
MAU22C00 Lecture 30

John Stalker

Trinity College Dublin

Announcements

• Your last assignment of the semester is due on Friday.

• I’ve posted the last chapter of the lecture notes, on context free languages and
pushdown automata. We’ll cover that material on Thursday and Friday.

Announcements

• Your last assignment of the semester is due on Friday.
• I’ve posted the last chapter of the lecture notes, on context free languages and

pushdown automata. We’ll cover that material on Thursday and Friday.

Myhill-Nerode

Last time we met the notions of valid continuations of a list and equivalence of lists.
The Myhill-Nerode theorem says that a language is regular if and only if the set of
equivalence classes is finite.

The proof is somewhat constructive. In the case where the set of equivalence classes is
finite it shows how to construct a strongly deterministic finite state automaton with
one state for each equivalence class which recognises the language.

It also shows that this is the smallest possible number of states for such an automaton.

You don’t need to understand the proof in detail but it’s very useful to understand the
construction of the automaton. For those who find it easier to understand examples
than proofs I’ll give two examples.

Myhill-Nerode

Last time we met the notions of valid continuations of a list and equivalence of lists.
The Myhill-Nerode theorem says that a language is regular if and only if the set of
equivalence classes is finite.

The proof is somewhat constructive. In the case where the set of equivalence classes is
finite it shows how to construct a strongly deterministic finite state automaton with
one state for each equivalence class which recognises the language.

It also shows that this is the smallest possible number of states for such an automaton.

You don’t need to understand the proof in detail but it’s very useful to understand the
construction of the automaton. For those who find it easier to understand examples
than proofs I’ll give two examples.

Myhill-Nerode

Last time we met the notions of valid continuations of a list and equivalence of lists.
The Myhill-Nerode theorem says that a language is regular if and only if the set of
equivalence classes is finite.

The proof is somewhat constructive. In the case where the set of equivalence classes is
finite it shows how to construct a strongly deterministic finite state automaton with
one state for each equivalence class which recognises the language.

It also shows that this is the smallest possible number of states for such an automaton.

You don’t need to understand the proof in detail but it’s very useful to understand the
construction of the automaton. For those who find it easier to understand examples
than proofs I’ll give two examples.

Myhill-Nerode

Last time we met the notions of valid continuations of a list and equivalence of lists.
The Myhill-Nerode theorem says that a language is regular if and only if the set of
equivalence classes is finite.

The proof is somewhat constructive. In the case where the set of equivalence classes is
finite it shows how to construct a strongly deterministic finite state automaton with
one state for each equivalence class which recognises the language.

It also shows that this is the smallest possible number of states for such an automaton.

You don’t need to understand the proof in detail but it’s very useful to understand the
construction of the automaton. For those who find it easier to understand examples
than proofs I’ll give two examples.

Example (from a regular expression to an FSA)

As a first example, we can find a finite state automaton for the regular expression
HLL*|LHH*L*.

We know there must be one. In theory we even know how to find one, but inefficiently.
Let’s find an optimal one.

The valid continuations of the empty string are described by the regular expression
HLL*|LHH*L*.

The valid continuations of H are described by LL*.

The valid continuations of L are described by HH*L*.

There are no valid continuations of HH or LL.

The valid continuations of HL are described by L*. The valid continuations of LH are
described by H*L*.

Example (from a regular expression to an FSA)

As a first example, we can find a finite state automaton for the regular expression
HLL*|LHH*L*.

We know there must be one. In theory we even know how to find one, but inefficiently.
Let’s find an optimal one.

The valid continuations of the empty string are described by the regular expression
HLL*|LHH*L*.

The valid continuations of H are described by LL*.

The valid continuations of L are described by HH*L*.

There are no valid continuations of HH or LL.

The valid continuations of HL are described by L*. The valid continuations of LH are
described by H*L*.

Example (from a regular expression to an FSA)

As a first example, we can find a finite state automaton for the regular expression
HLL*|LHH*L*.

We know there must be one. In theory we even know how to find one, but inefficiently.
Let’s find an optimal one.

The valid continuations of the empty string are described by the regular expression
HLL*|LHH*L*.

The valid continuations of H are described by LL*.

The valid continuations of L are described by HH*L*.

There are no valid continuations of HH or LL.

The valid continuations of HL are described by L*. The valid continuations of LH are
described by H*L*.

Example (from a regular expression to an FSA)

As a first example, we can find a finite state automaton for the regular expression
HLL*|LHH*L*.

We know there must be one. In theory we even know how to find one, but inefficiently.
Let’s find an optimal one.

The valid continuations of the empty string are described by the regular expression
HLL*|LHH*L*.

