes from a vertex in one set to a vertex in the other.
In this case, with four members of our set, the graph happens to be a 𝐾6,6,
but with more members the graph would not be 𝐾𝑝,𝑞 for any choice of 𝑝
and 𝑞.

Isomorphism
Suppose we have two graphs, one with vertex set 𝑉 and edge relation 𝐸
and the other with vertex set 𝑊 and edge relation 𝐹. A function 𝑔 from
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Figure 14: A bipartite graph
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Figure 15: The corresponding directed graph
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𝑉 to 𝑊 is called a graph isomorphism if is bijective and (𝑔(𝑎), 𝑔(𝑏)) ∈ 𝐹
whenever (𝑎, 𝑏) ∈ 𝐸 and vice versa. In the special case 𝑊 = 𝑉 and 𝐹 = 𝐸
it’s called an automorphism.
There is rarely much point in distinguishing between isomorphic graphs,
and people often implicitly treat isomorphic graphs as equal. For example,
people talk of 𝐾𝑛 as the complete graph with 𝑛 vertices. Technically, there
is such a graph for each set with 𝑛 elements, but for purposes of graph
theory they all behave the same, and so we speak as if there were only one.
An easy way to describe isomorphism, at least for finite graphs, is that two
graphs are isomorphic if and only if their vertices can be ordered in such
a way that they have the same adjacency matrix. Or, if we don’t want to
disturb an ordering that we may already have given the vertices, they are
are isomorphic if and only if one adjacency matrix can be converted into
the other by applying a permutation to the rows and applying the same
permutation to its columns.
Every graph has at least one automorphism, corresponding to the identity
function, but even small graphs may have many more. The 𝐾6,6 graph we
just saw has a number of automorphisms which are geometrically obvious,
such as rotations through any integer multiple of 30 degrees, but it has
many more. We can permute the members of each group of six vertices
separately. We can also rotate through 30 degrees, which switches the two
groups, and then permute within each of them. There is a binary choice
whether to rotate first and then 6! = 720 possible permutationswithin each
group, for a total of 2 · 720 · 720 = 1, 036, 800 automorphisms. I won’t list
them.
More generally, 𝐾𝑝,𝑞 has 𝑝! · 𝑞! automorphisms, unless 𝑝 = 𝑞, in which case
there are twice as many, because in that case we can not only permute each
of the two subsets into which the vertices have been partitioned but can
also swap the two subsets.

Subgraphs, degrees
Suppose we have a graph with vertex set 𝑉 and edge relation 𝐸. If 𝑊 is a
subset of 𝑉 and 𝐹 is a subset of the restriction of 𝐸 to 𝐹 then we say that the
with vertex set 𝑊 and edge relation 𝐹 is a subgraph of the one with vertex
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set𝑉 and edge relation𝐸. Note that in caseswhere twovertices 𝑥 and 𝑦 in𝑊
are connected by an edge in 𝐹 they are required to be connected by an edge
in 𝐸, but not vice versa. We could, for example, obtain a subgraph by keep-
ing all the vertices and removing all the edges, although this wouldn’t be
particularly interesting. For a slightly more interesting example, consider
the graph whose vertices are the set of all lists of length four with items a,
b, c, and d, i.e. the same vertices as in the example above, but with edges
from each vertex to every other vertex. This is a 𝐾12. The graph considered
earlier, which we saw was a 𝐾6,6, is a subgraph of it. More generally, any
𝐾𝑝,𝑞 is a subgraph of 𝐾𝑝+𝑞.
The in-degree of a vertex in a graph is the number of edges from that vertex
while the out-degree is the number of edges to that vertex. In undirected
graphs these two numbers must be the same and are just called the degree
of the vertex. Corresponding vertices in isomorphic graphs have the same
in-degrees and have the same out-degree. This can be used to show that a
pair of graphs are not isomorphic, by showing that the number of vertices
with a given in and out degree differ between the two graphs.
An undirected graph where all vertices have the same degree is called reg-
ular. Complete graphs are always regular. A 𝐾𝑝,𝑞 is regular if and only if
𝑝 = 𝑞. The EU borders graph considered earlier is very far from regular.
There are some vertices, e.g. Ireland, with degree 0 while Germany has de-
gree 8. An example of a regular graph which is not a 𝐾𝑛 or 𝐾𝑝,𝑝 can be
found in the accompanying figure, where each vertex has degree 5.
Each edge goes from on vertex to another. If we group the edges by their
initial endpoints then the number for each vertex is its out-degree, so the
number of edges is equal to the sumof the out-degrees of the vertices. Simi-
larly, if we group them by their final endpoints thenwe see that the number
of edges is equal to the sum of the in-degrees of the vertices. The sum of
the in-degrees is therefore equal to the sum of the out-degrees.
For an undirected graph the in-degrees and out-degrees are the same, so
we can just say that the sum of the degrees is equal to the number of edges.
We have to be careful here though, because edges occur in pairs an our
convention is to draw only one of each pair. The sum of the degrees is
therefore twice the number of edges visible in the diagram. This is always
an even number so we obtain the useful result that the sum of the degrees
of the vertices in an undirected graph is always and even number, and the
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Figure 16: A regular graph
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corollary that the number of vertices of odd degree is even.

Walks, trails, paths, etc.
A walk in a graph is a list of edges where the final endpoint of each edge,
other than the last, is the initial point of the next one. Of course for an
undirected graph we don’t have to worry about which vertex is the initial
vertex andwhich is the final vertex of an edge, since there is always another
edge with the opposite orientation. You can check that the edges (𝑎, 𝑏),
(𝑏, 𝑐) (𝑐, 𝑑), (𝑑, 𝑒), (𝑒, 𝑓 ), (𝑓 , 𝑔), (𝑔, ℎ), (ℎ, 𝑖), (𝑖, 𝑗), (𝑗, 𝑘), (𝑘, 𝑙) form a path of
length 11. It’s more efficient to list the vertices in order than to list the edges
though to avoid listing vertices twice, once as the initial endpoint of an edge
and once as the final endpoint. The walk above would then be given by the
list of vertices (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ, 𝑖, 𝑗, 𝑘, 𝑙). Note that the number of vertices in
such a list is always one greater than the number of edges.
A walk in an undirected graph, like the one above, is called a trail if at
most one from each pair of edges appears and is called a path if each edge
appears at most once. The walk above is both a trail and a path. It can be
extended further as a trail but not as a path. We could, for example, extend
the path further by adding the edge (𝑙, 𝑗) to get a trail of length 12, but this
would not be a path since the vertex 𝑗 would appear twice. In fact there
can’t be a trail of length 12 in this graph because the number of vertices
appearing in a trail is one greater than the length and this graph only has
12 vertices.
A walk is called closed if it starts and ends with the same vertex.
The walk above is not closed, but it can be extended to a closed
walk, which visits the vertices in the order given by the following
list: (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ, 𝑖, 𝑗, 𝑘, 𝑙, 𝑗, 𝑒, 𝑘, 𝑔, 𝑙, ℎ, 𝑐, 𝑖, 𝑑, 𝑎). This is a closed path of
length 21. It is in fact a trail. Closed trails are called circuits.
How long could a circuit in this graph be? The number of edges is the sum
of the degrees of the vertices and there are twelve vertices, each of degree
5, so there are 60 edges, or 30 pairs of edges, so no trail could possibly
have length greater than 30. In fact we can’t even have one that long. The
number times a vertex appears as the initial vertex of an edge in a circuit
must be equal to the number times it appears as a final vertex and there are
only five pairs of edges for each vertex so the we can’t have more than two
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incoming and two outgoing edges appearing in a circuit. With 12 vertices
there therefore can’t be more than 24 edges.
Suppose a non-empty undirected graph has all vertices of degree at least 2.
Then it has a simple circuit. We can see this as follows. Given any vertex 𝑣
of degree at least two there is a pair of distinct edges through 𝑣. Taking one
and then the other gives a path length two passing through 𝑣. Consider the
set of paths through 𝑣. The length of such a path is at most the number of
vertices in the graph. There is therefore a longest such path. The final point
of the path has degree at least two and only one of the edges it traverses
is in the path, since the path has no repeated vertices. Adding that edge
gives a longer walk, but it can’t give a longer path, since we’ve already
chosen one of maximal length. The other vertex of the edge we’ve added
must then be one of the vertices already in the path. Following from that
vertex along the path and then back along the edge we’ve just added gives
a simple circuit.
Another case inwhichwe know there is a non-trivial simple circuit is when
there are two vertices connected by distinct paths. We can get a closed path
by following one path in the forward direction and the other in the reverse
direction, but that walk need not be a circuit, let alone a simple circuit. We
can, however, look at the first vertex where the two paths diverge and the
first vertex after that where they come together again. If we look only at
the parts of the paths between those two vertices then we can still follow
one in the forward direction and the other in the reverse direction. This
time the resulting closed walk will be a simple circuit.
A trail or circuit is called Eulerian if exactly one from each pair of edges
appears. Our example graph has no Eulerian path or circuit. We’ve seen
that there are 30 edges and no circuit can be of length greater than 24. A
slight modification of the argument which showed that also tells us that no
path has length greater than 25. To get an example we therefore need to
look at a different graph. Our bipartite graph example will work. This is
a regular graph with 12 vertices, each of degree 6. There are therefore 36
pairs of edges, so a circuit of length 36must be Eulerian. One such example
is the graph which visits the vertices 𝑎𝑏𝑐𝑑, 𝑐𝑎𝑑𝑏, 𝑎𝑐𝑑𝑏, 𝑑𝑎𝑏𝑐, 𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑏𝑐𝑎𝑑,
𝑐𝑎𝑑𝑏, 𝑐𝑎𝑏𝑑, 𝑎𝑑𝑐𝑏, 𝑑𝑎𝑐𝑏, 𝑎𝑏𝑑𝑐, 𝑐𝑎𝑏𝑑, 𝑎𝑐𝑏𝑑, 𝑎𝑐𝑑𝑏, 𝑎𝑑𝑐𝑏, 𝑎𝑑𝑏𝑐, 𝑏𝑐𝑑𝑎, 𝑏𝑐𝑎𝑑, 𝑎𝑐𝑏𝑑, 𝑎𝑑𝑏𝑐,
𝑑𝑎𝑏𝑐, 𝑑𝑎𝑐𝑏, 𝑏𝑐𝑑𝑎, 𝑎𝑏𝑐𝑑, 𝑎𝑐𝑏𝑑, 𝑑𝑎𝑐𝑏, 𝑐𝑎𝑑𝑏, 𝑎𝑑𝑏𝑐, 𝑎𝑏𝑑𝑐, 𝑎𝑐𝑑𝑏, 𝑏𝑐𝑑𝑎, 𝑐𝑎𝑏𝑑, 𝑑𝑎𝑏𝑐, 𝑏𝑐𝑎𝑑,
𝑎𝑑𝑐𝑏, and 𝑎𝑏𝑐𝑑 in that order.
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Connectedness
Given a graph with vertex set 𝑉 we can define a relation 𝑆 on 𝑉 by saying
that (𝑣, 𝑤) ∈ 𝑆 if 𝑣 = 𝑤 or there is a walk with initial vertex 𝑣 and final
vertex 𝑤. This is a reflexive relation, because we defined (𝑣, 𝑤) ∈ 𝑆 to be
true if 𝑣 = 𝑤. It is also a transitive relation. In other words, if (𝑢, 𝑣) ∈ 𝑆 and
(𝑣, 𝑤) ∈ 𝑆 then (𝑢, 𝑤) ∈ 𝑆. If 𝑢 = 𝑣 then (𝑢, 𝑤) and (𝑣, 𝑤) are the same, so
it’s clear that if (𝑣, 𝑤) ∈ 𝑆 then (𝑢, 𝑤) ∈ 𝑆. Similarly if 𝑣 = 𝑤 then (𝑢, 𝑣) and
(𝑢, 𝑤) are the same, so if (𝑢, 𝑣) ∈ 𝑆 then (𝑢, 𝑤) ∈ 𝑆. The only interesting
case is therefore the one where there is a walk from 𝑢 to 𝑣 and a walk from
𝑣 to 𝑤. In this case we can obtain a walk from 𝑢 to 𝑤 by concatenating the
list of edges in the walk from 𝑢 to 𝑣 and the list of edges in the walk from
𝑣 to 𝑤.
If the relation 𝑆 is antisymmetric then we say the graph is a directed acyclic
graph. In this case the set of vertices with the relation 𝑆 form a partially
ordered set.
A tree is just a directed acyclic graph in which there is at most one walk
from any vertex to any other vertex. In the theory of undirected graphs we
say that a graph is a tree if it’s connected and has no simple circuit of length
greater than two. These two seemingly different definitions are related as
follows. An undirected graph is a tree, as defined for undirected graphs, if
and only if its possible to choose a direction for each edge making it into a
tree, as defined for directed graphs.
If the graph is undirected then 𝑆 is symmetric, since we can then obtain a
walk from 𝑣 to𝑤 from awalk from 𝑤 to 𝑣 by reversing the order of the edges
in the walk and reversing the direction of each edge. So in this case the re-
lation 𝑆 is an equivalence relation. The equivalence classes are called con-
nected components. A non-empty undirected graph is called connected if
it has only one connected component, i.e. if for every two distinct vertices
there is a walk connecting them. All of the undirected graphs which have
appeared so far are connected, except for the EU border graph, which has
five connected components. One each with just Cyprus, Ireland andMalta
as members, one with just Finland and Sweden, and one with all other EU
states as members.
If two distinct vertices belong to the same equivalence class then there is a
walk between them. Lengths of walks are natural numbers so there must
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then be a shortestwalk. If thiswalk had a vertexwhich appearedmore than
once thenwe could further shorten it by removing all the edges between its
first appearance and its last, but then itwouldn’t be a shortestwalk, so there
can be no repeated vertices. In other words the walk is a path. We already
knew from the definition that any two vertices in a connected component
are connected by a walk but the argument above shows that they are in
fact connected by a path. This is a stronger statement since every path
is a walk but not every walk is a path. It would have been a bad idea to
define connected components in terms of paths though since this would
have made it harder to prove the transitivity property.

Eulerian trails and circuits
Given a trail in an undirected graph we can form a subgraph by taking
the same set of vertices in the original graph but keeping only those edges
which appear in the trail. In the case of an Eulerian path we will then be
keeping one edge from each pair. The diagram of this new, directed, graph
will be the same as the diagram of the original graph, except each edgewill
have an arrow indicating its direction. We found an Eulerian path in our
bipartite graph earlier. The corresponding directed graph is given in the
accompanying figure.
You may we recall that we’ve already seen a directed graph which selected
one edge from each pair, as a way of showing that the graph is bipartite.
That graph had the property that at each vertex the edges were either all
outgoing or all incoming. In terms of degrees, for each vertex either the
in-degree or out-degree is zero. This new directed graph is different. Here
the in-degree and out-degree are always equal.
More generally, suppose we start from an Eulerian trail in an undirected
graph and create a directed graph by keeping all the vertices and those
edges belonging to the path, as above. Whenever a vertex appears in the
interior of the trail, i.e. not as the initial or final vertex, it is the final end-
point of one edge and the initial endpoint of the following edge so the first
of those edges contributes one to the in-degree and the latter contributes
one to the out-degree. The initial edge contributes one to the out-degree of
its initial endpoint and the final edge contributes one to the in-degree of its
final endpoint. All of the contributions of any edge to the degrees of any
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Figure 17: An Eulerian path in a bipartite graph
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vertex arise in one of the ways just described. So for all but the initial and fi-
nal vertices of the trail the in-degree and out-degree must be the same. For
the initial vertex the in-degree is one less than the out-degree and for the
final vertex it is one more, unless the initial and final vertex are the same,
i.e. unless the trail is a circuit, in which case the in and out degrees at that
vertex are again the same. Each edge in the directed graph corresponds to
a pair of edges in the original undirected graph and each such edge con-
tributes one to the degree of its endpoints so the degree of a vertex in the
undirected graph is the sum of the in-degree and out-degree of that vertex
in the directed graph. This degree is therefore even, except in the case of a
trail which is not a circuit, in which case the degrees of the initial and final
vertices are odd. There are therefore either zero or two vertices of odd de-
gree in an undirected graph with an Eulerian trail. If there are zero then
that trail, and all other Eulerian trails, are circuits. If there are two then that
trail, and all other Eulerian trails, are not circuits. If the number of vertices
of odd degree in an undirected graph is not equal to zero or two then there
is no Eulerian trail.
In particular the regular graph we considered earlier with twelve vertices
of degree five has no Eulerian trail since it has twelve odd vertices. We can
also see that any Eulerian path on the graph we just considered is a circuit,
since the number of odd vertices is zero.
Suppose we have an undirected graph all of whose vertices have even de-
gree and at least one has positive degree. Then there is a trail of positive
length through that vertex. The number of edges in trail is at most the
number of total edges, which is finite, so there is a longest trail through
that vertex. What can we say about this trail?
First of all, such a longest trail must in fact be a circuit. To see this we
construct two subgraphs. Both have the same vertex set as the origin graph.
The first has those edges which belong to the trail, along with the edges in
the reverse direction. The second has all the other edges. These are both
undirected graphs. The first graph was constructed to have an Eulerian
trail. If the initial or final vertex of this trail had odd degree in the first
subgraph then it would also have odd degree in the second subgraph, since
the two degrees add up to the degree in the original graph. Zero is not an
odd number so the degree in the second subgraph is positive, whichmeans
there is a pair of edges in the original graph with that vertex as their initial
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or final endpoint, neither of which belong to the trail. We could therefore
extend the trail by appending one or the other of these edges, either at the
beginning, if the vertex is the initial vertex or the trail, or at the end, if it’s
the final vertex, to obtain a longer trail. Since our trail was chosen to be
as long as possible this is impossible, so the degree of the initial and final
vertices in the first subgraph is even and therefore those vertices are the
same and the trail is a circuit.
Next, a longest trail contains one edge from each pair attached to any of
its vertices. We use the same subgraphs as before. We’ve now established
that the first subgraph has an Eulerian circuit and that the degrees of the
vertices in an undirected graph with an Eulerian circuit are all even so the
degrees of all vertices in the first subgraph are all even. We know that the
degree of each vertex in the original graph is even and is the sum of its
degrees in the two subgraphs so the degree in the second subgraph is also
even. Suppose there were a vertex on the circuit which did not contain
an edge from each pair connected to it. Then those edges would be in the
second subgraph. The second subgraph thus has vertices of even order
and this vertex has positive degree so by what we proved in the preced-
ing paragraph, applied now to this subgraph, there is a circuit of positive
length through this vertex. We could then splice this circuit in to the orig-
inal trail to obtain a longer trail, but this is impossible, so the assumption
that there is such a vertex is untenable.
So nowwe know that a longest trail through a vertex is necessarily a circuit
and that it contains all edges connected to any of its vertices. Consider
now a walk starting at the same vertex. The final vertex of this walk must
be traversed by the circuit. This is proved by induction on the length of
the walk. If the walk is of length 0 then the final vertex is the initial one
and so is certainly traversed by the circuit. If the length is positive then we
can assume, by induction, that circuit traverses the final vertex of the walk
obtained by deleting the final edge of the original walk. But every edge
through that vertex is then traversed by the circuit, including the edge we
just deleted, so the final edge of the original path, and hence the final vertex,
is traversed by the circuit.
Every vertex in the same component of the graph as the original vertex
is connected to that vertex by a walk, and so is traversed by the circuit,
as are all the edges connected to it. So a longest path through a vertex
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traverses every vertex and edge of that component. In particular, if the
graph is connected then the longest trail traverses every vertex and edge
of the graph. It is therefore an Eulerian trail and, since we’ve already seen
that it’s a circuit, is an Eulerian circuit.
What we have just shown is that a connected undirected graph has an Eu-
lerian circuit if and only if all of its vertices have even degree. There is
a similar theorem for non-closed Eulerian trails. A connected undirected
graph has such a trail if and only if exactly two of its vertices have odd
degree. Those two vertices are the initial and final points of the trail. The
trick to proving this is to consider the original graph as a subgraph of a
larger graph, obtained by adding an extra vertex and pairs of edges from
that vertex to the two odd vertices. The larger graph has vertices of even
degree and so has an Eulerian circuit. This circuit goes through the added
vertex. If we remove the edges in and out of this vertex then we obtain an
Eulerian trail in the original graph.
Previously we saw that if there is an Eulerian circuit then the graph is con-
nected and all vertices have even degree. We now have the converse, that
if the graph is connected and all vertices have even degree then there is
an Eulerian circuit. A similar statement applies to graphs with exactly two
vertices of odd degree and Eulerian trails.
It’s often said that proofs by contradiction are non-constructive but the one
above does actually give an algorithm for finding Eulerian circuits:

• Choose a vertex.
• Starting at that vertex continue to an adjacent vertex, a vertex adjacent

to that, etc., always avoiding edges which have already been used in
either direction. Do this until there are no available edges left wher-
ever you stopped.

• The vertex where you stopped must be the one where you started,
so you have a circuit, but not necessarily an Eulerian one. If it’s not
Eulerian then there’s a vertex somewhere along the path with edges
you haven’t used. Starting from that vertex continue to an adjacent
vertex, a vertex adjacent to that, etc. When you can’t continue any
further youmust have ended up at the vertex where you left the orig-
inal circuit. Splice the new circuit into the old one at the point where
it was first visited.
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• Keep doing the preceding operation until there are no vertices on
the circuit with available edges. At this point you have an Eulerian
circuit.

Hamiltonian paths and circuits
A path is called Hamiltonian if it traverses every vertex exactly once. A
circuit is called Hamiltonian if it traverses every vertex exactly once, except
that the initial and final vertices are the same. The definition is similar to
that of Eulerian trails and circuits, but the question of whether a graph has
a Hamiltonian path or circuit turns out to bemuchmore difficult to answer
than the question of whether it has an Eulerian trail or circuit.
Some information is easy to obtain. 𝐾𝑛 always has a Hamiltonian path and
a Hamiltonian circuit. We can order the vertices however we like and then
visit each one in order, since every pair of vertices is connected by an edge.
To get a circuit we just append another edge from the last vertex in the path
to the first.
For 𝐾𝑝,𝑞 the answer depends on 𝑝 and 𝑞. Any walk in 𝐾𝑝,𝑞 alternately visits
vertices from the set of 𝑝 vertices and the set of 𝑞 vertices, since there are
no edges within either set. So at the end of any path in 𝐾𝑝,𝑞 the number of
edges visited from one set differs by at most one from the number visited
from the other set. So there is no Hamiltonian path unless |𝑝 − 𝑞| ≤ 1. Con-
versely, if this inequality is satisfied then we can find a Hamiltonian path.
If 𝑝 = 𝑞 then we can also find a Hamiltonian circuit.
The earliest example of a Hamiltonian path is the Knight’s Tour problem
in chess. The graph in question has the squares of the chessboard as ver-
tices and vertices are adjacent if and only if they are a knight’s move apart.
A knight’s tour is a set of moves visiting each square exactly once, i.e. a
Hamiltonian path in the graph. The earliest known solutions are by al-Adli
ar-Rumi and by Rudrata, and date to the ninth century.

Spanning trees
As we’ve already discussed, graphs do not necessarily have Hamiltonian
paths. Connectedness is a necessary condition for the existence of a
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Hamiltonian path, but it’s not a sufficient condition. Connected undi-
rected graphs without self-loops do, however, always have spanning tree,
i.e. a subgraph which is a tree and has every vertex of the original graph
as a vertex.
The largest connected component of the EU border graph, for example, has
the spanning tree shown in the accompanying diagram. Edges which be-
long to the spanning tree are shown in bold, while edges which belong to
the original graph but not the spanning tree are dotted.
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Figure 18: An undirected graph

To show that every connected graph has a spanning tree we use an argu-
ment similar to the one used earlier for the existence of Eulerian trails. For
the rest of this paragraph whenever I refer to a tree I will mean a subgraph
of the original graph which is a tree. The number of vertices in a tree is at
most one less than the number of vertices in the graph, so there must be a
tree with a maximal number of vertices. If there were a vertex in the graph
whichwas not in the tree thenwe could obtain a larger tree as follows. Pick
a vertex in the tree and one not in the tree. The graph is connected so there
is a walk from the first vertex to the second. Consider the last vertex of the
tree which belongs to this walk. The next edge connects that vertex to a
vertex not in the tree. Adjoining that edge to the tree gives a graph which
is still connected and has no loops and so is a tree. It would therefore be a
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larger tree, but we chose our tree to be maximal, so this can’t happen. In
other words, there is no vertex in the tree but not in the graph, so the tree
is a spanning tree.
There are, in general, many possible spanning trees. It’s common in ap-
plications that there is a cost function on the edges of the graph and that
one wants to minimise the cost of the tree, i.e. the sum of the costs of the
edges in the tree, among all the spanning trees of the graph. Such a cost-
minimising spanning tree is called a minimal spanning tree. The existence
of aminimal spanning tree is easy to prove. Spanning trees are determined
by their edges, which are a subset of the edges of the original graph. There
are only finitelymany edges in the original graph and so only finitelymany
spanning trees. The total cost determines an ordering of spanning trees and
we’ve already seen that orderings of finite sets have minimal elements. If
you actually want to find a minimal spanning tree then finding all span-
ning trees, computing their total costs, and then choosing one with the
lowest cost is not an efficient algorithm. A number of efficient algorithms
are known though

Abstract algebra
Binary operations
If 𝐴 is a set then a function from 𝐴2 to 𝐴 is called a binary operation. Ex-
amples include

• ∧ on Boolean truth values
• ∨ on Boolean truth values
• ⊃ on Boolean truth values
• + on the natural numbers
• · on the natural numbers
• the maximum operation on natural numbers
• the minimum operation on natural numbers
• ⋂ on the power set of a given set
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• ⋃ on the power set of a given set
• ∖ on the power set of a given set
• ∘ on the set of functions from a given set to itelf
• ∘ on the set of relations on a given set to itelf
• the concatenation operation on lists all of whose items belong to a

given set
Functions are left total, so we can’t define subtraction or division as binary
operations on the natural numbers. We can define subtraction as a binary
operation on a larger set, like the set of integers, rationals or reals. We
can’t define division as a binary operation on any of these sets, at least if
we want the relation (𝑥/𝑦) · 𝑦 = 𝑥 to hold for all 𝑥 and 𝑦, because of the
problems with division by zero.
The notation used for binary operations varies. Most of the operations
above are usually written with an infix notation, like 𝑥 · 𝑦, 𝐴 ⋃ 𝐵, or 𝑓 ∘ 𝑔.
Maximum andminimum are usually written with functional notation, like
max(𝑥, 𝑦). Arguably this should bemax((𝑥, 𝑦)) with one set of parentheses
identifying function arguments and the other identifying an ordered pair,
since this is a function on ordered pairs, but in reality no one uses that no-
tation. The infix notation 𝑥 ∧ 𝑦 for maximum and 𝑥 ∨ 𝑦 for minimum is
sometimes used. This is consistent with the notation for Boolean operators
provided you accept that falsehood is greater than truth. Notation for con-
catenation is not completely standardised. Functional notation is used by
some authors. Others use an infix notation, often with no actual symbol in
between, like 𝑣𝑤 for the list consisting of the items of 𝑣 followed by those
of 𝑤. I’ll use a mix of notations, but will mostly prefer functional nota-
tion when described properties of general binary operations and whatever
notation is most commonly used for specific binary operators when they
appear as examples.
A binary operation 𝑓 on a set 𝐴 is called associative if

𝑓 (𝑥, 𝑓 (𝑦, 𝑧)) = 𝑓 (𝑓 (𝑥, 𝑦), 𝑧)

for all 𝑥, 𝑦 and 𝑧 in 𝐴. It is called commutative if

𝑓 (𝑥, 𝑦) = 𝑓 (𝑦, 𝑥)
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for all 𝑥 and 𝑦 in 𝐴.
We can apply the associativity property multiple times to show that, for
example

𝑓 (𝑤, 𝑓 (𝑥, 𝑓 (𝑦, 𝑧))) = 𝑓 (𝑓 (𝑤, 𝑥), 𝑓 (𝑦, 𝑧)) = 𝑓 (𝑓 (𝑓 (𝑤, 𝑥), 𝑦), 𝑧).

This is usually easier to follow with an infix notation. For example, the
previous calculation applied to the union operator for sets is

𝐴 ⋃(𝐵 ⋃(𝐶 ⋃ 𝐷)) = (𝐴 ⋃ 𝐵) ⋃(𝐶 ⋃ 𝐷) = ((𝐴 ⋃ 𝐵) ⋃ 𝐶) ⋃ 𝐷.

The parentheses tell you in what order the union operator is to be applied
but the equation essentially tells you that the order doesn’t matter. Or at
least it tells you that the order doesn’t affect the final result. In a computa-
tional problem the order may have a very noticeable affect on the time or
resources required. Matrix multiplication, for example, is associative, in
the sense that if 𝐿, 𝑀 and 𝑁 are matrices such that the 𝑀 has as many rows
as 𝐿 has columns and as many columns as 𝑁 has rows then

(𝐿𝑀)𝑁 = 𝐿(𝑀𝑁).

Without those conditions on the numbers of rows and columns the prod-
ucts are not defined. Suppose 𝐿 is has 𝑚 rows and 𝑛 columns while 𝑁
has 𝑝 rows and 𝑞 columns. The number of multiplications needed to com-
pute 𝐿𝑀 is 𝑚𝑛𝑝 and the number of further multiplications needed to com-
pute (𝐿𝑀)𝑁 is𝑚𝑝𝑞, so the left hand side requires𝑚𝑝(𝑛 + 𝑞)multiplications.
Similarly, number of multiplications needed to compute 𝑀𝑁 is 𝑛𝑝𝑞 and the
number of further multiplications needed to compute 𝐿(𝑀𝑁) is 𝑚𝑛𝑞 so the
total number for the right hand side is (𝑚 + 𝑝)𝑛𝑞. These numbers might be
very different. In the case of a square matrix followed by a column vec-
tor, thought of as a matrix with a single column, and then a row vector,
thought of as a matrix with a single row, we would have 𝑚 = 𝑛 = 𝑞 and
𝑝 = 1 so the left hand side needs 2𝑚2 operations while the right hand side
needs 𝑚3 + 𝑚2 operations. Quite a bit of computational linear algebra is
devoted to figuring out the most efficient ways to apply associativity.
Of the examples above, ⊃ and ∖ are neither associative nor commutative.
∘ and concatenation are associative but not commutative. The remaining
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ones are all associative and commutative. It’s certainly possible to con-
struct examples of operations which are commutative but not associative,
but naturally occurring examples are somewhat rare. One is the nand op-
erator, ⊼, from Boolean algebra, which we briefly considered in the context
of the Nicod formal system.

Semigroups
A pair (𝐴, 𝑓 ), where 𝐴 is a set and 𝑓 is an associative binary operation on 𝐴,
is called a semigroup.
If (𝐴, 𝑓 ) is a semigroup and 𝐵 is a subset of 𝐴 then we can restrict 𝑓 to
get a function from 𝐵2 to 𝐴. If the range of this function is a subset of 𝐵,
i.e. if 𝑓 (𝑥, 𝑦) ∈ 𝐵 whenever 𝑥 ∈ 𝐵 and 𝑦 ∈ 𝐵, then this restriction is a binary
operation on 𝐵. It is necessarily associative because if 𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵, and
𝑧 ∈ 𝐵, then 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴, and 𝑧 ∈ 𝐴, and so

𝑓 (𝑥, 𝑓 (𝑦, 𝑧)) = 𝑓 (𝑓 (𝑥, 𝑦), 𝑧),

by the associativity of 𝑓 on 𝐴. If 𝑓 (𝑥, 𝑦) ∈ 𝐵 whenever 𝑥 ∈ 𝐵 and 𝑦 ∈ 𝐵 then
we say that𝐵 is a subsemigroup of 𝐴. As an example, the set of even natural
numbers, with addition as the operation, is a subsemigroup of the natural
numbers, also with addition. Not every subset is a subsemigroup though.
The set of prime numbers is not a subsemigroup because the sum of prime
numbers needn’t be prime.
There is a general associativity property for semigroups which I hinted at
with the equation

𝑓 (𝑤, 𝑓 (𝑥, 𝑓 (𝑦, 𝑧))) = 𝑓 (𝑓 (𝑤, 𝑥), 𝑓 (𝑦, 𝑧)) = 𝑓 (𝑓 (𝑓 (𝑤, 𝑥), 𝑦), 𝑧)

above. In stating this it’s convenient to use the word “multiplication” for
the function 𝑓 , even thoughmultiplication is just one of the possible binary
operations wemight consider, and to refer to the result of applying 𝑓 to two
members of 𝐴 as the “product” of those elements. With this convention
the generalised associativity property we want to prove says that the order
in which multiple multiplications is performed doesn’t change the final
product.
One way to state it more precisely, related to our discussion of parsing ear-
lier, is in terms of binary trees. Given a list of 𝑛 members of 𝐴 and a binary
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tree with 𝑛 leaves we can compute a corresponding product by filling in
the list items in the leaves and then proceeding up the tree to the root, mul-
tiplying the values of a node’s children to obtain its value. There are, for
example, five possible shapes for a binary tree with four leaves, which you
found in Assignment 0. Each of these gives a different way to compute the
product of a list (𝑤, 𝑥, 𝑦, 𝑧) of members of 𝐴, illustrated in the five accom-
panying figures.

Figure 19: A tree for 𝑓 (𝑓 (𝑤, 𝑥), 𝑓 (𝑦, 𝑧))

Figure 20: A tree for 𝑓 (𝑓 (𝑓 (𝑤, 𝑥), 𝑦), 𝑧)

We see that our earlier argument, based on applying the associative prop-
erty twice, showed that three of these are equal. A similar argument shows
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Figure 21: A tree for 𝑓 (𝑓 (𝑤, 𝑓 (𝑥, 𝑦)), 𝑧)

Figure 22: A tree for 𝑓 (𝑤, 𝑓 (𝑥, 𝑓 (𝑦, 𝑧)))
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Figure 23: A tree for 𝑓 (𝑤, 𝑓 (𝑓 (𝑥, 𝑦), 𝑧))

that the other two are also equal to these. We’d like a general theorem,
though, applying to all values of 𝑛.
The easiest way to prove that all possible products for a given list are equal
is to prove that each is equal to some particular product. We’ll call the prod-
uct where we take our list and continue multiplying the two leftmost items
until there’s only a single item the leftmost product. In our earlier exam-
ple, starting with the original list (𝑤, 𝑥, 𝑦, 𝑧) wewould go through the steps
(𝑓 (𝑤, 𝑥), 𝑦, 𝑧), then (𝑓 (𝑓 (𝑤, 𝑥), 𝑦), 𝑧), then (𝑓 (𝑓 (𝑓 (𝑤, 𝑥), 𝑦), 𝑧)) so the leftmost
product would be 𝑓 (𝑓 (𝑓 (𝑤, 𝑥), 𝑦), 𝑧), the second of the trees shown previ-
ously, and the one which leans to the left the most. This is the product
which we will show that all others are equal to. We won’t define the left-
most product of the empty list but the leftmost product of a list with only
a single item is just that item, which is the trivial case of the procedure
described above of multiplying the leftmost items until only a single item
remains.
We can start with the special case that the product of two leftmost products
is a leftmost product. In other words if 𝑝 is the leftmost product of some list
𝑃 of members of 𝐴 and 𝑞 is the leftmost product of some list 𝑄 of members
of 𝐴 then 𝑓 (𝑝, 𝑞) is equal to the leftmost product of the concatenation of the
list 𝑃 and the list 𝑄. If this were not true then there would be a shortest
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list 𝑄 for which it failed. We’re not defining lists of length zero so 𝑄 is
either of length one or length greater than one. If it’s of length one then it
is just (𝑞) and the concatenation of 𝑃 and 𝑄 is the list 𝑃 with a 𝑞 appended
at the end. When we compute its leftmost product as described above we
first multiply all the items to the left of this final 𝑞, obtaining 𝑝 and then
multiply it with 𝑞, obtaining 𝑓 (𝑝, 𝑞), which is what we’re meant to find, so
the property cannot fail when 𝑄 is of length one. It follows that 𝑄 must of
length greater than one. Let 𝑅 be the list consisting of all but the last item
in 𝑄 and let 𝑠 be the last item. Let 𝑟 be the leftmost product of 𝑅. Then

𝑞 = 𝑓 (𝑟, 𝑠)

so
𝑓 (𝑝, 𝑞) = 𝑓 (𝑝, 𝑓 (𝑟, 𝑠))

and hence, by the associativity property,

𝑓 (𝑝, 𝑞) = 𝑓 (𝑓 (𝑝, 𝑟), 𝑠).

Now 𝑅 and (𝑠) are shorter then 𝑄 and 𝑄 is a list of the least length forwhich
the product of the leftmost products is not the leftmost product so 𝑓 (𝑝, 𝑟)
is the leftmost product of the concatenation of 𝑃 and 𝑅. and 𝑓 (𝑓 (𝑝, 𝑟), 𝑠) is
the leftmost product of the concatenation of that list with (𝑠), which is the
concatenation of 𝑃 with 𝑄. In other words 𝑓 (𝑝, 𝑞) is the leftmost product
of the concatenation of 𝑃 with 𝑄. We’ve just seen that even if we assume
we have a counterexample to the statement that the product of the leftmost
products is the leftmost product of the concatenation then we find out that
it isn’t one. There therefore isn’t a counterexample. This concludes the
proof of the special case.
We can now continue to the proof of the general case. Suppose there is a
product of a list which is not equal to the leftmost product. There must
then be a shortest such list. We haven’t defined products for lists of length
zero and there’s only one possible product for a list of length one so our
list must be of length greater than one and so must be of the form 𝑓 (𝑝, 𝑞)
where 𝑃 and 𝑄 are lists whose concatenation is this list and 𝑝 and 𝑞 are
some products of 𝑃 and 𝑄. But 𝑃 and 𝑄 are shorter than the whole list and
so any product for them is equal to the leftmost product. The previous
paragraph therefore shows that 𝑓 (𝑝, 𝑞) is equal to the leftmost product of
the concatenation of 𝑃 and 𝑄, which is the list we started with. So again,
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even if we assume the existence of a counterexample we find that it isn’t
one.
So now any two products for a list are equal to the leftmost product and
therefore equal to each other, and therefore all products for a list are equal.
We can therefore forget about the order of products in a semigroup.