The valid continuations of H are described by LL*.

The valid continuations of L are described by HH*L*.

There are no valid continuations of HH or LL.

The valid continuations of HL are described by L*. The valid continuations of LH are
described by H*L*.

Example (from a regular expression to an FSA)

As a first example, we can find a finite state automaton for the regular expression
HLL*|LHH*L*.

We know there must be one. In theory we even know how to find one, but inefficiently.
Let’s find an optimal one.

The valid continuations of the empty string are described by the regular expression
HLL*|LHH*L*.

The valid continuations of H are described by LL*.

The valid continuations of L are described by HH*L*.

There are no valid continuations of HH or LL.

The valid continuations of HL are described by L*. The valid continuations of LH are
described by H*L*.

Example (from a regular expression to an FSA)

As a first example, we can find a finite state automaton for the regular expression
HLL*|LHH*L*.

We know there must be one. In theory we even know how to find one, but inefficiently.
Let’s find an optimal one.

The valid continuations of the empty string are described by the regular expression
HLL*|LHH*L*.

The valid continuations of H are described by LL*.

The valid continuations of L are described by HH*L*.

There are no valid continuations of HH or LL.

The valid continuations of HL are described by L*. The valid continuations of LH are
described by H*L*.

Example (from a regular expression to an FSA)

As a first example, we can find a finite state automaton for the regular expression
HLL*|LHH*L*.

We know there must be one. In theory we even know how to find one, but inefficiently.
Let’s find an optimal one.

The valid continuations of the empty string are described by the regular expression
HLL*|LHH*L*.

The valid continuations of H are described by LL*.

The valid continuations of L are described by HH*L*.

There are no valid continuations of HH or LL.

The valid continuations of HL are described by L*. The valid continuations of LH are
described by H*L*.

Example, continued

If we read a string whose valid continuations are L* and then read an H the there are no
valid continuations. If instead we read an L then the valid continuations are again L*.

If we read a string whose valid continuations are H*L* and then an H the valid
continuations are again H*L*. If we read an L then they are L*.

We’ve now seen all sets of valid continuations:

• The original language HLL*|LHH*L*. This is the set of continuations of the empty
string.

• LL*
• HH*L*
• None
• L*. This includes the empty string.
• H*L*. This includes the empty string.

Example, continued

If we read a string whose valid continuations are L* and then read an H the there are no
valid continuations. If instead we read an L then the valid continuations are again L*.

If we read a string whose valid continuations are H*L* and then an H the valid
continuations are again H*L*. If we read an L then they are L*.

We’ve now seen all sets of valid continuations:

• The original language HLL*|LHH*L*. This is the set of continuations of the empty
string.

• LL*
• HH*L*
• None
• L*. This includes the empty string.
• H*L*. This includes the empty string.

Example, continued

If we read a string whose valid continuations are L* and then read an H the there are no
valid continuations. If instead we read an L then the valid continuations are again L*.

If we read a string whose valid continuations are H*L* and then an H the valid
continuations are again H*L*. If we read an L then they are L*.

We’ve now seen all sets of valid continuations:
• The original language HLL*|LHH*L*. This is the set of continuations of the empty

string.

• LL*
• HH*L*
• None
• L*. This includes the empty string.
• H*L*. This includes the empty string.

Example, continued

If we read a string whose valid continuations are L* and then read an H the there are no
valid continuations. If instead we read an L then the valid continuations are again L*.

If we read a string whose valid continuations are H*L* and then an H the valid
continuations are again H*L*. If we read an L then they are L*.

We’ve now seen all sets of valid continuations:
• The original language HLL*|LHH*L*. This is the set of continuations of the empty

string.
• LL*

• HH*L*
• None
• L*. This includes the empty string.
• H*L*. This includes the empty string.

Example, continued

If we read a string whose valid continuations are L* and then read an H the there are no
valid continuations. If instead we read an L then the valid continuations are again L*.

If we read a string whose valid continuations are H*L* and then an H the valid
continuations are again H*L*. If we read an L then they are L*.

We’ve now seen all sets of valid continuations:
• The original language HLL*|LHH*L*. This is the set of continuations of the empty

string.
• LL*
• HH*L*

• None
• L*. This includes the empty string.
• H*L*. This includes the empty string.

Example, continued

If we read a string whose valid continuations are L* and then read an H the there are no
valid continuations. If instead we read an L then the valid continuations are again L*.

If we read a string whose valid continuations are H*L* and then an H the valid
continuations are again H*L*. If we read an L then they are L*.

We’ve now seen all sets of valid continuations:
• The original language HLL*|LHH*L*. This is the set of continuations of the empty

string.
• LL*
• HH*L*
• None

• L*. This includes the empty string.
• H*L*. This includes the empty string.

Example, continued

If we read a string whose valid continuations are L* and then read an H the there are no
valid continuations. If instead we read an L then the valid continuations are again L*.

If we read a string whose valid continuations are H*L* and then an H the valid
continuations are again H*L*. If we read an L then they are L*.

We’ve now seen all sets of valid continuations:
• The original language HLL*|LHH*L*. This is the set of continuations of the empty

string.
• LL*
• HH*L*
• None
• L*. This includes the empty string.

• H*L*. This includes the empty string.

Example, continued

If we read a string whose valid continuations are L* and then read an H the there are no
valid continuations. If instead we read an L then the valid continuations are again L*.

If we read a string whose valid continuations are H*L* and then an H the valid
continuations are again H*L*. If we read an L then they are L*.

We’ve now seen all sets of valid continuations:
• The original language HLL*|LHH*L*. This is the set of continuations of the empty

string.
• LL*
• HH*L*
• None
• L*. This includes the empty string.
• H*L*. This includes the empty string.

A finite state automaton
This is a finite state automaton based on the equivalence classes.

HLL*|LHH*L*

LL*H

HH*L*

L

H

L*

L

L

H*L*
H

H,L
H

L

L

H

Figure 1: A finite state automaton for the regular expression

The start state is the one for the equivalence class of the empty string. The accepting
state is the one for classes where the empty string is a valid continuation. The arrows
indicate which equivalence class you get to by appending a character to a string in
another equivalence class.

You have seen this finite state automaton before.

A finite state automaton
This is a finite state automaton based on the equivalence classes.

HLL*|LHH*L*

LL*H

HH*L*

L

H

L*

L

L

H*L*
H

H,L
H

L

L

H

Figure 1: A finite state automaton for the regular expression

The start state is the one for the equivalence class of the empty string. The accepting
state is the one for classes where the empty string is a valid continuation. The arrows
indicate which equivalence class you get to by appending a character to a string in
another equivalence class.

You have seen this finite state automaton before.

Comparison

HLL*|LHH*L*

LL*H

HH*L*

L

H

L*

L

L

H*L*
H

H,L
H

L

L

H

Figure 2: The same finite state automaton for the regular expression

A0

A4

L

A3
H

A5
L

H

A1
H

A2

L

L

H

H

L

H,L

Figure 3: A finite state machine for the Tokyo language

Another example (integers)
As our next example, consider the language of (normalised) integers.

We found a regular expression for the integers, namely
0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*). Let’s turn this into a finite
state automaton.

The valid continuations of the empty string are described by
0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

The only valid continuation of 0 is the empty string.

The valid continuations of - are described by
(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

The valid continuations of 1, 2, …, 9 are described by (0|1|2|3|4|5|6|7|8|9)*.

Those are also the valid continuations of -1, -2, …, -9, or really of any non-zero
integer.

Finally, there are the strings with no valid continuation.

Another example (integers)
As our next example, consider the language of (normalised) integers.

We found a regular expression for the integers, namely
0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*). Let’s turn this into a finite
state automaton.

The valid continuations of the empty string are described by
0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

The only valid continuation of 0 is the empty string.

The valid continuations of - are described by
(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

The valid continuations of 1, 2, …, 9 are described by (0|1|2|3|4|5|6|7|8|9)*.

Those are also the valid continuations of -1, -2, …, -9, or really of any non-zero
integer.

Finally, there are the strings with no valid continuation.

Another example (integers)
As our next example, consider the language of (normalised) integers.

We found a regular expression for the integers, namely
0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*). Let’s turn this into a finite
state automaton.

The valid continuations of the empty string are described by
0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

The only valid continuation of 0 is the empty string.

The valid continuations of - are described by
(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

The valid continuations of 1, 2, …, 9 are described by (0|1|2|3|4|5|6|7|8|9)*.

Those are also the valid continuations of -1, -2, …, -9, or really of any non-zero
integer.

Finally, there are the strings with no valid continuation.

Another example (integers)
As our next example, consider the language of (normalised) integers.

We found a regular expression for the integers, namely
0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*). Let’s turn this into a finite
state automaton.

The valid continuations of the empty string are described by
0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

The only valid continuation of 0 is the empty string.

The valid continuations of - are described by
(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

The valid continuations of 1, 2, …, 9 are described by (0|1|2|3|4|5|6|7|8|9)*.

Those are also the valid continuations of -1, -2, …, -9, or really of any non-zero
integer.