Identity elements, monoids
Suppose (𝐴, 𝑓 ) is a semigroup, i.e. that 𝑓 is an associative binary operation
on the set 𝐴. A member 𝑖 of 𝐴 is said to be an identity element if for all
𝑥 ∈ 𝐴 we have

𝑓 (𝑖, 𝑥) = 𝑥
and

𝑓 (𝑥, 𝑖) = 𝑥.
Going back to our earlier examples of associative operations we can see
that all but one of them have identity elements.

• ∧ on Boolean truth values: the value false is an identity element.
• ∨ on Boolean truth values: the value true is an identity element.
• + on the natural numbers: 0 is an identity element.
• · on the natural numbers: 1 is an identity element.
• themaximumoperation on natural numbers: 0 is an identity element.
• the minimum operation on natural numbers: there is no identity ele-

ment.
• ⋂ on the power set of a given set: the whole set is an identity element.
• ⋃ on the power set of a given set: the empty set is an identity element.
• ∘ on the set of functions from a given set to itself: the identity function

is an identity element.
• ∘ on the set of relations on a given setf: the identity function is an

identity element.
• the concatenation operation on lists all of whose items belong to a

given set: the empty list is an identity element.
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For the ones which do have an identity element it’s straightforward in each
case to see that the given element is indeed an identity. For the minimum
the non-existence of an identity is the statement that there is no natural
number 𝑖 such that

min(𝑖, 𝑥) = 𝑥
and

min(𝑥, 𝑖) = 𝑥
for all 𝑥, which is clear because the equations above would fail for 𝑥 = 𝑖 + 1.
I’ve referred to an identity rather than the identity above to allow for the
possibility that there might be more than one, but in fact this can’t happen.
Suppose 𝑖 and 𝑗 are identity elements. Then

𝑓 (𝑖, 𝑗) = 𝑗
because 𝑖 is an identity and

𝑓 (𝑖, 𝑗) = 𝑖
because 𝑗 is an identity so

𝑖 = 𝑗.

A semigroup with an identity element is called a monoid, so all the semi-
groups listed above, except for theminimumoperation on the natural num-
bers, are monoids.
A subsemigroup of a monoid which contains the identity element is also a
monoid, with the operation being the restriction of the original operation
and the identity being the identity from the larger monoid. The subsemi-
group is then called a submonoid. The set of even natural numbers, con-
sidered earlier as a subsemigroup of the natural numbers, is a submonoid.
Not all subsemigroups of a monoid are submonoids though.
Another example of a monoid is what’s called the bicyclic semigroup. The
set in this case is the set 𝑁2 of ordered pairs of natural numbers and the
binary operation is

𝑓 ((𝑎, 𝑏), (𝑐, 𝑑)) = (𝑎 + 𝑐 − min(𝑏, 𝑐), 𝑏 + 𝑑 − min(𝑏, 𝑐)).
I will skip the straightforward but tedious verification that this operation
is associative and therefore that this is a semigroup. It is not commutative
since

𝑓 ((0, 1), (1, 0)) = (0, 0)
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while
𝑓 ((1, 0), (0, 1)) = (1, 1).

We have
𝑓 ((0, 0), (𝑥, 𝑦)) = (𝑥, 𝑦)

and
𝑓 ((𝑥, 𝑦), (0, 0)) = (𝑥, 𝑦)

for all (𝑥, 𝑦) so (0, 0) is an identity element. This is therefore not just a
semigroup but a monoid. It would make more sense therefore to refer to
it as the bicyclic monoid, but for historical reasons it is referred to as the
bicyclic semigroup. That name isn’t wrong, since it is a semigroup, but it’s
imprecise.

Inverse elements and groups
Suppose (𝐴, 𝑓 ) is a monoid with identity element 𝑖. 𝑦 ∈ 𝐴 is said to be an
inverse to 𝑥 ∈ 𝐴 if

𝑓 (𝑥, 𝑦) = 𝑖
and

𝑓 (𝑦, 𝑥) = 𝑖
and 𝑥 is then said to be invertible. It’s immediate from the definition that
𝑦 is an an inverse to 𝑥 if and only if 𝑥 is an inverse to 𝑦. Also, the identity
element is its own inverse.
As previously with identity elements I’ve deliberately written “an” rather
than “the” to allow for the possibility that there might be more than one
but we can show that this can’t happen. Suppose 𝑦 and 𝑧 are inverses to 𝑥.
Then we have the following equations:

𝑓 (𝑦, 𝑖) = 𝑦,

𝑓 (𝑥, 𝑧) = 𝑖,
𝑓 (𝑦, 𝑓 (𝑥, 𝑧)) = 𝑦,

𝑓 (𝑦, 𝑓 (𝑥, 𝑧)) = 𝑓 (𝑓 (𝑦, 𝑥), 𝑧),
𝑦 = 𝑓 (𝑓 (𝑦, 𝑥), 𝑧),

𝑓 (𝑦, 𝑥) = 𝑖,
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𝑦 = 𝑓 (𝑖, 𝑧),
𝑓 (𝑖, 𝑧) = 𝑧,

𝑦 = 𝑧.
Each equation in this chain is one of the following: substitution one of two
equal values for the other, the definition of an identity element applied to
𝑖, the definition of an inverse applied to 𝑦 or to 𝑧, or the associativity of 𝑓 .
We can go through our list of monoids and identify the invertible elements,
if any, and their inverses. In almost all cases the only invertible element is
the identity. The only exception is ∘ on the set of functions from a given set
to itself, or on the set of relations on a set, where the identity function is
the identity element and the bijective functions are the invertible elements.
The inverse of a function is the inverse function.
In the case of the addition operation on the natural numbers we can extend
the operation to a larger monoid in such a way that every element acquires
an inverse. The larger monoid in this case is the set of integers and the
inverse of 𝑥 is just −𝑥. In the other examples this is not possible, though
this is easier to see in some cases than in others.
If 𝑎 and 𝑏 are invertible elements of a monoid (𝐴, 𝑓 ) 𝑓 (𝑎, 𝑏) is also invertible.
More precisely, let 𝑐 be the inverse of 𝑎 and 𝑑 the inverse of 𝑏. Then 𝑓 (𝑑, 𝑐)
is an inverse of 𝑓 (𝑎, 𝑏). The proof is as follows.

𝑓 (𝑓 (𝑎, 𝑏), 𝑓 (𝑑, 𝑐)) = 𝑓 (𝑎, 𝑓 (𝑏, 𝑓 (𝑑, 𝑐)),

𝑓 (𝑎, 𝑓 (𝑏, 𝑓 (𝑑, 𝑐)) = 𝑓 (𝑎, 𝑓 (𝑓 (𝑏, 𝑑), 𝑐)),
𝑓 (𝑎, 𝑓 (𝑓 (𝑏, 𝑑), 𝑐)) = 𝑓 (𝑎, 𝑓 (𝑖, 𝑐)),

𝑓 (𝑎, 𝑓 (𝑖, 𝑐)) = 𝑓 (𝑎, 𝑐),
and

𝑓 (𝑎, 𝑐) = 𝑖,
so

𝑓 (𝑓 (𝑎, 𝑏), 𝑓 (𝑑, 𝑐)) = 𝑖.
The same argument, with 𝑎 and 𝑑 swapped and 𝑏 and 𝑐 swapped gives

𝑓 (𝑓 (𝑑, 𝑐), 𝑓 (𝑎, 𝑏)) = 𝑖.
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A monoid where every element is invertible is called a group.
Given a monoid the set of invertible elements has, as we just saw, the prop-
erty that 𝑓 (𝑎, 𝑏) is a member if 𝑎 and 𝑏 are, and so is a subsemigroup. It
has the identity as a member and so is a submonoid, and in particular is a
monoid. Every element is invertible so it’s actually a group.
A subset of a group is called a subgroup if it is a submonoid and has the
property that if 𝑥 is a member then so is the inverse of 𝑥. A subgroup is, as
the name suggests, a group.
In all but one of the examples of monoids considered above the set of in-
vertible elements is a trivial group, i.e. a groupwith no elements other than
the identity. The exception is the monoid of functions from a set to itself,
where we get the group of bijective functions on that set. In the impor-
tant special case where the set is finite the group is called a permutation
group. If the set on which our functions are defined had 𝑛 elements then
the corresponding permutation group has 𝑛! elements.
Other important examples of groups are the integers, with the operation
of addition, or the non-zero rationals, with the operation of multiplication,
or the set of invertible matrices with a given number of rows and columns,
with the operation of matrix multiplication. Another example of a group
is the set of rigid motions of Euclidean space, i.e. the set of rotations, reflec-
tions, translations and the identity.
One common source of groups is symmetries of some structure. For ex-
ample the set of isomorphisms of a graph is a group, with composition
as the operation and the identity function as the identity. The permuta-
tion groups arise in this way, as the isomorphism groups of the complete
graphs.

Homomorphisms
Suppose (𝐴, 𝑓 ) and (𝐵, 𝑔) are semigroups. A function ℎ from 𝐴 to 𝐵 is called
a semigroup homomorphism if it has the property that

𝑔(ℎ(𝑥), ℎ(𝑦)) = ℎ(𝑓 (𝑥, 𝑦))

for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐴.
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A semigroup homomorphism need not be a bijective function but if it is
then its inverse function is also a semigroup homomorphism. In this case
it’s called a semigroup isomorphism and the two semigroups are called
isomorphic. In the particular case where both semigroups are the same
the isomorphisms are called automorphisms.
If𝐵 is a subsemigroupof𝐴 and 𝑔 is the restriction of 𝑓 to𝐵 then the inclusion
function is a semigroup homomorphism.
For a less trivial example, consider the natural numbers 𝑁, with maximum
as the operation, and the bicyclic semigroup 𝑁2 considered earlier. Then
the function ℎ defined by

ℎ(𝑥) = (𝑥, 𝑥)
is a semigroup homomorphism, since you can easily check that if 𝑔 is the
operation defined earlier,

𝑔((𝑎, 𝑏), (𝑐, 𝑑)) = (𝑎 + 𝑐 − min(𝑏, 𝑐), 𝑏 + 𝑑 − min(𝑏, 𝑐)),

then
𝑔((𝑥, 𝑥), (𝑦, 𝑦)) = (max(𝑥, 𝑦),max(𝑥, 𝑦)).

Suppose (𝐴, 𝑓 ) and (𝐵, 𝑔) are monoids. A function ℎ from 𝐴 to 𝐵 is called a
monoid homomorphism if it is a semigroup homomorphism and ℎ(𝑖) = 𝑗,
where 𝑖 is the identity element of (𝐴, 𝑓 ) and 𝑗 is the identity element of
(𝐵, 𝑔).
A monoid homomorphism need not be a bijective function but if it is then
its inverse function is also amonoid homomorphism. In this case it’s called
a monoid isomorphism and the twomonoids are called isomorphic. In the
particular case where both monoids are the same the isomorphisms are
called automorphisms.
The inclusion of submonoid in a monoid is a monoid homomorphism.
The semigroup homomorphism from the natural numbers to the bicyclic
monoid considered above is amonoid homomorphism sincewe’ve already
seen that it’s a semigroup homeomorphism and we have ℎ(0) = (0, 0).
Another example of a monoid homomorphism is the length function on
lists of items in a given set. This is a homomorphism from the set of lists,
with the operation of concatenation, to the set of natural numbers, with the
addition operation.
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Suppose (𝐴, 𝑓 ) and (𝐵, 𝑔) are groups. A function ℎ from 𝐴 to 𝐵 is called a
group homomorphism if it is a monoid homomorphism. One could add
the condition that ℎ takes inverses to inverses but that’s redundant.
A group homomorphism need not be a bijective function but if it is then its
inverse function is also a group homomorphism. In this case it’s called a
group isomorphism and the two groups are called isomorphic. In the par-
ticular case where both groups are the same the isomorphisms are called
automorphisms.
Note that the sets of semigroup automorphisms of a semigroup, monoid
automorphisms of a monoid and group automorphisms of a group are all
groups.

Quotients
Suppose (𝐴, 𝑓 ) is a semigroup and 𝑅 is an equivalence relation on 𝐴 with
the property that if

(𝑢, 𝑥) ∈ 𝑅
and

(𝑣, 𝑦) ∈ 𝑅
then

(𝑓 (𝑢, 𝑣), 𝑓 (𝑥, 𝑦)) ∈ 𝑅.
Let 𝐵 be the set of equivalence classes for the relation 𝑅. Let 𝐻 be the set
of (𝑥, 𝐶) ∈ 𝐴 × 𝐶 such that 𝑥 ∈ 𝐶. Each member of 𝐴 is a member of an
equivalence class so 𝐻 is left total. Every member of 𝐴 is a member of
only one equivalence class so 𝐻 is right unique. In other words 𝐻 is a func-
tion. This means it’s safe to use standard functional notation so I’ll write
𝐶 = ℎ(𝑥) in place of (𝑥, 𝐶) ∈ 𝐻 or 𝑥 ∈ 𝐶 from now on. Let 𝐺 be the relation
from 𝐵2 to 𝐵 consisting of those ((𝐶, 𝐷), 𝐸) ∈ 𝐵2 × 𝐸 for which there are
𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 and 𝑧 ∈ 𝐸 with 𝑧 = 𝑓 (𝑥, 𝑦). For any (𝐶, 𝐷) ∈ 𝐵2 we can find
𝑥 ∈ 𝐶 and 𝑦 ∈ 𝐷 since 𝑅 is an equivalence relation. Setting 𝑧 = 𝑓 (𝑥, 𝑦) and
𝐸 = ℎ(𝑧) we have ((𝐶, 𝐷), 𝐸) ∈ 𝐺, so 𝐺 is left total. Suppose ((𝐶, 𝐷), 𝐸) ∈ 𝐺
and ((𝐶, 𝐷), 𝐹) ∈ 𝐺. The fact that ((𝐶, 𝐷), 𝐸) ∈ 𝐺 means there are 𝑢 ∈ 𝐶,
𝑣 ∈ 𝐷 and 𝑤 ∈ 𝐸 such that 𝑤 = 𝑓 (𝑢, 𝑣) and the fact that ((𝐶, 𝐷), 𝐹) ∈ 𝐺
means there are 𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 and 𝑧 ∈ 𝐹 such that 𝑧 = 𝑓 (𝑥, 𝑦). Since 𝑢 ∈ 𝐶
and 𝑥 ∈ 𝐶 we have (𝑢, 𝑥) ∈ 𝑅 by the definition of an equivalence class. Sim-
ilarly, (𝑣, 𝑦) ∈ 𝑅. Because our assumptions about 𝑓 and 𝑅 we then have
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(𝑓 (𝑢, 𝑣), 𝑓 (𝑥, 𝑦)) ∈ 𝑅, i.e. (𝑤, 𝑧) ∈ 𝑅. Since 𝑤 ∈ 𝐸 and 𝑧 ∈ 𝐹 it then follows
from the definition of an equivalence class that 𝐸 = 𝐹. So if ((𝐶, 𝐷), 𝐸) ∈ 𝐺
and ((𝐶, 𝐷), 𝐹) ∈ 𝐺 then 𝐸 = 𝐹. In other words 𝐺 is right unique. We’ve al-
ready seen that it’s left total so its a function. As with 𝐻 I’ll now switch
to functional notation and write 𝐸 = ℎ(𝐶, 𝐷) in place of ((𝐶, 𝐷), 𝐸) ∈ 𝐺
from now on. For any members 𝑥 and 𝑦 of 𝐴 if we set 𝑧 = 𝑓 (𝑥, 𝑦) then
((ℎ(𝑥), ℎ(𝑦)), ℎ(𝑧)) ∈ 𝐺, or, in functional notation ℎ(𝑧) = 𝑔(ℎ(𝑥), ℎ(𝑦)). We
can write this as

ℎ(𝑓 (𝑥, 𝑦)) = 𝑔(ℎ(𝑥), ℎ(𝑦)).
This equation is the one which appeared in the definition of a semigroup
homomorphism.
Functions from 𝐵2 to 𝐵 are binary operations on 𝐵 so 𝐺 is a binary opera-
tion. I claim that it’s associative. Suppose 𝐶, 𝐷 and 𝐸 are members of 𝐵.
Equivalence classes are always non-empty so there are members 𝑥, 𝑦 and 𝑧
of 𝐴 such that 𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 and 𝑧 ∈ 𝐸. By the associativity of 𝑓 we have

𝑓 (𝑓 (𝑥, 𝑦), 𝑧) = 𝑓 (𝑥, 𝑓 (𝑦, 𝑧)),

from which it follows that

ℎ(𝑓 (𝑓 (𝑥, 𝑦), 𝑧)) = ℎ(𝑓 (𝑥, 𝑓 (𝑦, 𝑧))).

Now
ℎ(𝑓 (𝑓 (𝑥, 𝑦), 𝑧)) = 𝑔(ℎ(𝑓 (𝑥, 𝑦)), 𝑔(𝑧))

and
ℎ(𝑓 (𝑥, 𝑦)) = 𝑔(ℎ(𝑥), ℎ(𝑦))

so
ℎ(𝑓 (𝑓 (𝑥, 𝑦), 𝑧)) = 𝑔(𝑔(ℎ(𝑥), ℎ(𝑦)), ℎ(𝑧)).

Also, ℎ(𝑥) = 𝐶, ℎ(𝑦) = 𝐷 and ℎ(𝑧) = 𝐸, so

ℎ(𝑓 (𝑓 (𝑥, 𝑦), 𝑧)) = 𝑔(𝑔(𝐶, 𝐷), 𝐸).

A very similar argument shows that

ℎ(𝑓 (𝑓 (𝑥, 𝑦), 𝑧)) = 𝑔(𝐶, 𝑔(𝐷, 𝐸)).

We therefore have

𝑔(𝑔(𝐶, 𝐷), 𝐸) = 𝑔(𝐶, 𝑔(𝐷, 𝐸)).
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In other words, 𝑔 is an associative operation on 𝐵 and (𝐵, 𝑔) is a semigroup.
The semigroup (𝐵, 𝑔) is called the quotient of the semigroup (𝐴, 𝑓 ) by the
equivalence relation 𝑅. We’ve already seen that

ℎ(𝑓 (𝑥, 𝑦)) = 𝑔(ℎ(𝑥), ℎ(𝑦))

so ℎ is a semigroup homomorphism.
It is straightforward to check that if 𝑖 is an identity for (𝐴, 𝑓 ) then 𝑗 = ℎ(𝑖) is
an identity for (𝐵, 𝑔). To see this, suppose 𝐶 ∈ 𝐵. Equivalence classes are
non-empty subsets so there is an 𝑥 ∈ 𝐶, i.e. an 𝑥 ∈ 𝐴 such that 𝑥 ∈ 𝐶. Then

𝑔(𝐶, 𝑗) = 𝑔(ℎ(𝑥), ℎ(𝑖)),

𝑔(ℎ(𝑥), ℎ(𝑖)) = ℎ(𝑓 (𝑥, 𝑖)),
𝑓 (𝑥, 𝑖) = 𝑥

and
ℎ(𝑥) = 𝐶

so
𝑔(𝐶, 𝑗) = 𝐶.