Finally, there are the strings with no valid continuation.

Another example (integers)
As our next example, consider the language of (normalised) integers.

We found a regular expression for the integers, namely
0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*). Let’s turn this into a finite
state automaton.

The valid continuations of the empty string are described by
0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

The only valid continuation of 0 is the empty string.

The valid continuations of - are described by
(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

The valid continuations of 1, 2, …, 9 are described by (0|1|2|3|4|5|6|7|8|9)*.

Those are also the valid continuations of -1, -2, …, -9, or really of any non-zero
integer.

Finally, there are the strings with no valid continuation.

Another example (integers)
As our next example, consider the language of (normalised) integers.

We found a regular expression for the integers, namely
0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*). Let’s turn this into a finite
state automaton.

The valid continuations of the empty string are described by
0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

The only valid continuation of 0 is the empty string.

The valid continuations of - are described by
(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

The valid continuations of 1, 2, …, 9 are described by (0|1|2|3|4|5|6|7|8|9)*.

Those are also the valid continuations of -1, -2, …, -9, or really of any non-zero
integer.

Finally, there are the strings with no valid continuation.

Another example (integers)
As our next example, consider the language of (normalised) integers.

We found a regular expression for the integers, namely
0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*). Let’s turn this into a finite
state automaton.

The valid continuations of the empty string are described by
0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

The only valid continuation of 0 is the empty string.

The valid continuations of - are described by
(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

The valid continuations of 1, 2, …, 9 are described by (0|1|2|3|4|5|6|7|8|9)*.

Those are also the valid continuations of -1, -2, …, -9, or really of any non-zero
integer.

Finally, there are the strings with no valid continuation.

Another example (integers)
As our next example, consider the language of (normalised) integers.

We found a regular expression for the integers, namely
0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*). Let’s turn this into a finite
state automaton.

The valid continuations of the empty string are described by
0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

The only valid continuation of 0 is the empty string.

The valid continuations of - are described by
(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

The valid continuations of 1, 2, …, 9 are described by (0|1|2|3|4|5|6|7|8|9)*.

Those are also the valid continuations of -1, -2, …, -9, or really of any non-zero
integer.

Finally, there are the strings with no valid continuation.

Example, continued

Here are the states we need, their corresponding continuation sets, and whether they’re
starting or accepting states.

• A0: the set described by 0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).
This is the set of continuations of the empty set and so is the start state.

• A1: the empty string, and only the empty string. Since this class contains the
empty string it is an accepting state.

• A2: the set described by (1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).
• A3: the set described by (0|1|2|3|4|5|6|7|8|9)*. This class contains the empty

string and so is an accepting state.
• A4: the empty set.

Example, continued

Here are the states we need, their corresponding continuation sets, and whether they’re
starting or accepting states.

• A0: the set described by 0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).
This is the set of continuations of the empty set and so is the start state.

• A1: the empty string, and only the empty string. Since this class contains the
empty string it is an accepting state.

• A2: the set described by (1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).
• A3: the set described by (0|1|2|3|4|5|6|7|8|9)*. This class contains the empty

string and so is an accepting state.
• A4: the empty set.

Example, continued

Here are the states we need, their corresponding continuation sets, and whether they’re
starting or accepting states.

• A0: the set described by 0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).
This is the set of continuations of the empty set and so is the start state.

• A1: the empty string, and only the empty string. Since this class contains the
empty string it is an accepting state.

• A2: the set described by (1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).

• A3: the set described by (0|1|2|3|4|5|6|7|8|9)*. This class contains the empty
string and so is an accepting state.

• A4: the empty set.

Example, continued

Here are the states we need, their corresponding continuation sets, and whether they’re
starting or accepting states.

• A0: the set described by 0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).
This is the set of continuations of the empty set and so is the start state.

• A1: the empty string, and only the empty string. Since this class contains the
empty string it is an accepting state.

• A2: the set described by (1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).
• A3: the set described by (0|1|2|3|4|5|6|7|8|9)*. This class contains the empty

string and so is an accepting state.

• A4: the empty set.

Example, continued

Here are the states we need, their corresponding continuation sets, and whether they’re
starting or accepting states.

• A0: the set described by 0|((|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).
This is the set of continuations of the empty set and so is the start state.

• A1: the empty string, and only the empty string. Since this class contains the
empty string it is an accepting state.

• A2: the set described by (1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).
• A3: the set described by (0|1|2|3|4|5|6|7|8|9)*. This class contains the empty

string and so is an accepting state.
• A4: the empty set.