A similar argument shows that 𝑔(𝑗, 𝐶) = 𝐶, so 𝑗 is an identity for (𝐵, 𝑔). So
if (𝐴, 𝑓 ) is a monoid then (𝐵, 𝑔) is also a monoid and ℎ is a monoid homo-
morphism.
Suppose (𝐴, 𝑓 ) is a group. If 𝐶 ∈ 𝐵 then there is an 𝑥 ∈ 𝐶, i.e. an 𝑥 such that
ℎ(𝑥) = 𝐶. Every element of a group is invertible so there is a 𝑦 ∈ 𝐴 which
is an inverse of 𝑥. Then

𝑔(𝐶, ℎ(𝑦)) = 𝑔(ℎ(𝑥), ℎ(𝑦)),

𝑔(ℎ(𝑥), ℎ(𝑦)) = ℎ(𝑓 (𝑥, 𝑦))),
𝑓 (𝑥, 𝑦) = 𝑖,

and
ℎ(𝑖) = 𝑗

so
𝑔(𝐶, ℎ(𝑦)) = 𝑗
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and similarly 𝑔(ℎ(𝑦), 𝐶) = 𝑗 so ℎ(𝑦) is an inverse of 𝐶, which is therefore
invertible. 𝐶 was an arbitrary element of 𝐵 so every element of 𝐵 is is in-
vertible. In other words, (𝐵, 𝑔) is a group.
An argument similar to the two above shows that if 𝑓 is a commutative bi-
nary operation on 𝐴 then 𝑔 is a commutative binary operation on 𝐵, so if
(𝐴, 𝑓 ) is a commutative semigroup, monoid or group then (𝐵, 𝑔) is a com-
mutative semigroup, monoid or group.

Integers and rationals
I’ve referred to the integers informal and rationals a few times but haven’t
defined them. The usual construction is via equivalence classes, as above.
Consider the operation

𝑓 ((𝑎, 𝑏), (𝑐, 𝑑)) = (𝑎 + 𝑐, 𝑏 + 𝑑)

on 𝑁2. Note that this is a different operation than the one which I used in
defining the bicyclic semigroup.
We can define an equivalence relation 𝑅 on 𝑁2 by ((𝑎, 𝑏), (𝑐, 𝑑)) ∈ 𝑅 if and
only if 𝑎 + 𝑑 = 𝑏 + 𝑐. It is straightforward to show that this equivalence
relation is compatible in the sense we considered in the previous section so
the equivalence classes form a commutative monoid. This monoid turns
out to be a group, even though 𝑁2 itself is not a group. The inverse element
to (𝑎, 𝑏) is (𝑏, 𝑎). This is easily verified because

𝑓 ((𝑎, 𝑏), (𝑏, 𝑎)) = (𝑎 + 𝑏, 𝑏 + 𝑎)

and
((𝑎 + 𝑏, 𝑏 + 𝑎), (0, 0)) ∈ 𝑅.

The group of these equivalence classes is called the integers. The function
𝑔 is just addition. The function ℎ is just ℎ(𝑎, 𝑏) = 𝑎 − 𝑏. Of course to make
this look like the integers we need not just addition but also subtraction
and multiplication, and also our ≤ relation. We don’t need to, and indeed
can’t, define = because it’s already defined. Equivalence classes are sets
and equality of sets is determined by the Axiom of Extensionality. Sub-
traction is defined by adding the inverse.
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Multiplication is more complicated. One would like to define it via the
equation

(𝑎 − 𝑏) · (𝑐 − 𝑑) = [(𝑎 · 𝑐) + (𝑏 · 𝑑)] − [(𝑎 · 𝑑) + (𝑏 · 𝑐)]

which in terms of ℎ is

ℎ(𝑎, 𝑏) · ℎ(𝑐, 𝑑) = ℎ((𝑎 · 𝑐) + (𝑏 · 𝑑), (𝑎 · 𝑑) + (𝑏 · 𝑐)).

This isn’t quite suitable as a definition though. What we really need to
do is to define 𝑥 · 𝑦 where 𝑥 and 𝑦 are equivalence classes. There certainly
are 𝑎 and 𝑏 such that ℎ(𝑎, 𝑏) = 𝑥 but there are many such pairs (𝑎, 𝑏). For
example ℎ(𝑎 + 1, 𝑏 + 1) = 𝑥. We need a definition in terms of 𝑥 itself, not
a particular element of the equivalence class. I won’t give the details, but
the idea is similar to the way we defined the 𝑔 in terms of 𝐺 in the previous
section. One first defines a binary relation and then shows that it is left
total and right unique and so defines a function.
The procedure for the ≤ relation is similar. We would like to define it by
saying that

𝑎 − 𝑏 ≤ 𝑐 − 𝑑
i.e.

ℎ(𝑎, 𝑏) ≤ ℎ(𝑐, 𝑑)
if and only if

𝑎 + 𝑑 ≤ 𝑏 + 𝑐
but this doesn’twork because 𝑎 and 𝑏 are not uniquely determined by ℎ(𝑎, 𝑏)
and 𝑐 and 𝑑 are not uniquely determined by ℎ(𝑐, 𝑑). We can resolve this in
a similar way to the one used for multiplication though.
There is one thing which is quite strange about this implementation of the
integers though. The natural numbers should be a subset of the integers
but they aren’t. In this implementation integers are sets of ordered pairs of
natural numbers. The bestwe can do is to define amonoid homomorphism
𝑘 from the natural numbers to the integers, by

𝑘(𝑛) = ℎ((𝑛, 0)).

This is not just a monoid homomorphism but can be shown to preserve
multiplication and the ≤ relation as well, so in some sense the range of 𝑘
serves as an alternative implementation of the integers.
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The usual way to deal with this problem is to ignore it. If that makes you
uncomfortable then there are two more honest, but more complicated ap-
proaches. The first is declare that the range of 𝑘 is the set of natural numbers
and that the things we previously called natural numbers are a distinct set,
though one with the same behaviour as the true natural numbers, and that
the integers are defined in terms of this other set, and the true natural num-
bers are a subset of the integers. This shouldn’t be particularly alarming.
We already sawmultiple implementations of the natural numbers and this
is just another one. An alternative approach is to keep the natural numbers
unchanged but to define the integers differently, specifically as the union of
the natural numbers and the complement in the set of equivalence classes
above of the range of 𝑘. Operations on this new implementation of the inte-
gers have a more complicated definition. Essentially we take the operands,
apply 𝑘 to any which are natural numbers, apply the operation on equiv-
alence classes, check whether the result is in the range of 𝑘, and replace it
with 𝑛 if it’s 𝑘(𝑛). This is somewhat awkward but it works, in the sense that
it gives a set and operations which behave correctly and have the natural
numbers, as defined previously, as a subset.
Just aswe can construct the integers from the natural numbers by a quotient
construction we can construct the rationals from the integers. If 𝑍 is the
group of integers then we define a binary operation on 𝑍 × (𝑍 ∖ {0}) by

𝑓 ((𝑎, 𝑏), (𝑐, 𝑑)) = ((𝑎 · 𝑑) + (𝑏 · 𝑐), 𝑐 · 𝑑)

and an equivalence relation by

((𝑎, 𝑏), (𝑐, 𝑑)) ∈ 𝑅

if and only if
𝑎 · 𝑑 = 𝑏 · 𝑐.

These definitions are designed to make the homomorphism ℎ satisfy

ℎ(𝑎, 𝑏) = 𝑎/𝑏,

once we have defined division.
I will skip all the details of this construction. It does have an analogous
problem to the one we encountered earlier in this section though. The
integers are not a subset of the rationals. Again we can either choose to
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ignore the problem, or resolve it one of the ways discussed earlier, by re-
defining the integers or the rationals. As before this involves a homomor-
phism, this time from the integers to the rationals, which gives us an iso-
morphic copy of the integers in the rationals. This time the homomorphism
is 𝑘(𝑥) = ℎ(𝑥, 1).
More complicated number systems are developed in a similar way. The
construction of the real numbers from the rationals is particularly difficult
but there are a number of standardmethods andmost of them use the quo-
tient construction with some appropriate choice of group and equivalence
relation. Once you have the reals you can easily construct the complex
numbers, again by the quotient construction.

The power function
Suppose (𝐴, 𝑓 ) is a semigroup and 𝑥 ∈ 𝐴. Then there is a function from the
positive natural numbers to 𝐴 obtained by taking the product of 𝑛 copies
of 𝑥, with the convention discussed in an earlier section of using the word
“product” to denote the result of repeated applications of the binary op-
eration 𝑓 . We don’t need to specify the order because of the generalised
associativity property proved in that section. Addition is an associative op-
eration on the positive natural numbers, making them into a semigroup,
and this function is a semigroup homomorphism. The proof of this de-
pends on the generalised associativity property. This function is not gen-
erally written with functional notation but with exponential notation. The
value of the function corresponding to a particular 𝑥 at a positive natural
number 𝑛 is written 𝑥𝑛. The property that the function is a semigroup ho-
momorphism is, in this notation,

𝑓 (𝑥𝑚, 𝑥𝑛) = 𝑥𝑚+𝑛.

This notation is confusing in some examples. If, for example, the semi-
group in question is the natural numbers with the operation of addition
then 𝑥𝑛 is not in fact the number normally denoted by that expression but
rather is 𝑛 · 𝑥. If the operation is the maximum then 𝑥𝑛 is just 𝑥. With sets
and the operation of union or intersection 𝐴𝑛 would just be 𝐴, rather than
the set of lists of length 𝑛 of items in 𝐴. Unfortunately the exponential no-
tation is too well established to abolish entirely, but I’d suggest not using
it where it conflicts with an established notation.
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In a commutative semigroup it’s possible to prove, by induction on 𝑛, that
𝑓 (𝑥𝑛, 𝑦𝑛) = 𝑓 (𝑥, 𝑦)𝑛. This is not generally true in a noncommutative semi-
group though.
If our semigroup is a monoid then we can extend the function described
above from the positive natural numbers to all natural numbers by defining
𝑥0 to be the identity. The resulting extension is a monoid homomorphism.
If the monoid is a group then we can extend it still further, by defining
𝑥−𝑛 to by 𝑦𝑛 where 𝑦 is the inverse of 𝑥. This extended function is a group
homomorphism. In this case we have the useful relation

𝑓 (𝑥, 𝑦)−1 = 𝑓 (𝑦−1, 𝑥−1).

Note the reversal of the order of the arguments. This identity was in fact
proved earlier, but in a different notation, in the course of proving that the
product of invertible elements is invertible.

Notation
If you only consider one semigroup, monoid or group, or if you consider
only a particular one and its subsemigroups, submonoids or subgroups,
then it’s convenient to use infix notation, with either · or an empty string
rather than functional notation. This makes some of the equations above
look more familiar.

𝑓 (𝑥𝑚, 𝑥𝑛) = 𝑥𝑚+𝑛,
for example, becomes

𝑥𝑚 · 𝑥𝑛 = 𝑥𝑚+𝑛

or just
𝑥𝑚𝑥𝑛 = 𝑥𝑚+𝑛.

Also, because of the generalised associativity property, we don’t need
parentheses to indicate the order of operations, sowe canwrite expressions
like

𝑥𝑦𝑥−1𝑦−1

without specifying which of the five possible orders of operations are in-
tended. When using this notation there are two different conventions for
the identity element. Some authors use 1 and some use 𝑒.
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This notation is less cumbersome than functional notation, and much less
cumbersome than the relational notation from the set theory chapter, but
it can be confusing in two situations. One is where we have multiple semi-
groups, each with its own binary operation. The other is where symbols
like · or 1 have previously established meanings which conflict with the
usage here, as when discussing the integers with their additive structure.

Regular languages
An important category of languages is the regular languages. These can
be characterised in a variety of ways, via regular grammars, finite state
automata, regular expressions, or syntactic monoids. It’s important to un-
derstand all of these points of view because often a problem which is hard
to solve using one description is easy in another.
To simplify things all of our examples in this chapter will be languages
where the tokens are single characters and we’ll write lists of tokens as
strings. When writing grammars each terminal symbol will have only a
single token, i.e. character, and will be denoted by that character. The char-
acters ‘%’, ‘:’, ‘|’, and ‘;’, which have a special meaning in our language for
describing languages, will not be tokens in any of our example languages,
nor will any whitespace characters. Non-terminal symbols will always be
denoted by a string more than one character long. These aren’t limitations
imposed by the theory, just ways of making the examples easier for you to
read.
List of characters are strings. Because all tokens in our examples are char-
acters all lists of tokens are strings. Strings are more familiar than lists of
tokens so I’ll often refer to them as strings when doing examples. I may
occasionally make the mistake of referring to strings rather than lists of
tokens in the general theory as well.

Regular grammars
Definitions of regular grammars vary but usually it’s fairly easy to convert
a grammar satisfying one definition to one satisfying another which gener-
ates the same language. I’ll use the following definitions.
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A left regular grammar is a phrase structure grammar where
• each alternate in the rule for the start symbol is a single non-terminal

symbol,
• the start symbol never appears on the right hand side of a rule, and
• each alternate in the rule for any other non-terminal symbol is either

empty or is a single non-terminal symbol followed by a single termi-
nal symbol.

A right regular grammar is a phrase structure grammar where
• each alternate in the rule for the start symbol is a single non-terminal

symbol,
• the start symbol never appears on the right hand side of a rule, and
• each alternate in the rule for any other non-terminal symbol is ei-

ther empty or is a single terminal symbol followed by a single non-
terminal symbol.

A simple, but not terribly useful, language is the language of any number
of x’s followed by any number of y’s. Here “any number” includes zero,
so the empty string, for example, belongs to this language. A left regular
grammar for this language is
%start weird

%%

weird : xxyy
;

xxyy : | xxyy y | xx x
;

xx : | xx x | error y
;

error : error x | error y
;

The symbols xxyy and xx have the empty string as a possible expansion.
The symbols start and error do not. The symbol error is not actually capa-
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ble of generating any strings. Whenever we expand it we get another error
symbol. The symbol xx can generate a string with any number of x’s, in-
cluding zero. The symbol xxyy can generate any string with x’s followed
by y’s.
A right regular grammar for the same language is
%start weird

%%

weird : xxyy
;

xxyy : | x xxyy | y yy
;

yy : | y yy | x error
;

error : x error | y error
;

A more complicated, but more interesting, example is the language of dec-
imal representations of integers, normalised in the usual way, i.e. there are
no leading zeroes except for the integer 0, there is at most one leading −
sign, no + sign, and there is no −0. We can write a right regular grammar
for this language as follows:
%start integer

%%

integer : zero | pos_int | neg_int
;

zero : 0 empty
;

empty :
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;

neg_int : - pos_int
;

pos_int : 1 digits | 2 digits | 3 digits
| 4 digits | 5 digits | 6 digits
| 7 digits | 8 digits | 9 digits
;

digits : | 0 digits
| 1 digits | 2 digits | 3 digits
| 4 digits | 5 digits | 6 digits
| 7 digits | 8 digits | 9 digits
;

and a left regular grammar for the same language is
integer : zero | nonzero

;

zero : empty 0
;

nonzero : nonzero 0 | nonzero 1 | nonzero 2 | nonzero 3 | nonzero 4
| nonzero 5 | nonzero 6 | nonzero 7 | nonzero 8 | nonzero 9
| head 1 | head 2 | head 3 | head 4 | head 5
| head 6 | head 7 | head 8 | head 9
;

head : | empty -
;

empty :
;

Both of these languages have both a left regular grammar and a right regu-
lar grammar. In fact every language which has a left regular grammar also
has a right regular grammar and vice versa, but we’re not yet in a position
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to prove this.

Closure properties
We can construct complicated languages from simpler languages in a vari-
ety of ways. It’s useful to be able to construct a grammar for the more com-
plicated language from grammars for the simpler languages from which
it’s built.

Unions

Languages are sets of lists. As sets it makes sense to talk about unions, in-
tersections and relative complements. The union of two languages is again
a language, as is the intersection or relative complement. Given left regu-
lar grammars for a pair of languages can we give a left regular grammar
for their union? For the intersection? For the relative complement? The
answer in each case is yes, but this is only easy to do for the union. We just
need to create a new rule for the start symbol, which includes all the alter-
nates for the start symbols of the original two languages, and copy all the
rule for the other symbols, changing names if necessary to avoid duplicates.
So the union of the two languages above has the grammar
%start union

%%

union : xxyy | zero | pos_int | neg_int
;

xxyy : | xxyy y | xx x
;

xx : | xx x | error y
;

error : error x | error y
;
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zero : 0
;

neg_int : - pos_int
;

pos_int : 1 digits | 2 digits | 3 digits
| 4 digits | 5 digits | 6 digits
| 7 digits | 8 digits | 9 digits
;

digits : | 0 digits
| 1 digits | 2 digits | 3 digits
| 4 digits | 5 digits | 6 digits
| 7 digits | 8 digits | 9 digits
;

Of course the same remarks apply to right regular grammars as well. The
union of two languages with right regular grammars has a right regular
grammar. Also, the construction above is easily adapted to the union of
finitely many languages.

Concatenation

We can also define a language whose members are the concatenation of a
member of the first language and a member of the second. As with the
union, we can construct a grammar for this new language from grammars
for the two old languages by a purely mechanical procedure, though this
time it’s rather more complicated. It may be easiest to understand the pro-
cedure through examples. Consider, then, the language consisting of inte-
gers followed by some number of x’s and then some number of y’s.
We can start from our right regular grammar for the integers. Instead of
an empty string at the end the of the input we should now have a string in
the xy language, so we replace the empty alternatives in the right regular
grammar for integers with the start symbol in the right regular grammar
for the xy language.
%start intxxyy
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%%

intxxyy : zero | pos_int | neg_int
;

zero : 0
;

neg_int : - pos_int
;

pos_int : 1 digits | 2 digits | 3 digits
| 4 digits | 5 digits | 6 digits
| 7 digits | 8 digits | 9 digits
;

digits : weird | 0 digits
| 1 digits | 2 digits | 3 digits
| 4 digits | 5 digits | 6 digits
| 7 digits | 8 digits | 9 digits
;

In this case there was only empty alternative, in the rule for the digits
symbol. I haven’t added in the rules from the xxyy grammar yet because
we have a problem. weird is a non-terminal symbol and digits is also
a non-terminal symbol, but the alternatives in a rule for a non-terminal
symbol in a right regular grammar should be empty or a terminal followed
by a non-terminal. As a first step to fixing this we need to replace weird by
its possible expansions.
digits : xxyy | 0 digits

| 1 digits | 2 digits | 3 digits
| 4 digits | 5 digits | 6 digits
| 7 digits | 8 digits | 9 digits
;

There was in fact only one alternate, namely xxyy. This also isn’t suitable
as an alternate in a rule for a non-terminal symbol so we need to replace it

225



by it’s possible expansions.
digits : | x xxyy | y yy | 0 digits

| 1 digits | 2 digits | 3 digits
| 4 digits | 5 digits | 6 digits
| 7 digits | 8 digits | 9 digits
;

Now we have a rule of the required form. We need to include more rules
from the right regular grammar for the xy language so we can expand the
symbols xxyy and yy. The complete grammar for the concatenation lan-
guage is
%start intxxyy

%%

intxxyy : zero | pos_int | neg_int
;

zero : 0
;

neg_int : - pos_int
;

pos_int : 1 digits | 2 digits | 3 digits
| 4 digits | 5 digits | 6 digits
| 7 digits | 8 digits | 9 digits
;

digits : | x xxyy | y yy | 0 digits
| 1 digits | 2 digits | 3 digits
| 4 digits | 5 digits | 6 digits
| 7 digits | 8 digits | 9 digits
;

xxyy : | x xxyy | y yy
;

226



yy : | y yy | x error
;

error : x error | y error
;

We can also construct a left regular grammar for this concatenation lan-
guage from the left regular grammars for the integer language and the xy
language. This time we start from the left regular grammar for the xy lan-
guage and replace the empty alternateswith the start symbol for the integer
language.
%start intxxyy

%%

intxxyy : xxyy
;

xxyy : integer | xxyy y | xx x
;

xx : integer | xx x | error y
;

error : error x | error y
;

This grammar is not of the required form though so we need to replace in-
teger by its possible expansions. Those rules will still not be be of required
form, so we replace those replacements. The new rules for xxyy and xx are
then
xxyy : zero | nonzero | xxyy y | xx x

;

xx : zero | nonzero | xx x | error y
;
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Those ruleswill still not be be of required form, sowe replace those replace-
ments. The new rules for xxyy and xx are then
xxyy : empty 0 |

| nonzero 0 | nonzero 1 | nonzero 2 | nonzero 3 | nonzero 4
| nonzero 5 | nonzero 6 | nonzero 7 | nonzero 8 | nonzero 9
| head 1 | head 2 | head 3 | head 4 | head 5
| head 6 | head 7 | head 8 | head 9
| xxyy y | xx x
;

xx : empty 0 |
| nonzero 0 | nonzero 1 | nonzero 2 | nonzero 3 | nonzero 4
| nonzero 5 | nonzero 6 | nonzero 7 | nonzero 8 | nonzero 9
| head 1 | head 2 | head 3 | head 4 | head 5
| head 6 | head 7 | head 8 | head 9
| xx x | error y
;

The full grammar is then
%start intxxyy

%%

intxxyy : xxyy
;

xxyy : empty 0 |
| nonzero 0 | nonzero 1 | nonzero 2 | nonzero 3 | nonzero 4
| nonzero 5 | nonzero 6 | nonzero 7 | nonzero 8 | nonzero 9
| head 1 | head 2 | head 3 | head 4 | head 5
| head 6 | head 7 | head 8 | head 9
| xxyy y | xx x
;

xx : empty 0 |
| nonzero 0 | nonzero 1 | nonzero 2 | nonzero 3 | nonzero 4
| nonzero 5 | nonzero 6 | nonzero 7 | nonzero 8 | nonzero 9
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| head 1 | head 2 | head 3 | head 4 | head 5
| head 6 | head 7 | head 8 | head 9
| xx x | error y
;

error : error x | error y
;

head : | empty -
;

empty :
;

The general procedure constructing a grammar for the concatenation lan-
guage from the grammars for a pair of languages is as follows.

• Rename symbols to avoid name conflicts between the two grammars.
Optionally rename other symbols for clarity.

• If we’re constructing a left regular grammar start from a left regular
grammar for the right element of the pair of languages. If we’re con-
structing a right regular grammar start from a right regular grammar
for the left element of the pair of languages.

• Replace all empty alternates with all alternates for all alternates of
the start symbol in the other language.

• Add all rules from the other language other than the one for its start
symbol.

As a further example I’ll construct a right regular grammar for the concate-
nation of the xy language with itself. This time we’ll need the renaming
step mentioned above. We take two copies of the the right regular gram-
mar for the xy language.
%start weirdl

%%

weirdl : xxyyl
;
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xxyyl : | x xxyyl | y yyl
;

yyl : | y yyl | x errorl
;

errorl : x errorl | y errorl
;

and
%start weirdr

%%

weirdr : xxyyr
;

xxyyr : | x xxyyr | y yyr
;

yyr : | y yyr | x errorr
;

errorr : x errorr | y errorr
;

We’re constructing a right regular grammar so we start from the grammar
for the left language.
%start weirdl

%%

weirdl : xxyyl
;

xxyyl : | x xxyyl | y yyl
;
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yyl : | y yyl | x errorl
;

errorl : x errorl | y errorl
;

We then replace both empty alternates with weirdr and then replace that
with xxyyr and then that with | x xxyyr | y yyr.
%start weirdl

%%

weirdl : xxyyl
;

xxyyl : | x xxyyr | y yyr | x xxyyl | y yyl
;

yyl : | x xxyyr | y yyr | y yyl | x errorl
;

errorl : x errorl | y errorl
;

Then we add in rules from the other language.
%start weirdl

%%

weirdl : xxyyl
;

xxyyl : | x xxyyr | y yyr | x xxyyl | y yyl
;

yyl : | x xxyyr | y yyr | y yyl | x errorl
;
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errorl : x errorl | y errorl
;

xxyyr : | x xxyyr | y yyr
;

yyr : | y yyr | x errorr
;

errorr : x errorr | y errorr
;

It’s important to understandwhich languagewe’ve just constructed a gram-
mar for. A string is in this language if and only if it is the concatenation of
two strings in the xy language. Those two strings could be the same but
they don’t have to be. The question ofwhetherwe can construct a grammar
for the language of two repetitions of the same string is one we’ll return to
later.
Once we know how to construct a grammar for the concatenation of two
languages we can construct a grammar for the concatenation of finitely
many, by considering it at as a repeated concatenation.

Kleene star

Given a left or right regular grammar we can, using the techniques of the
preceding section, construct, for each positive number 𝑛, a grammar for the
language whose members are concatenations of 𝑛 members of the original
language. Of course we can can also do this for 𝑛 = 0. In this case the
language consists of only the empty list and it has the grammar
%start start

%%

start : empty
;

empty :
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;
We can also construct a grammar for the language of concatenations of
between 𝑚 and 𝑛 members of a language, for natural numbers 𝑚 and 𝑛,
using the union construction earlier. What’s less obvious is that we can
construct a grammar for the language of concatenations of arbitrarilymany
members of a language.
Given a language the Kleene star of the language is set of all lists which
can be found by concatenating arbitrarily many members of the language.
This includes the empty list. The Kleene plus of the language is the set of
lists which can be obtained by concatenating an arbitrary positive number
of members of the language. If the original language had the empty list as
a member then its Kleene star and Kleene plus are the same. If not then
the Kleene star has the empty set as a member while the Kleene plus does
not, but otherwise they are the same.
Given a regular grammar for a languagewe can find a regular grammar for
its Kleene plus by looking through its rules for occurrences of the empty list
and then adding alternates to any such rules. The alternates to be added
are the alternates of alternates of the start symbol. To get a grammar for
the the Kleene star we can apply our union construction discussed earlier
to the Kleene plus grammar and the grammar given above for the language
with just the empty list.
Applying the construction above to the xy language gives the following
right regular grammar for its Kleene plus
%start weird

%%

weird : xxyy
;

xxyy : | x xxyy | y yy
;

yy : | y yy | x error | x xxyy | y yy
;
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error : x error | y error
;

and the following grammar for its Kleene star
%start weird

%%

weird : xxyy | empty
;

xxyy : | x xxyy | y yy
;

yy : | y yy | x error | x xxyy | y yy
;

error : x error | y error
;

empty :
;

The constructions above are meant to show that regular grammars can be
constructed for these languages. They do not attempt to find efficient gram-
mars for them. For example, the Kleene star of the xy language is just the
set of all lists of x’s and y’s. A much simpler grammar for this language is
%start ksxy

%%

ksxy : xyxy
;

xyxy : | x xyxy | y xyxy
;
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Reversal

The reversal of a language is simply the set of the reversals of its members,
where the reversal of a list is the list with the same items in reverse order.
Given a left regular grammar for a language we can easily construct a right
regular grammar for its reversal and vice versa. We just take the alternates
in the rules for the grammar and reverse the order of the symbols. Here, for
example, is a right regular grammar for the reversed integers, constructed
from the left regular grammar for the integers.
integer : zero | nonzero

;

zero : 0 empty
;

nonzero : 0 nonzero | 1 nonzero | 2 nonzero | 3 nonzero | 4 nonzero
| 5 nonzero | 6 nonzero | 7 nonzero | 8 nonzero | 9 nonzero
| 1 head | 2 head | 3 head | 4 head | 5 head
| 6 head | 7 head | 8 head | 9 head
;

head : | - empty
;

empty :
;

What’s less clear is how to construct a left regular grammar for the reversal
from a left regular grammar for the original language or a right regular
grammar for the reversal from a regular regular grammar for the original.
This is a question we’ll return to later.

Finite state automata
What I’m going to call a finite state automaton is more typically called
a non-deterministic finite state automaton. Deterministic finite state au-
tomata, which will be considered in the next section, are a special case. I
won’t use the word non-deterministic except for emphasis. Unless a finite
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state automaton is specifically stated to be deterministic you should not
assume that it is. Most other authors follow the reverse convention, as-
suming finite state automata are deterministic unless specifically allowed
to be non-deterministic.

Non-deterministic finite state automata

To specify a finite state automaton we need the following:
• A set 𝐴 of tokens,
• A finite set 𝑆 of states,
• A subset 𝐼 of 𝑆, the initial states,
• A subset 𝐹 of 𝑆, the accepting states, and
• A subset 𝑇 of 𝑆 × 𝐴 × 𝑆, the transition relation.

The interpretation of the ternary relation 𝑇 is that (𝑟, 𝑎, 𝑠) ∈ 𝑇 if the au-
tomaton can transition to the state 𝑠 when it reads an 𝑎 while in state 𝑟. The
automaton must start in one of the states in 𝐼. If it’s in one of the states in 𝐹
at the end of the input then it halts successfully. It halts unsuccessfully if it
is in a state not in 𝐹 at the end of the input, or if it never reaches the end of
the input because it reads a token in a state for which there is no transition
allowed by 𝑇. As with all the other forms of non-deterministic calculation
we consider in this module the computation as whole is consider success-
ful if some computational path is successful, even if others are not. In this
case the finite state automaton is said to recognise the input. The set of
lists of tokens recognised by a finite state automaton is said to be language
recognised by it.
The non-determinism has two sources, the choice of initial state and the
choice of the next state depending on the current state and the token just
read. In most examples 𝐼 has only one member and the first source of non-
determinism is theoretical rather than real. Allowingmultiple initial states
is useful for the theory though, and sometimes in examples.
There is a traditional way of drawing diagrams for finite state automata,
with directed graphs whose vertices are the states and whose edges indi-
cate the allowed transitions, labelled to show which tokens allow that tran-
sition. The vertices in 𝐹 are doubly circled. Those in 𝑆 ∖ 𝐹 are singly circled.
Vertices in 𝐼 are indicated by unlabeled incoming arrowswhich don’t come
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from any vertex. The accompanying diagrams show finite state automata
which recognise the xy language and the language of integers.

xxyy

x

yy
y

y

error
x

x,y

Figure 24: A finite state automaton for the the xy language

zero

pos_int

neg_int

empty

digits

0,1,2,3,4,5,6,7,8,9

0

1,2,3,4,5,6,7,8,9
-

Figure 25: A finite state automaton for the the integer language

You may have noticed a similarity between these finite state automata and
the right regular grammars for these languages. In fact it’s possible to con-
struct a finite state automaton from a right regular grammar by a purely
mechanical procedure. The set 𝐴 of tokens is the same as for the grammar.
The set 𝑆 of possible states is the set of non-terminal symbols of the gram-
mar, except for the start symbol. The set 𝐼 is the set of alternates for the start
symbols. The set 𝐹 is the set of non-terminals for which the empty list is an
alternate. The set 𝑇 consists of those (𝑟, 𝑎, 𝑠) for which 𝑎𝑠 is an alternate for
𝑟.
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So every language which has a right regular grammar is recognised by a
finite state automaton.
Given a finite state automaton for a language we can easily construct a fi-
nite state automaton for the reverse language. 𝐴 and 𝑆 are unchanged. The
roles of 𝐼 and 𝐹 are reversed. The transition relation for the reversed gram-
mar consists of those triples (𝑟, 𝑎, 𝑠) for which (𝑠, 𝑎, 𝑟) belongs to the transi-
tion relation for the original language. If we have a left regular grammar for
a language then we can find a right regular grammar for the reversed lan-
guage, use it to construct a finite state automaton for the reversed language,
and then use the construction above to construct a finite state automaton
for the doubly reversed language, which is the original language. So every
language which has a left regular grammar is recognised by a finite state
automaton.

Deterministic finite state automata

A finite state automaton is called deterministic if the set of initial states has
at most one member and for any state 𝑟 and token 𝑎 there is at most one
allowed transition, i.e. at most one 𝑠 ∈ 𝑆 such that (𝑟, 𝑎, 𝑠) ∈ 𝑇. A determin-
istic finite state automaton therefore has at most computational path.
It is sometimes useful to strengthen the requirement of at least one start
state and at least one allowed transition in each state for each input token
to exactly one start state and exactly one transition. The advantage of this
is that it prevents the automaton from halting before it has read all of its
input. I will call such automata strongly deterministic.
Our automaton above for the xy language is deterministic, and in fact
strongly deterministic. Our automaton for the language of integers is not
deterministic, since it has multiple initial states. A more common reason
for a finite state automaton to be non-deterministic is the existence of
multiple allowed transitions from a particular state on a particular input
but this automaton happens not to have that problem.
Deterministic finite automata might seem more useful computationally
than non-deterministic ones. This is only partly true. Other things being
equal it’s easier to work with a deterministic finite state automaton than
a non-deterministic one, but other things are rarely equal. Often the
simplest deterministic finite state automaton for a given language is much
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larger than the simplest non-deterministic one and it is therefore more
efficient to accept the complications of non-determinism. It is nonetheless
important, at least for theoretical purposes, to know that any language
recognised by a finite state automaton is recognised by some deterministic
finite state automaton.
We’ve already discussed how to simulate non-deterministic computations
with deterministic ones. In general this is done with trees whose branches
represent computational paths. The computational path describes not just
the current state of the computation but also how it was arrived at. For
finite state automata this is overkill. The future evolution of the compu-
tation, including whether it can terminate successfully, depends only on
the current state, so we only need to keep track of the possible states the
automaton could be in at each point in the input.
To illustrate this, consider the non-deterministic finite state automaton for
the integers given earlier, and consider the input -17. Initially, i.e. before
any tokens are read, we are in one of the states zero, neg_int, or pos_int.
We then read the token -. There are no transitions from the states zero
or pos_int for this token and there is only one from neg_int so the only
surviving computational path leaves us in pos_int. The next token is 1 and
there is only one allowed transition from there so next we find ourselves in
digits. Reading a 7 there leaves us in digits. At this point the input ends.
We are in an accepting state so the computation is successful.
At each point in the input there is a set of states the computation could be in.
This is initially the set 𝐼 of initial states. The computation succeeds if one of
the states it could be in at the end of the input is accepting, i.e. if the set of
possible states has non-empty intersectionwith 𝐹. For each input token and
set of states the system could be in before reading it we can compute the set
of states it could be in after reading it by checking the allowed transitions
for that token for each state.
The considerations above suggest the following power set construction.
Given a non-deterministic finite state automaton described by a set of
tokens 𝐴, a set of states 𝑆, a set of initial states 𝐼, a set of accepting states
𝐹 and a transition relation 𝑇 we construct a deterministic finite state
automaton with the same set of tokens 𝐴, a set of states 𝑆′, a set of initial
states 𝐼′, a set of accepting states 𝐹′ and a transition relation 𝑇′ according
to the following rules.
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• 𝑆′ = 𝑃𝑆, the power set of 𝑆.
• 𝐼′ = {𝐼}, the set with a single element, which is 𝐼.
• 𝐹′ = {𝐵 ∈ 𝑃𝑆 ∶ 𝐵 ⋂ 𝐹 ≠ ∅}, the set of subsets of 𝑆 whose intersection

with 𝐹 is non-empty.
• 𝑇′ = {(𝐵, 𝑎, 𝐶) ∈ 𝑃𝑆 × 𝐴 × 𝑃𝑆 ∶ 𝐶 = {𝑠 ∈ 𝑆 ∶ ∃𝑟 ∈ 𝐵 ∶ (𝑟, 𝑎, 𝑠) ∈ 𝑇}}.

In other words 𝐶 is the set of states to which there is an allowed
transition on the input token 𝑎 from a state in 𝐵.

This is indeed a deterministic finite state automaton because its set of ini-
tial states has only one element and for any 𝐵 ∈ 𝑆′ and 𝑎 ∈ 𝐴 there is only
one 𝐶 ∈ 𝑆′ such that (𝐵, 𝑎, 𝐶) ∈ 𝑇′. At every point in the input the state of
this automaton is the set of states the origin non-deterministic automaton
could be in at the same point in the input. The deterministic automaton
terminates successfully if and only if the non-deterministic one could ter-
minate successfully. So they recognise the same language.
The construction above is called the power set construction, because the
state space for the constructed automaton is the power set of the state space
of the original automaton.
At this point I should give you an example of the construction but it’s hard
to find reasonable examples. Our automaton for the xy language is already
deterministic. We could still apply the power set construction to it, obtain-
ing a new automatonwith eight states, but there’s no point. Our finite state
automaton for the integer language is genuinely non-deterministic so the
power set construction does serve a purpose for it, but it gives us an au-
tomaton with 32 states. That’s certainly implementable on a computer but
its diagram wouldn’t fit on a single page.

Closure properties
Earlier we discussed set operations for languages generated by regular
grammars. More precisely, I showed that the union of two such languages
is such a language, but I didn’t answer the question for intersections or
relative complements. For languages recognised by finite state automata
I’ll answer the question for intersections and relative complements, but
not for unions. It’s actually fairly easy to answer the question for unions
as well, but it’s unnecessary, as we’ll see later.
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Intersection

To construct a finite state automaton for the intersection of two languages
from finite state automata for each language individually we just need to
keep track of what states those two automata could be in at any point. To
be more precise, suppose the two automata have the same set of tokens
𝐴 and have sets of states 𝑆1 and 𝑆2, sets of initial states 𝐼1 and 𝐼2, sets of
accepting states 𝐹1 and 𝐹2, and transition relations 𝑇1 and 𝑇2. We construct
a finite state automaton with the same set of tokens 𝐴, a set of states 𝑆, a
set of initial states 𝐼, a set of accepting states 𝐹 and a transition relation 𝑇
which recognises those lists which are recognised by both these automata
as follows.

• 𝑆 = 𝑆1 × 𝑆2
• 𝐼 = 𝐼1 × 𝐼2
• 𝐹 = 𝐹1 × 𝐹2
• 𝑇 = {((𝑟1, 𝑟2), 𝑎, (𝑠1, 𝑠2)) ∈ 𝑆 × 𝐴 × 𝑆 ∶ (𝑟1, 𝑎, 𝑠1) ∈ 𝑇1 ∧ (𝑟2, 𝑎, 𝑠2) ∈ 𝑇2}.

At every point in the input this automaton can be in the state (𝑠1, 𝑠2) if and
only if the first automaton can be in the state 𝑠1 and second can be in the
state 𝑠2. It therefore can reach an accepting state at the end of the input if
and only if both the original automata could.
So the intersection of two languages recognised by finite state automata is
a language recognised by a finite state automaton.

Relative complements

It might seem obvious how to modify this construction for relative com-
plements. We just need to replace accepting states by rejecting for one of
the automata, right? This isn’t completely wrong, but it’s not completely
right either. For one thing, it’s possible for a finite state automaton to halt
unsuccessfully before reaching the end of its input, if there are no allowed
transitions for the symbol just read from the current state. For another, the
fact that a non-deterministic automaton can endup in a rejecting state at the
end of the input doesn’t mean the input must be rejected, since some other
set of choices for the initial state or transitionsmight leave it in an accepting
state. Neither of these things can happen though if the finite state automa-
ton is one which was constructed by the power set construction though.
Those automata always reach the end of their input and are deterministic.
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So if we first apply the power set construction to our finite automata and
then the naive version of the relative complement construction described
earlier it will work.
So the relative complement of two languages recognised by finite state au-
tomata is a language recognised by a finite state automaton.

Regular expressions
Regular expressions are both an important theoretical concept in comput-
ing and an important practical tool in programming. These two meanings
for regular expressions are not quite the same though. For theoretical pur-
poses it’s convenient to have a minimally expressive syntax for regular
expressions. The fewer ways to construct a regular expression the easier
it is to prove their properties. For practical programming it’s convenient
to have a maximally expressive syntax, to make it easier to write simple
regular expressions for simple tasks. To complicate matters even further,
most regular expression libraries provide not just syntactic sugar to make
writing regular expressions easier but also extensions which increase their
power as a computational tool. That may sound good if you’re a program-
mer but it means that some of the statements I’ll make below about what
regular expressions can and can’t do are simply untrue when applied to
regular expressions as understood by those libraries. Since this module is
concerned with the theory of computation rather than practical program-
ming I will give the minimalist version but I will briefly mention the IEEE
standard regular expressions understood by most libraries.

The basic operations

A language is called regular if it can be build from finite languages by the
operations of union, concatenation and Kleene star. More precisely, sup-
pose 𝐴 is a finite set of tokens. Let 𝐹 be the set of finite languages with
tokens in 𝐴, i.e. the set of finite sets of lists of items in 𝐴. Let 𝑆 be the set of
all sets of languages defined by:

• 𝐹 ∈ 𝑆.
• For all 𝑅 ∈ 𝑆 if 𝐿1 ∈ 𝑅 and 𝐿2 ∈ 𝑅 then 𝐿1 ⋃ 𝐿2 ∈ 𝑅.
• For all 𝑅 ∈ 𝑆 if 𝐿1 ∈ 𝑅 and 𝐿2 ∈ 𝑅 then 𝐿1 ∘ 𝐿2 ∈ 𝑅, where 𝐿1 ∘ 𝐿2 is

the set of lists which are concatenations of a list in 𝐿1 and a list in 𝐿2
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• If 𝑅 ∈ 𝑆 and 𝐿 ∈ 𝑅 then 𝐿∗ ∈ 𝑅, where 𝐿∗ the set of all concatenations
of arbitrarily many members of 𝐿.

Then the set of regular languages for the set of tokens 𝐴 is ⋂ 𝑆.
The notation ∘ for concatenation is unfortunate since it suggests composi-
tion but is in fact unrelated to it.
Intuitively, regular languages are built from finite languages using union,
concatenation and Kleene star and are only those languages which can be
built in a finite number of steps of those three types from finite languages.
Regular expressions are a notation for describing how a language is built
from a set of finite languages using those components. There are a few dif-
ferent notations for regular expressions. I’ll use onewhich is a subset of the
IEEE notation. This has the limitation that it only works when the tokens
are individual characters, but that’s the case of most practical interest.
In IEEE regular expressions characters represent themselves, except that
a few characters are special. To represent a special character we need to
place a backslash \, before it. The special characters include \ itself, the
parentheses ( and ), used for grouping, the vertical bar |, used for the union
operation, and the asterisk *, used for the Kleene star operation. There
is no special character for concatenation. Concatenation is indicated by
concatenation.

Examples

It is probably easier to understand this via examples. x* is a regular expres-
sion for the language consisting of arbitrarily many copies of the character
x. Similarly y* is a regular expression for arbitrarily many y’s. Then x*y* is
a regular expression for arbitrarily many x’s followed by arbitrarily many
y’s. In other words, x*y* is a regular expression for the xy language con-
sidered earlier.
Arbitrarily many includes zero, so the empty string is an element of this
language. If we wanted to ensure that there is at least one x and at least
one y we would have to use the regular expression xx*yy*, i.e. a single x,
followed by arbitrarily many x’s, followed by a single y, followed by arbi-
trarily many y’s. This is, of course, a different language from the one in the
preceding paragraph.
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As our next example let’s try to build a regular expression for the language
of integers. It will be easiest to do this in stages. 0|1|2|3|4|5|6|7|8|9
is regular expression for the language of single digits. We don’t need
parentheses for grouping here because union is an associative operation.
To get strings of digits we apply Kleene star: (0|1|2|3|4|5|6|7|8|9)*.
The parentheses are needed for precedence, specifically to express the fact
that this arbitrarily many digits rather than either a non-9 or arbitrarily
many 9’s, which would be 0|1|2|3|4|5|6|7|8|(9*). The language
described by the regular expression (0|1|2|3|4|5|6|7|8|9)* includes
the empty string and also 007. The former is not an integer and the latter
is an integer but doesn’t satisfy the normalisation conditions we imposed
earlier to make sure each integer has a unique representation. Both of
these problems can be fixed by making sure there’s a non-zero digit before
the (0|1|2|3|4|5|6|7|8|9)*. A regular expression for non-zero digits is
1|2|3|4|5|6|7|8|9 so we’re led to
(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*.
This is a regular expression for the language of positive integers. To allow
negative integers we concatenate the regular expression |- with this regu-
lar expression to get
(|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*.
A |- matches either the empty string or a single -. We now have a regu-
lar expression which matches all nonzero integers. A regular expression
which matches zero is just 0. The following regular expression therefore
matches all integers:
(0|(|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).
Towards the end of the example I started using the standard term “match”
for the situation where a string is a member of the language described by
a regular expression. It’s quite convenient and I’ll use it without comment
from now on.

From regular expressions to grammars

Converting a regular expression to a left or right regular grammar for the
language it recognises might seem difficult, and doing it efficiently is in-
deed difficult, but as long as we just want some regular grammar and don’t
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care about efficiency it’s easy.
First of all, it’s easy to write down a grammar for a single character. For
example, here is a grammar for the language whose only string is a single
x:
%%

start : one_x
;

one_x : x empty
;

empty :
;

This is a right regular grammar. A left regular grammar for the same lan-
guagewould look the same, except the expansion for one_xwould be empty
x.
We’ve already seen how to construct regular grammars for the union, con-
catenation or Kleene star of languages from regular grammars for the origi-
nal languages though, and regular expressions are built up fromgrammars
for a single character or the empty string using those three operations so in
principle we know how to construct either a left or right grammar for the
language described by any regular expression. This procedure will gener-
ally give us an unnecessarily complicated grammar for the language, but
it will give us a grammar. It follows that every regular language can be
described by a left regular grammar and by a right regular grammar.

Regular expressions from automata

Any language which can be recognised by a finite state automaton can be
described by a regular expression. This is proved by induction on the num-
ber of states. To make the induction work though we first need to gener-
alise our notion of finite state automata. The automata we’ve considered
read single tokens andmake a state transition based on the token read. For
each pair of states 𝑟 and 𝑠 there is a set, possibly empty, of tokens which
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all a transition from 𝑟 to 𝑠. We can represent this set of tokens by a regular
expression, consisting of those tokens with |’s between them.
A generalised finite state automaton will be one where for each pair of
states 𝑟 and 𝑠 there is a regular expression such that if the automaton reads
a list of tokens matching that regular expression while in the state 𝑟 then it
can transition to the state 𝑠. Every finite state automaton is a generalised fi-
nite state automaton, where the regular expression is just the one described
previously, i.e. the list of tokens separated by |’s. We can add two states to
this automaton to create a new one which has only a single initial state and
a single accepting state. To do this we demote the previous initial states
and accepting states to ordinary states and add a new initial state and a
new accepting state. We then allow transitions from the new initial state to
the old ones where the regular expression is the one matching the empty
list and transitions from the old accepting states to the new one, again with
the regular expression being the one for the empty list. The new automaton
can therefore go from the new initial state to one of the old ones without
reading any input, then proceed as before, arrive at one of the old accept-
ing states at the end of its input, and then transition to the new accepting
state without reading any further input. The states other than the initial
and accepting states will be called intermediate states.
Suppose we have a generalised finite state automaton with a single initial
state and a single accepting state and at least one intermediate state. We
can construct another generalised finite state automaton which recognises
the same language, also with a single initial state and a single accepting
state, but with one intermediate state fewer, as follows.
We pick an intermediate state 𝑟. We want to remove 𝑟 but some computa-
tional paths go through 𝑟 sowewill need to replace themwith paths which
don’t. For each pair of other states 𝑞 and 𝑠 there are possibly paths which
go from 𝑞 to 𝑟 and then from 𝑟 to 𝑠. We can replicate the effect of those
paths by unioning the existing regular expression for transitions from 𝑞 to
𝑠 with the concatenation of the regular expression for transitions from 𝑞 to
𝑟 with the one for transitions from 𝑟 to 𝑠. This isn’t quite enough though,
since a computational path might stay at 𝑟 for an arbitrary number of steps
before moving on to 𝑠. So what we need to add to the regular expression
for transitions from 𝑞 to 𝑠 is a concatenation of three regular expressions:
the one for transitions from 𝑞 to 𝑟, the Kleene star of the one for transitions
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from 𝑟 to itself, and then the one for transitions from 𝑟 to 𝑠. Once we’ve
done this for all pairs 𝑞 and 𝑠 the state 𝑟 is no longer needed and can be
removed.
Removing intermediate states one after another we eventually reach the
point where there are no intermediate states. We’re left with just initial and
accepting states. If we did the construction as described above then there
is one of each and there are no allowed transitions from the initial state
to itself or from the accepting state to itself or to the initial state. The only
allowed transition is one directly from the initial state to the accepting state.
Input will be accepted by this machine if and only if it matches the regular
expression for that transition. In this waywe’ve found a regular expression
whichmatches precisely those inputs recognised by the original finite state
automaton.
I’m not going to give an example of the construction above. The regular ex-
pressions it produces are horribly inefficient. The point of the construction
is just to prove that every language recognised by a finite state automaton
is a regular language.

Reversal

One nice property of regular expressions is that given a regular expression
for a language it’s very easy to construct a regular expression for the re-
versed language. Unions and Kleene stars can be left unchanged and we
just need to reverse the order of the concatenations. For example, a regular
expression for the reversed integers is
(0|(0|1|2|3|4|5|6|7|8|9)*(1|2|3|4|5|6|7|8|9)(|-)).

Extended syntax

For practical purposes it’s useful to have more operations available than
just union, concatenation and Kleene star. We didn’t include those extra
operations in the definition to avoid needing to prove the corresponding
closure properties of regular grammars.
In the IEEE standard + is used for Kleene plus, i.e. a concatenation with at
least one member. ? is used for at most one member, but possibly zero.
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Also explicit ranges are allowed, denoted by numbers in braces. For exam-
ple (0|1|2|3|4|5|6|7|8|9){3,5} would indicate a string of at least three
and at most five digits. Character ranges are also allowed, indicated by
brackets, so three to five digits could also be represented as [0-9]{3,5}.
Of course this requires +, ?, braces and brackets to be special characters,
which then have to be preceded by backslashes in order to represent them-
selves. There are a few other similar extensions. If you’re using regular
expressions for pattern matching, and you really should if you have to do
pattern matching, then you should consult the documentation for what-
ever library you’re using, both to see what extensions are available and to
see which characters are special. Even if you will never use an extension
you may need to know about it if it makes certain characters special and
therefore requires you to precede them with backslashes.
The extensions above are a matter of syntactic convenience. They don’t
change the set of languageswhich can be represented; they justmake it pos-
sible to represent some languages with shorter regular expressions. There
are other extensions in many implementations which change the set of rep-
resentable languages. The new languageswhich these allow cannot be gen-
erated by regular grammars. None of what I say in this chapter about reg-
ular languages can be assumed to apply to the languages described using
these extensions.

Regular languages
We’ve now seen how to go from a left or right regular grammar to a finite
state automaton, from a finite state automaton to a deterministic finite state
automaton, from there to a generalised finite state automaton, from there
to a regular expression, and finally from a regular expression to a left or
right regular grammar. At each step the language is unchanged. We can
therefore conclude that the following sets of languages for a given set of
tokens are all the same:

• the set of languages with a left regular grammar
• the set of languages with a right regular grammar
• the set of languages recognised by a finite state automaton
• the set of languages recognised by a deterministic finite state automa-

ton
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• the set of languages recognised by a generalised finite state automa-
ton

• the set of languages described by a regular expression
The last of these was our definition of a regular language, but we could
really have taken any of them as our definition.
This equivalence now allows us to answer many questions which were left
unanswered in the sections from individual points of view.
I stated earlier, for example, that every language generated by a left reg-
ular grammar can also be generated by a right regular grammar and vice
versa. We know this is true. In theory the proof is even constructive. We
could take a left regular grammar, construct the corresponding finite state
automaton, use the power set construction to construct a deterministic fi-
nite state automaton, convert it to a generalised finite state automaton with
a single initial and single accepting state, kill all of its intermediate states
one by one, take the resulting regular expression, and then use it to find a
right regular grammar. All the steps in this process can in principle be car-
ried out in a purely mechanical way. You shouldn’t ever do this, of course.
The resulting grammar would be horrible.
We also considered closure of these sets of languages under various set op-
erations. It was easy, for example, to see that the union of languages with
a regular grammar has a regular grammar. We can now see that that’s true
of languages described by any of the three types of finite automata or by
regular expressions. This would be easy to prove directly for regular ex-
pressions but is quite tricky to prove for deterministic finite state automata.
On the other hand it was fairly straightforward to prove that the intersec-
tion of languages defined by such finite state automata is also defined by
such an automaton but this is far from obvious for languages defined by
regular grammars or regular expressions. It must be true though, since
these are all different ways of describing the same set of languages.
Similarly, reversal is an easy process to describe in terms of regular expres-
sions but it’s far from clear how to take, for example, a left regular grammar
and construct a left regular grammar for the reversed language, or to take
a deterministic finite state automaton for a language and construct a deter-
ministic finite state automaton for the reversed language. The equivalence
of all of these descriptions of regular languages shows that it must be pos-

249



sible though.
In general if you want to prove a fact about regular languages you should
look for the description in terms of which this fact is easiest to prove. You
can evenmix them. If regular languages appear in both the hypotheses and
conclusion of a theorem you want to prove you might find it convenient to
use one characterisation for the hypotheses and another for the conclusion.

Pumping lemma
One consequence of the equivalence discussed in the preceding section is
that we have six different ways to show that a language is regular:

• give a left regular grammar which generates its members
• give a right regular grammar which generates its members
• give a finite state automaton which recognises its members
• give a deterministic finite state automaton which recognises its mem-

bers
• give a generalised finite state automaton which recognises its mem-

bers
• give a regular expression which matches its members

That’s nice, but we’ve seen zero ways so far of showing that a languages
isn’t regular. That’s a rather serious gap and none of the descriptions we
have are of much help here. We can hardly list all left regular grammars,
for example, and check that none of them generate the language. In order
to prove that a language isn’t regular you need to identify a propertywhich
all regular languages share and then show that this language does not have
that property. There are two properties which people use for this.
One of these is the subject of the Myhill-Nerode theorem, which we’ll dis-
cuss in the next section. The other is that of the Pumping lemma, which
I’ll discuss in this section. The Myhill-Nerode theorem is better in nearly
all respects than the Pumping lemma. It provides a necessary and suffi-
cient condition for regularity while the Pumping lemma just provides a
necessary condition and, although this is necessarily somewhat subjective,
I find it much easier to use. There are two reasons to introduce the Pump-
ing lemma anyway though. One is that it’s more popular. If you ever see
someone outside of thismodule proving a language is not regular theywill
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probably be doing so using the Pumping lemma so you should knowwhat
it is. The second reason is that there are two Pumping lemmas, one for
regular languages and one for context free languages. It’s the first of these
that we’re discussing in this chapter. The second will be discussed in the
next chapter. TheMyhill-Nerode theorem doesn’t have such a nice general-
isation to context free languages so we will need the second version of the
Pumping lemma in order to prove that various languages are not context
free in the next chapter. For this reason not only will I give a proof of the
Pumping lemma for regular languages but I’ll give one which, unlike the
usual proof, generalises well to context free languages.
I haven’t introduced a notation for concatenation yet. We’ll be encounter-
ing a lot of them in the remainder of this chapter and it’s convenient to have
a notation for them. I’ll take the simplest option and denote concatenation
by concatenation. In other words, if 𝑢 and 𝑣 are lists of tokens then 𝑢𝑣 will
be the list obtained by concatenating 𝑢 and 𝑣, in that order. I’ll also write
𝑢𝑛 for concatenation of 𝑛 copies of 𝑢.

The statement of the lemma

With those preliminaries out of the waywe can proceed to the statement of
the Pumping lemma, which is a bit weird. This will require some terminol-
ogy. We say that a natural number 𝑝 is a pumping length for a language 𝐿
is for every member 𝑤 of 𝐿 of length at least 𝑝 can write 𝑤 as a concatena-
tion of three lists 𝑎, 𝑏 and 𝑐, in that order, i.e. 𝑤 = 𝑎𝑏𝑐, with the following
properties:

• 𝑏 is not the empty list,
• 𝑎𝑏 has length at most 𝑝, and
• for every natural number 𝑛 the list 𝑎𝑏𝑛𝑐 is a member of 𝐿.

Note that 𝑝 depends on 𝐿 but not on 𝑤. The pumping length is a property
of the language, not any particular member.
A language is said to have the pumping property if it has a pumping length.
The Pumping lemma says that every regular language has the pumping
property. It does not say that every language with the pumping property
is regular, and indeed that’s not true.
There are really two pumping lemmas for regular languages, a left pump-
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ing lemma and a right pumping lemma. For some reason everyone seems
to state the version above, but there’s also a version which is identical ex-
cept that it’s 𝑏𝑐 which has length at most 𝑝.

An example

Before giving a proof I’ll do an example to show how the Pumping lemma
can but used to show that a language isn’t regular.
Earlierwe considered a languagewhosemembers are all strings of the form
some number of x’s followed by some number of y’s. This was a regular
language. We know this because we’ve seen a left regular grammar for it,
a right regular grammar for it, a deterministic finite state automaton for it,
and a regular expression for it. Any one of these would suffice to prove
that it is regular. We therefore can’t expect to use the Pumping lemma to
show that it’s not regular. Consider, though, the language of strings which
are some number of x’s followed by the same number of y’s. We can show,
using the Pumping Lemma, that this language is not regular.
The proof is by contradiction. Suppose the language is regular. Then it
has the pumping property, i.e. there is some pumping length 𝑝 for this lan-
guage. Let 𝑤 be the string with 𝑝 x’s followed by 𝑝 y’s. It belongs to the
language so it can be written as 𝑎𝑏𝑐 as in the definition of the pumping
length. Because 𝑎𝑏 is of length at most 𝑝 and occurs at the beginning of 𝑤
both 𝑎 and 𝑏 must be strings of x’s. Consider the string 𝑎𝑐, thought of as
𝑎𝑏0𝑐 This is the case 𝑛 = 0 of 𝑎𝑏𝑛𝑐. and so is a member of 𝐿. 𝑏 is of positive
length and consists solely of x’s so by removing it we now have a string in
the language with fewer than 𝑝 x’s followed by 𝑝 y’s. But the language is
the language of strings where some number of x’s is followed by the same
number of y’s, so this is impossible.
The name of the Pumping lemma comes from the possibility of taking 𝑛
to be large, generating arbitrarily long language elements by a process of
“pumping”. We could have done that here but we didn’t need to. Instead
of lengthening our string to get a contradiction we shortened it.
This language, which we’ve just shown not to be regular, is a sublanguage
of our original xy language, which we already knew to be regular. It fol-
lows that not every sublanguage of a regular language is regular.
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The name of the Pumping lemma comes from the possibility of taking 𝑛
to be large, generating arbitrarily long language elements by a process of
“pumping”. We could have done that here but we didn’t need to. Instead
of lengthening our string to get a contradiction we shortened it.

Finite languages

Students occasionally get confused by one point about the Pumping lemma.
Finite languages are always regular. The Pumping lemma appears to allow
us to generate arbitrarily long strings in a regular language. How is this not
a contradiction? The resolution of this seeming paradox is that the Pump-
ing lemma only says something about sufficiently long strings, specifically
those greater than the pumping length of the language. A finite language
has a pumping length equal to the length of its longest string. There are
no strings 𝑤 in the language with length longer than that so the statement
about being able to split 𝑤 into 𝑎, 𝑏 and 𝑐 with the given properties doesn’t
actually apply to any string and is vacuously true.

The proof of the lemma

Suppose 𝐿 is a regular language. It must then have a left regular grammar.
Let 𝑝 be the number of non-terminal symbols in this grammar. I will show
that 𝑝 is a pumping length for 𝐿. Suppose 𝑤 ∈ 𝐿 is of length 𝑚, which we
assume is at least 𝑝. The parse tree for 𝑤 is of a particularly simple form.
The root has one child. Almost every other node has two children, one
of which is a leaf with a terminal symbol and the other of which is a non-
terminal symbol, also with two children. The one exception is that the non-
terminal symbolwhich gets expanded to the empty list has no children and
is therefore also a leaf.
Our parse tree has 𝑚 leaves labelled by terminal symbols, each with a
distinct parent, labelled by a non-terminal symbol other than the start
symbol, and the one non-terminal symbol which is a leaf, for 𝑚 + 1
non-terminals other than the start symbol. Since 𝑚 + 1 is greater than 𝑝
some non-terminal is repeated symbol. There may well be more than but
there must be one within the last 𝑝 + 1 symbols. We can take the segment
of the tree between those symbols, including the one closest to the root
and excluding the one farthest from the root, and repeat this as many
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times as we want to get parse trees for valid lists in the language. The part
of the tree below the repeated segment is our 𝑎, the repeated part is 𝑏 and
the part above is 𝑐.
The accompanying diagrams illustrate this construction on the string 2023
in the integer language. The string 02 between 2 and 3 can be repeated
arbitrarilymany times. The parse tree for the original string is shown along
with the trees for zero repetitions and two repetitions.

Figure 26: Parse tree for the string 2023

To get the version of the Pumping lemmawhere it’s 𝑏𝑐 which is of length at
most 𝑝 we would apply the same construction to a right regular grammar.
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Figure 27: Parse tree for the string 23

The Myhill-Nerode theorem
One problem with the Pumping lemma is that it can be difficult to guess
which 𝑤 you need to take in order to find a contradiction. Another problem
is that there are languages with the pumping property which are nonethe-
less not regular. There is a nice necessary and sufficient condition for reg-
ularity but it will require some preliminaries.

From languages to automata

From a language we can directly construct an automaton which recognises
it, as described below. This automaton may or may not be finite.
We start with a set of tokens 𝐴 and a language 𝐿, i.e. a subset of 𝐵, the set
of all lists of members of 𝐴. Let 𝜀 be the empty list. We define a function 𝑓
from 𝐵 to 𝑃𝐵 by

𝑓 (𝑤) = {𝑧 ∈ 𝐵 ∶ 𝑤𝑧 ∈ 𝐿}.
We call 𝑓 (𝑤) the set of valid continuations of 𝑤, since 𝑧 ∈ 𝑓 (𝑤) if and only
if reading 𝑧 after reading 𝑤 gives us a member of the language. Note that
𝜀 ∈ 𝑓 (𝑤) if and only if 𝑤 ∈ 𝐿. Also, 𝑓 (𝜀) = 𝐿. Both of these statements fol-
low from the fact that 𝜀 is the identity for 𝐵 with the operation of concate-
nation. Let 𝐶 be the range of 𝑓 , i.e. the set of valid continuation sets.
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Figure 28: Parse tree for the string 202023
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We define an equivalence relation on 𝐵 by saying that 𝑢 and 𝑣 are equiv-
alent whenever 𝑓 (𝑢) = 𝑓 (𝑣). Let 𝐸 be the set of equivalence classes. Let 𝑔
be the function from 𝐵 to 𝐸 which takes each list to the equivalence class
to which it belongs. Every equivalence class is the equivalence class of
some list. One way to express this is to say that 𝑔 is a surjective function,
i.e. that if 𝑃 ∈ 𝐸 then 𝑃 = 𝑔(𝑢) for some 𝑢 ∈ 𝐵. If 𝑃 = 𝑔(𝑣) then 𝑢 and 𝑣
are equivalent, i.e. 𝑓 (𝑢) = 𝑓 (𝑣), so 𝑓 (𝑢) depends only on 𝑃 and not on the
particular 𝑢 chosen. It is therefore legitimate to define ℎ(𝑃) = 𝑓 (𝑢). ℎ is a
function from 𝐸 to 𝐶. It was defined in such a way that ℎ(𝑔(𝑢)) = 𝑓 (𝑢) for
all 𝑢, i.e. such that 𝑓 = ℎ ∘ 𝑔. ℎ is a injective because if ℎ(𝑃) = ℎ(𝑄) then
𝑃 = 𝑔(𝑢) and 𝑄 = 𝑔(𝑣) for some 𝑢 and 𝑣 in 𝐵, but then 𝑓 (𝑢) = 𝑓 (𝑣) so 𝑢 and
𝑣 are equivalent and so 𝑔(𝑢) = 𝑔(𝑣), or in other words 𝑃 = 𝑄. ℎ is surjec-
tive since if 𝑅 ∈ 𝐶 then 𝑅 = 𝑓 (𝑤) for some 𝑤 ∈ 𝐵 and then 𝑅 = ℎ(𝑔(𝑤)) and
hence 𝑅 = 𝑔(𝑃) for some 𝑃 ∈ 𝐸.
Suppose 𝑃 ∈ 𝐸 and 𝑤 ∈ 𝐵. Let

𝑅 = {𝑧 ∈ 𝐵 ∶ 𝑤𝑧 ∈ 𝑃}

Now 𝑃 = 𝑓 (𝑢) for some 𝑢 ∈ 𝐵 so

𝑅 = {𝑧 ∈ 𝐵 ∶ 𝑤𝑧 ∈ 𝑓 (𝑢)}

or
𝑅 = {𝑧 ∈ 𝐵 ∶ 𝑢𝑤𝑧 ∈ 𝐿}

and therefore
𝑅 = 𝑓 (𝑢𝑤).

𝑓 (𝑢𝑤) is a member of 𝐶 and 𝑔 is a bijective function from 𝐸 to 𝐶 so there is
a unique 𝑄 ∈ 𝐸 such that 𝑅 = 𝑔(𝑄), i.e. such that

𝑔(𝑄) = {𝑧 ∈ 𝐵 ∶ 𝑤𝑧 ∈ 𝑃}.

We can therefore define a function 𝑡 from 𝐸 × 𝐵 to 𝐸 by

𝑔(𝑡(𝑃, 𝑤)) = {𝑧 ∈ 𝐵 ∶ 𝑤𝑧 ∈ 𝑃}.

An alternate way to describe this is that 𝑥 ∈ 𝑡(𝑃, 𝑤) if and only if there is
some 𝑢 ∈ 𝑃 such that 𝑥 = 𝑢𝑤.
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Given any list 𝑤 = (𝑎1, 𝑎2, … , 𝑎𝑛) of tokens we can form the list of equiva-
lence classes (𝑠0, 𝑠1, 𝑠2, … , 𝑠𝑛) where

𝑠0 = 𝑔(𝜀), 𝑠1 = 𝑡((𝑎1), 𝑠0), 𝑠2 = 𝑡((𝑎2), 𝑠1), ⋯ 𝑠𝑛 = 𝑡((𝑎𝑛), 𝑠𝑛−1).

By induction we have
𝑔((𝑎1, 𝑎2, … , 𝑎𝑗)) ∈ 𝑠𝑗

for all 𝑗 and so, in particular

𝑔(𝑤) ∈ 𝑠𝑛.

Then
𝑓 (𝑤) = ℎ(𝑠𝑛)

Now 𝑤 ∈ 𝐿 if and only if 𝜀 ∈ 𝑓 (𝑤), i.e. if and only if 𝜀 ∈ ℎ(𝑠𝑛). Let

𝐼 = {𝑔(𝜀)},

𝐹 = {𝑠 ∈ 𝐸 ∶ 𝜀 ∈ ℎ(𝑠)},
and

𝑇 = {(𝑟, 𝑎, 𝑠) ∈ 𝐸 × 𝐴 × 𝐸 ∶ 𝑠 = 𝑡(𝑠, (𝑎))}.
Then (𝑠0 ∈ 𝐼), (𝑠𝑗, 𝑎𝑗, 𝑠𝑗+1) for all 𝑗 < 𝑛 and 𝑤 ∈ 𝐿 if and only if 𝑠𝑛 ∈ 𝐹. In
other words, if we form the automaton whose state set is 𝐸, whose initial
and accepting sets are 𝐼 and 𝐹 respectively and whose transition relation is
𝑇 then this automaton recognises 𝐿. In particular if𝐸 is finite thenwehave a
finite state automaton which recognises 𝐿. We’ll see later that the converse
is also true, that if there is a finite state automaton which recognises 𝐿 then
𝐸 is finite, but first it may be helpful to do an example.

An example

We can use the construction above to find a finite state automaton for the
language of integers.
What are the equivalence classes of strings of the characters 0, 1, …, 9, and
-?

• We always have the equivalence class of the empty string, whose con-
tinuation set is just the language. There is no other string whose con-
tinuation set has all integers as members so the empty string is the
only member of this language.
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• There is also the equivalence class of the string 0. The only contin-
uation of 0 is the empty string. There are no other strings whose
only continuation is the empty string, so 0 is the only member of this
equivalence class.

• We also have the equivalence class of -. The continuations are just the
strings representing positive integers. There is no other string with
the same continuation set so - is the only member of this equivalence
class.

• There is also an equivalence class whose members are all non-zero
integers. These all have all strings of digits as their continuations.
That includes an empty string of digits.

• Finally, there is an equivalence class consisting of those strings with
no continuations. These are the stringswith some sort of syntax error,
like 0--.

These are all the equivalence classes. We’ve just seen that we can form a
finite state automaton whose states correspond to the equivalence classes.
The only initial state is the one corresponding to the equivalence class of
the empty set. The accepting states are the ones for which the empty list
is a valid continuation, which in this case is the class of 0 and the class of
non-zero integers.
There are two reasonable ways to label these states. One is with the equiv-
alence classes and the other is with the continuations. We saw in the last
section that there is a bijective function, which we called ℎ from equiva-
lence classes to continuations, so either will work. I find it easier to un-
derstand the version with states labelled by continuations. There is one
slightly tricky point. We have one state where the set of continuations is
empty and one where the only member of the set of continuations is the
empty list. We can’t label both of them empty. I’ll use that label for the sec-
ond one, and the label error for the first one, since that’s the state we’re in
if there has been a syntax error in the input. With these choices the finite
state automaton for the integer language is the one with the accompanying
diagram.
This finite state automaton is deterministic, and in fact strongly determin-
istic. This is not an accident. The construction from the previous section al-
ways gives a strongly deterministic automaton, and indeed gives one with

259



integer

empty

error

0,1,2,3,4,5,6,7,8,9,-

digits

0,1,2,3,4,5,6,7,8,9

-

0

1,2,3,4,5,6,7,8,9

pos_int

-

0,1,2,3,4,5,6,7,8,9,-

1,2,3,4,5,6,7,8,9

0,-

Figure 29: A strongly deterministic finite state automaton for the integers

as few states as possible.

The converse

We’ve seen that if the set 𝐸 of equivalence classes is finite then there is a
finite state automaton which recognises the language. In this section we’ll
see that the converse is also true. If a language is recognised by a finite
state automaton then 𝐸 is finite.
Suppose we have a finite state automaton with 𝑆 as its set of states which
recognises the language 𝐿. As usual, 𝐹 will be the set of accepting states.
As before I’ll denote the set of all lists of members of 𝐴 by 𝐵. For each 𝑤 in
𝐵 let 𝑖(𝑤) be the subset of 𝑆 consisting of those states which the automaton
can be in after reading 𝑤. There could be more than one member of 𝑖(𝑤)
if the automaton is non-deterministic, and there could be none if it is not
strongly deterministic. If it is strongly deterministic then 𝑖(𝑤) has exactly
one member. Let 𝐷 be the range of 𝑖.
If 𝑧 is a continuation of 𝑤 then 𝑤𝑧 is a member of the language and so must
be accepted by the automaton, so there must be a computational path for
𝑧‵ from a member of 𝑖(𝑤) to a member of 𝐹. Conversely, if there is such a
path then 𝑤𝑧 must be a member of the language, so 𝑧 is a continuation of 𝑤.
In particular the set 𝑓 (𝑤) of continuations of 𝑤 depends only on 𝑖(𝑤). So if
we define 𝑗 to be the function from the range of 𝑖 in 𝑃𝑆 to 𝐶 which takes a
subset 𝐻 ⊆ 𝑆 to the set of strings which can be accepted by the automaton
from some state of 𝐻 then 𝑓 = 𝑗 ∘ 𝑖. Since we already have 𝑓 = ℎ ∘ 𝑔 we have
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𝑗 ∘ 𝑖 = ℎ ∘ 𝑔. Let 𝑘 = 𝑗 ∘ ℎ−1. This makes sense since ℎ was already shown
to be bijective. Then 𝑘 ∘ 𝑖 = 𝑔. 𝑘 is a surjective from the range of 𝑖, which is
a subset of 𝑃𝑆, to 𝐸. 𝑆 is finite, so 𝑃𝑆 is finite, so the range of 𝑖 is finite, and
therefore 𝐸 is finite.
In fact we can be more precise. If there are 𝑛 states then there are 2𝑛 mem-
bers of 𝑃𝑆 and so at most 2𝑛 members of the range of 𝑖 and then at most 2𝑛

members of 𝐸. If the finite state automaton is strongly deterministic then
every member of the range of 𝑖 has a single member and there are only 𝑛
such subsets of 𝑆, so we get the much stronger result that 𝐸 has at most 𝑛
members. In particular every strongly deterministic finite state automaton
which recognises 𝐿 has at least as many states as 𝐸 has members. In an ear-
lier section we constructed a strongly deterministic finite state automaton
with exactly that many members. We can now see that that automaton is
minimal, in the sense that it has the smallest possible number of states for
a strongly deterministic automaton which recognises 𝐿.
We can now state one form of the Myhill-Nerode theorem, that if 𝐿 is a
language and 𝐸 is the set of equivalence classes of lists with respect to 𝐿,
equivalence being defined by saying that lists are equivalent if they have
the same set of continuations, then 𝐿 is regular if and only if 𝐸 is finite.

The syntactic monoid
There are two other forms of theMyhill-Nerode theorem. One of these can
be proved by applying the previous version to the reversed language. The
reversed language is regular if and only if the original one is. In this second
version of the Myhill-Nerode theorem the set which we need to be finite is
the set of equivalence classes for the relation where 𝑢 and 𝑣 are equivalent
if and only if

{𝑧 ∈ 𝐵 ∶ 𝑧𝑢 ∈ 𝐿} = {𝑧 ∈ 𝐵 ∶ 𝑧𝑣 ∈ 𝐿}.
This is the same condition as in the definition of 𝐸, except that the order of
the concatenations has been reversed.
This form of the Myhill-Nerode theorem is somewhat less interesting than
the previous one, since it doesn’t lead to the construction of a deterministic
finite state automaton in the case where the grammar is regular.
There’s a third version of Myhill-Nerode, which does construct a strongly
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deterministic finite state automaton in the regular case. This finite state
automaton is not minimal in general but it does have one interesting prop-
ertywhich the onewe constructed earlier lacks. Strongdeterminismmeans
that if we know the current state and the next input token then we know
the next state. This new finite state automaton has the additional property
that if we know the current state and the last input token read then we
know the previous state.
The third version of Myhill-Nerode is based on continuations and equiv-
alence classes, but instead of consider right continuations, as in the first
version, or left continuations, as in the second version, we consider bidirec-
tional continuations.
For any list 𝑤 we say that (𝑢, 𝑧) is a bidirectional continuation of 𝑤 if
𝑢𝑤𝑧 ∈ 𝐿. We say that 𝑤 and 𝑥 are bidirectionally equivalent if they have
the same set of bidirectional continuations. Bidirectionally equivalent
lists are equivalent in the sense we considered earlier but the converse
generally isn’t true. The third version of the Myhill-Nerode theorem
says that the language is regular if and only if the set of bidirectional
equivalence classes is finite.
Bidirectional equivalence has one important property which ordinary
equivalence lacks. If 𝑢 is bidirectionally equivalent to 𝑥 and 𝑣 is bidirec-
tionally equivalent to 𝑦 then 𝑢𝑣 is bidirectionally equivalent to 𝑥𝑦. This
allows us to perform the quotient construction on 𝐵 considered as a
monoid with concatenation as the operation. The quotient is called the
syntactic monoid of the language. Various properties of the language
can be defined in terms of the syntactic monoid. The advantage of doing
this is that there is only one syntactic monoid for a language. If we try to
define properties of a language in terms of the structure of its grammar
we need to show that we get the same result regardless of which grammar
is used. Similarly, if we try to define properties of a language in terms of
the structure of a finite state automaton then we need to show that we get
the same result regardless of which automaton is used. The same problem
arises if we try to define properties in terms of regular expressions, but
not if we define them in terms of the syntactic monoid.
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Context free languages
A context free grammar is a phrase structure grammar where every rule
gives a finite set of alternates for a non-terminal symbol, each alternate
being a finite list of symbols. The second “finite” is redundant because
lists are always finite. It’s just there as a reminder.
All of the phrase structure grammars we’ve considered are of the form de-
scribed above. They have the property that the possible expansions of a
symbol are independent of what symbols appear before or after it. That’s
where the term “context free” comes from. We could imaginemore general
grammars where the possible expansions are allowed to depend on other
symbols in the list. That would take us into the realm of context sensitive
grammars. We won’t do that this semester though.
A language is called context free if it can be generated by a context free
grammar. Left and right regular grammars are context free grammars so
regular languages are context free languages. Not every context free gram-
mar is regular though. We saw a context free grammar for the language of
balanced parentheses earlier, so it is context free, but we’ve already seen
that it is not regular.
As another example of a context free language which is not regular, con-
sider the language whose members are strings with some number of x’s,
followed by the same number of y’s, followed by any positive number of
z’s. We can show that this language is not regular using either the Pump-
ing lemma or the Myhill-Nerode theorem. It is context free though, since
we can write down the following simple phrase structure grammar for it.
%%
start : xsys zs

;

xsys : | x xsys y
;

zs : z | zs z
;

Similarly, the language with any positive number of x’s, followed by some
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number of y’s, followed by the same number of z’s is context free but not
regular. In this case it’s not possible to use the usual version of the Pumping
lemma but it is possible to use the second version, and it’s also possible
to use the Myhill-Nerode theorem. It is straightforward to write down a
phrase structure for this grammar, very similar to the one above.
Not all languages are context free. This follows from a simple counting ar-
gument since the set of phrase structure grammars for a non-empty count-
able set of tokens is countable but but the set of languages for the same set
of tokens is uncountable.
Natural languages tend not to be context free, although some of them aren’t
far off. Well designed computer languages typically are context free, which
makes it relatively straightforward to write parsers for them. Languages
designed bypeople or committeeswhodon’t have to implement themoften
fail to be context free, as do languages where the language specification
evolved from a preexisting compiler implementation.
I am cheating slightly though when I claim that well designed languages
have context free grammars, because there may be some programs which
parse correctly but are not valid due to constraints in the language specifi-
cation which cannot be implemented in a context free way, like declaration
before use requirements. Violating these constraints is not, strictly speak-
ing, a syntax error, but this is admittedly a fine distinction. There are pro-
gramming languages which are context free in the strictest possible sense
but you probably wouldn’t enjoy debugging a program written in one.

Closure properties
The union of two context free languages is context free. The construction
of a context free grammar for the union from context free grammars for the
individual languages is exactly the same as for regular languages. Similarly,
reversal, concatenation and Kleene star are okay, with essentially the same
constructions already saw for regular languages.
The intersection of two context free languages, or the relative complement
of one with respect to another, is generally not context free. For example,
we’ve seen that the language consisting of strings with some number of x’s
followed by the same number of y’s and then any positive number of z’s is
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context free. We’ve also seen that the language consisting of strings with
any positive number of x’s, then some number of y’s and then the same
number of z’s is context free. The intersection of these two languages is
the language of strings with some positive number of x’s followed by the
same number of y’s and then the same number of z’s. That language is not
context free, although we don’t yet have the tools to prove this. We will
return to this example later, once we have a pumping lemma for context
free languages.
Although the intersection of context free languages needn’t be regular it is
true that the intersection of a regular language and a context free language
is a context free language. It is also true that if 𝐿 is context free and 𝑀 is
regular then 𝐿 ∖ 𝑀 is context free, although 𝑀 ∖ 𝐿 needn’t be.

Pushdown automata
Just as the regular languages are those which can be recognised by a finite
state automaton the context free languages are those which can be recog-
nised by what’s called a pushdown automaton, essentially a finite state
autmaton with access to a stack.
In addition to the tokens of the language we allow the finite state automa-
ton to use finitely many additional tokens on its stack.
Earlier we considered a language for zeroeth order logic, which had the
tokens 𝑝, 𝑞, 𝑟, 𝑠, 𝑢, !, ∧, ∨, ¬, ⊃, ⊼, ⊻, ≡, ≢, ⊂, (, ), [, ], { and }. We can
construct a pushdown automaton which recognises this language.
Our automaton starts by pushing a 𝑝 onto the stack. It then reads char-
acters one at a time, processing them as follows. In each case where I’ve
written that themachine pops a character off the stack I mean that it checks
whether the stack is empty, fails, and pops the the top character otherwise.
“Fail” here and below just means terminates unsuccessfully.

• If there is no character to read then it checks whether the stack is
empty and terminates successfully if it is and unsuccessfully if it isn’t.

• If the character it read is whitespace it does nothing.
• If the character it read is a 𝑝, 𝑞, 𝑟, 𝑠, 𝑢 it pops a character off the stack.

If the character it popped is a 𝑝 it pushes a ! onto the stack. Otherwise
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it fails.
• If the character it read is a ! then it continues on to read the next char-

acter.
• If the character it read is ∧, ∨, ⊃, ⊼, ⊻, ≡, ≢, or ⊂ it pops a character

off the stack. If the character it popped is a ∧ it continues on to read
the next character. If the character it popped is a ! then it pops off
another character and if that character is a ∧ it continues on to read
the next character. In all other cases it fails.

• If the character it read is a ¬ then it pops a character off the stack. If
the character it popped is a 𝑝 then it pops another character off the
stack. If that character is a ∧ then it continues on to read the next
character. In all other cases it fails.

• If the character it read is a ( then it pops a character off the stack. If
that character is a 𝑝 then it pushes a ), then a 𝑝, then a ∧, and then
another 𝑝 onto the stack and continues on to read the next character.
In all other cases it fails.

• If the character it read is a [ then it pops a character off the stack. If
that character is a 𝑝 then it pushes a ], then a 𝑝, then a ∧, and then
another 𝑝 onto the stack and continues on to read the next character.
In all other cases it fails.

• If the character it read is a { then it pops a character off the stack. If
that character is a 𝑝 then it pushes a }, then a 𝑝, then a ∧, and then
another 𝑝 onto the stack and continues on to read the next character.
In all other cases it fails.

• If the character it read is a ) then it pops a character off the stack. If the
character it popped is a ) then it continues on to read the next charac-
ter. If the character it popped is a ! then it pops another character. If
that character is ) then it continues on to read the next character. In
all other cases it fails.

• If the character it read is a ] then it pops a character off the stack. If
the character it popped is a ] then it and continues on to read the
next character. If the character it popped is a ! then it pops another
character. If that character is ] then it continues on to read the next
character. In all other cases it fails.
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• If the character it read is a } then it pops a character off the stack. If
the character it popped is a } then it and continues on to read the
next character. If the character it popped is a ! then it pops another
character. If that character is } then it continues on to read the next
character. In all other cases it fails.

Before explaining why this works it may be helpful to trace the computa-
tional path for a particular input. I’ll choose {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}
as my input string. As the computation proceeds we need to keep track of
what portion of the input has been read and what the contents of the stack
is. The accompanying diagram does this.

{ [ ( 𝑝 ⊃ 𝑞 ) ∧ ( 𝑞 ⊃ 𝑟 ) ] ⊃ ( 𝑝 ⊃ 𝑟 ) }
𝑝 𝑝 𝑝 𝑝 ! 𝑝 ! ∧ 𝑝 𝑝 ! 𝑝 ! ] ∧ 𝑝 𝑝 ! 𝑝 ! }

∧ ∧ ∧ ∧ ) ) 𝑝 ] ∧ ∧ ) ) ∧ 𝑝 } ∧ ∧ ) )
𝑝 𝑝 𝑝 𝑝 ∧ ∧ ] ∧ 𝑝 𝑝 ] ] 𝑝 } 𝑝 𝑝 } }
} ] ) ) 𝑝 𝑝 ∧ 𝑝 ) ) ∧ ∧ } ) )

∧ ∧ ∧ ] ] 𝑝 } ] ] 𝑝 𝑝 } }
𝑝 𝑝 𝑝 ∧ ∧ } ∧ ∧ } }
} ] ] 𝑝 𝑝 𝑝 𝑝

∧ ∧ } } } }
𝑝 𝑝
} }

The interpretation of the diagram is that the column below each input char-
acter is the state of the stack after reading it and doing all the associated
stack operations. To the left all the input characters there’s a column with
just a single 𝑝, which represents the state of the stack just before reading
the first character.
At no point before the end of the input does the automaton terminate un-
successfully and the stack is empty at the end so the automaton terminates
successfully. In other words, this string is recognised as a member of the
language.
Youmay have guessed how this automaton uses its stack. After processing
a character the stack shows one valid continuation for the input at that
point. This continuation is chosen in such a way that even if the next input
character is not the first character of that continuation, i.e. the character at
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the top of the stack, we can easily adjust the stack to get a valid continuation
of the new input string, if there is such a valid continuation, and fail if
there is none. This is a strategy which happens to work for this language
and some others. It does not work for context free languages in general
though.
One feature of the pushdown automaton described above is that it always
terminates, either successfully or unsuccessfully. This is clear because at
each stage we read an input character and eventually we run out of input.
Another feature of the automaton is that it is deterministic. Whenever we
read an input token, check whether the stack is empty, or pop a token from
the stack there is at most one way to continue the calculation, although
theremay be none in those caseswherewe terminate unsuccessfully. These
two features are desirable but neither of them is required. Pushdown au-
tomata are allowed to have multiple options for their next step. As with
all non-deterministic computations we consider we say that the input is ac-
cepted if there is some computational path which terminates successfully,
even if others terminate unsuccessfully or not at all.

Parsing by guessing
The preceding section gave a deterministic pushdown automaton recog-
niser for a particular grammar. The method used was adapted to that par-
ticular language and doesn’t provide much inspiration if someone hands
us another language and asks for a pushdown automaton recogniser for it.
If we’re willing to give up determinism then there’s a simple recipe we can
use:

• Empty the stack, if necessary, and then push the grammar’s start sym-
bol onto it.

• Repeat the following indefinitely:
– If the stack and input are empty then terminate successfully.
– If the stack is empty and the input is non-empty then terminate

unsuccessfully.
– If neither of these things has happened the stack must be non-

empty. Pop the item at the top of of the stack. It will be a symbol
from the grammar, either terminal or non-terminal.
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– If it’s non-terminal then pick one of its alternates from the gram-
mar, terminating unsuccessfully if there are none, and push the
symbols from that alternate onto the stack in reverse order.

– If it’s a terminal symbol then read an input token, terminating
unsuccessfully if the input is empty. Check whether the token
belongs to the terminal symbol, terminating unsuccessfully if it
does not.

This doesn’t have to terminate. What’s different about this method from
the one we saw in the example is that this one processes one stack item at
a time rather than one input token at a time. The stack can shrink or grow,
while the remaining input only ever shrinks. In fact it’s very unusual for
all computational paths to terminate.
It’s also non-deterministic because of the stepwherewe choose an alternate
from the rule for a non-terminal symbol.
If the input belongs to the language then some computational path will
terminate successfully. If the input does not belong to the language then
it’s possible that all computational paths terminate unsuccessfully, but it’s
more likely that at least one fails to terminate at all. If so then the automa-
ton will never provide us with an answer because at any finite stage of the
computation we won’t know whether it would eventually succeed if given
more time.
I’ll illustrate this method with the same input as above for the language
of zeroeth order logic. It will be necessary to write this in a somewhat
different format from the previous example because of its size, and because
it’s organised somewhat differently, processing one stack item at a time
rather than one input character at a time.

1. input: {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: statement
2. input: {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: expression
3. input: {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: { expression binop ex-

pression }
4. input: [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: expression binop expres-

sion }
5. input: [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: [ expression binop ex-

pression ] binop expression }
6. input: (𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: expression binop expres-
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sion ] binop expression }
7. input: (𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: ( expression binop expres-

sion ) binop expression ] binop expression }
8. input: 𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: expression binop expres-

sion ) binop expression ] binop expression }
9. input: 𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: variable binop expression

) binop expression ] binop expression }
10. input: 𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: letter binop expression )

binop expression ] binop expression }
11. input: ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: binop expression ) binop ex-

pression ] binop expression }
12. input: 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: expression ) binop expression

] binop expression }
13. input: 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: variable ) binop expression ]

binop expression }
14. input: 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: letter ) binop expression ]

binop expression }
15. input: ) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: ) binop expression ] binop ex-

pression }
16. input: ∧(𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: binop expression ] binop expres-

sion }
17. input: (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: expression ] binop expression }
18. input: (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: ( expression binop expression ) ]

binop expression }
19. input: 𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: expression binop expression ) ]

binop expression }
20. input: (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: variable binop expression ) ] binop

expression }
21. input: 𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: letter binop expression ) ] binop ex-

pression }
22. input: 𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: letter binop expression ) ] binop ex-

pression }
23. input: ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: binop expression ) ] binop expression

}
24. input: 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: expression ) ] binop expression }
25. input: 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: variable ) ] binop expression }
26. input: 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: letter ) ] binop expression }
27. input: )] ⊃ (𝑝 ⊃ 𝑟)} stack: ) ] binop expression }
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28. input: ] ⊃ (𝑝 ⊃ 𝑟)} stack: ] binop expression }
29. input: ⊃ (𝑝 ⊃ 𝑟)} stack: binop expression }
30. input: (𝑝 ⊃ 𝑟)} stack: expression }
31. input: (𝑝 ⊃ 𝑟)} stack: ( expression binop expression ) }
32. input: 𝑝 ⊃ 𝑟)} stack: expression binop expression ) }
33. input: 𝑝 ⊃ 𝑟)} stack: variable binop expression ) }
34. input: 𝑝 ⊃ 𝑟)} stack: letter binop expression ) }
35. input: ⊃ 𝑟)} stack: binop expression ) }
36. input: 𝑟)} stack: expression ) }
37. input: 𝑟)} stack: variable ) }
38. input: 𝑟)} stack: letter ) }
39. input: )} stack: ) }
40. input: } stack: }
41. input: stack:

At no point before the stack emptied does the automaton terminate unsuc-
cessfully and the input is empty once the stack is so the automaton termi-
nates successfully. In other words, this string is recognised as a member of
the language.
Note that this is one possible computational path. It is, in fact, the only
one which terminates successfully. There are many others, some of which
terminate unsuccessfully and some of which fail to terminate at all. As dis-
cussed earlier we could represent the set of all computational paths with a
tree, but this tree would be infinite. It is possible to give a deterministic al-
gorithm by, for example, traversing this tree in breadth first order. There’s
no way for a deterministic pushdown automaton to do this, since main-
taining the full tree requires something more powerful than a stack, but
it could be done, for example, by a deterministic Turing machine. With a
breadth first traversal we would only see a finite portion of the full infinite
tree. I have chosen not to illustrate the portion which would be traversed
because this planet is unfortunately not large enough to contain it.

Deterministic pushdown automata
We’ve now seen two pushdown automata for the same language. We saw
in the preceding chapter that any language which can be recognised by
a finite state automaton can be recognised by a deterministic finite state
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automaton. Although we haven’t defined Turing machines yet it is true
that every language which can be recognised by a Turing machine can be
recognised by a deterministic Turing machine. Since pushdown automata
are intermediate in power between finite state automata and Turing ma-
chines it would seem reasonable to expect that every language which can
be recognised by a pushdown automaton can also be recognised by a de-
terministic pushdown automation. The example considered above lends
some support to this expectation, since there’s a natural way to recognise
the language with a non-deterministic pushdown automaton but with a
certain amount of ingenuity one can also construct a deterministic push-
down automaton for the language. Unfortunately though there are context
free languageswhich cannot be recognised by anydeterministic pushdown
automaton.

From pushdown automata to context free grammars
I’ve described one way of constructing a pushdown automaton from a con-
text free grammar in such a way that the automaton recognises exactly
those lists which are generated by the grammar. The reverse construction
is also possible. Given a pushdown automaton we can construct from is a
context free grammar which generates those lists which are recognised by
the automaton. I won’t give the construction here though.

Pumping lemma
Just as there is a pumping lemma for regular languages there is one for
context free languages. The statement is of a similar kind, but more com-
plicated.
For every context free language there is a natural number 𝑝 such that every
𝑤 of 𝐿 of length at least 𝑝 can be written in the form 𝑤 = 𝑎𝑏𝑐𝑑𝑒 where the
lists 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 have the following properties:

• 𝑏𝑐𝑑 is of length at most 𝑝.
• 𝑏 and 𝑑 are not both empty.
• For every natural number 𝑛 the list 𝑎𝑏𝑛𝑐𝑑𝑛𝑒 is a member of 𝐿.
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Application

Consider the language consisting of strings some positive number of x’s,
followed by the same number of y’s, followed by the same number of z’s.
We met this language earlier as the intersection of two context free lan-
guages. If this language is context free then there is a number 𝑝 as in the
statement of the lemma. Let 𝑤 be the string with 𝑝 x’s, followed by 𝑝 y’s,
followed by 𝑝 z’s. This is a member of the language and is of length at least
𝑝 so there should be strings 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 satisfying the conditions listed
in the statement of the lemma. The substring 𝑏𝑐𝑑 is of length at most 𝑝 so it
could contain x’s or z’s but not both. If we take 𝑛 = 0 we get the string 𝑎𝑐𝑒,
i.e. 𝑎𝑏𝑐𝑑𝑒 with 𝑏 and 𝑑 removed. If 𝑏𝑐𝑑 had no x’s then 𝑎𝑐𝑒 has 𝑝 x’s and is
of length less than 3𝑝. If it 𝑏𝑐𝑑 had no z’s then 𝑎𝑐𝑒 has 𝑝 z’s and is of length
less than 3𝑝. There are no members of the language which satisfy either of
those conditions though. This contradicts the statement of the lemma, so
our assumption that the language is context free must have been false. In
particular, we now have an example of two context free languages whose
intersection is not context free.

Proof

By assumption our language is context free so it has a phrase structure
grammar of the type described previously. Let 𝑠 be the number of and 𝑟 be
the maximum number of symbols appearing in any rule.
In any parse tree for amember of the language the number of leaves among
the descendents of a node is at most 𝑟ℎ, where ℎ is the maximum of the
lengths of the branches starting from that node. The length of branches
here is the number of edges in a path from the node to the leaf, which is
one less than the number of nodes along that branch.
Let 𝑝 = 𝑟𝑠+1 and let 𝑤 be a member of 𝐿 of length at least 𝑝. The parse tree
for 𝑤 must then have a branch of length at least 𝑠 from the root node. I’ve
written “the” parse tree but there could bemore than one if the grammar is
ambiguous. What the argument above really shows is that every parse tree
for 𝑤 has such a branch. If there’s more than one parse tree we’ll choose
one with as few nodes in its parse tree as possible.
On the parse tree for 𝑤 choose a branch of maximal length. From what we
said above this length is at least 𝑠 + 1. The number of symbols appearing
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is on this branch is one more than then length and so is greater than 𝑠 + 1.
If we look at the last 𝑠 + 1 symbols then one must be repeated. Any such
symbol in non-terminal because terminal symbols don’t have children in
the parse tree. Choose one, and choose two occurences of it. We’ll call the
one closer to the root the outer occurence and the one farther from the root
the inner occurence. Let 𝑐 be the expansion of the inner occurence and let
𝑓 be the expansion of the outer occurence. Let 𝑎 be the part of 𝑤 before 𝑓
and let 𝑒 be the part after 𝑤, so that 𝑤 = 𝑎𝑓 𝑒. Let 𝑏 be the part of 𝑓 before 𝑐
and let 𝑑 be the part after 𝑐, so that 𝑓 = 𝑏𝑐𝑑.
Now 𝑤 = 𝑎𝑏𝑐𝑑𝑒. 𝑓 , i.e. 𝑏𝑐𝑑, is of length less than 𝑝 because the maximal
branch length from the outer occurence is at most 𝑠 + 1. Taking the parse
tree for 𝑤 and replacing the part of the tree descending from the outer
occurence with the part of the tree descending from the inner occurence
has the effect of replacing 𝑓 by 𝑐 in 𝑎𝑓 𝑒 and so gives a parse tree for 𝑎𝑐𝑒, which
must therefore also be amember of the language. This parse tree has fewer
nodes than the minimal parse tree for 𝑤 so 𝑎𝑐𝑒 is not 𝑤. In other words, 𝑏
and 𝑑 are not both empty. Also, 𝑎𝑏0𝑐𝑑0𝑒 is a member of the language. We
could also replace the part of the tree descending from the inner occurence
with the part descending from the outer occurence, to get a parse tree for
𝑎𝑏𝑓 𝑑𝑒, for 𝑎𝑏2𝑐𝑑2𝑒, which must therefore also be a member of the language.
This construction is repeatable, sowe can replate that 𝑐 by an 𝑓 to get 𝑎𝑏3𝑐𝑑3𝑒
and so on. In this way we see that 𝑎𝑏𝑛𝑐𝑑𝑛𝑒 is a member of the language for
all natural numbers 𝑛.
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