A finite state automaton

The diagram for the finite state automaton we’ve just found is

A0

A1

A4

-,0,1,...,9

A3

0,1,...,9

-

0

1,2,...,9

A2

- 1,2,...,9

-,0

-,0,1,...,9

Figure 4: A finite state automaton for the integers

Example (language of balanced parentheses)
How about the language of balanced parentheses?

Recall, to figure out whether a string belongs to this language we track how many
more (’s we’ve seen than)’s. If this number never goes negative and is zero at the end
of the input the string is in the language.

Let 𝐸 be the set of strings where the difference goes negative at some point. These
have no valid continuation.

If 𝑤 is not in 𝐸 then 𝑤 has at least as many (’s as)’s. Let 𝑆𝑛 be the set of 𝑤 not in 𝐸
for which there are 𝑛 more (’s than)’s.

Every string is in exactly one of 𝐸, 𝑆0, 𝑆1, ….

Within any of those sets, each string has the same set of valid continuations.

So these are the equivalence classes. There are infinitely many of them, so the
language is not regular.

The nice thing about Myhill-Nerode is that you don’t need to know whether your
language is regular in advance.

Example (language of balanced parentheses)
How about the language of balanced parentheses?

Recall, to figure out whether a string belongs to this language we track how many
more (’s we’ve seen than)’s. If this number never goes negative and is zero at the end
of the input the string is in the language.

Let 𝐸 be the set of strings where the difference goes negative at some point. These
have no valid continuation.

If 𝑤 is not in 𝐸 then 𝑤 has at least as many (’s as)’s. Let 𝑆𝑛 be the set of 𝑤 not in 𝐸
for which there are 𝑛 more (’s than)’s.

Every string is in exactly one of 𝐸, 𝑆0, 𝑆1, ….

Within any of those sets, each string has the same set of valid continuations.

So these are the equivalence classes. There are infinitely many of them, so the
language is not regular.

The nice thing about Myhill-Nerode is that you don’t need to know whether your
language is regular in advance.

Example (language of balanced parentheses)
How about the language of balanced parentheses?

Recall, to figure out whether a string belongs to this language we track how many
more (’s we’ve seen than)’s. If this number never goes negative and is zero at the end
of the input the string is in the language.

Let 𝐸 be the set of strings where the difference goes negative at some point. These
have no valid continuation.

If 𝑤 is not in 𝐸 then 𝑤 has at least as many (’s as)’s. Let 𝑆𝑛 be the set of 𝑤 not in 𝐸
for which there are 𝑛 more (’s than)’s.

Every string is in exactly one of 𝐸, 𝑆0, 𝑆1, ….

Within any of those sets, each string has the same set of valid continuations.

So these are the equivalence classes. There are infinitely many of them, so the
language is not regular.

The nice thing about Myhill-Nerode is that you don’t need to know whether your
language is regular in advance.

Example (language of balanced parentheses)
How about the language of balanced parentheses?

Recall, to figure out whether a string belongs to this language we track how many
more (’s we’ve seen than)’s. If this number never goes negative and is zero at the end
of the input the string is in the language.

Let 𝐸 be the set of strings where the difference goes negative at some point. These
have no valid continuation.

If 𝑤 is not in 𝐸 then 𝑤 has at least as many (’s as)’s. Let 𝑆𝑛 be the set of 𝑤 not in 𝐸
for which there are 𝑛 more (’s than)’s.

Every string is in exactly one of 𝐸, 𝑆0, 𝑆1, ….

Within any of those sets, each string has the same set of valid continuations.

So these are the equivalence classes. There are infinitely many of them, so the
language is not regular.

The nice thing about Myhill-Nerode is that you don’t need to know whether your
language is regular in advance.

Example (language of balanced parentheses)
How about the language of balanced parentheses?

Recall, to figure out whether a string belongs to this language we track how many
more (’s we’ve seen than)’s. If this number never goes negative and is zero at the end
of the input the string is in the language.

Let 𝐸 be the set of strings where the difference goes negative at some point. These
have no valid continuation.

If 𝑤 is not in 𝐸 then 𝑤 has at least as many (’s as)’s. Let 𝑆𝑛 be the set of 𝑤 not in 𝐸
for which there are 𝑛 more (’s than)’s.

Every string is in exactly one of 𝐸, 𝑆0, 𝑆1, ….

Within any of those sets, each string has the same set of valid continuations.

So these are the equivalence classes. There are infinitely many of them, so the
language is not regular.

The nice thing about Myhill-Nerode is that you don’t need to know whether your
language is regular in advance.

Example (language of balanced parentheses)
How about the language of balanced parentheses?

Recall, to figure out whether a string belongs to this language we track how many
more (’s we’ve seen than)’s. If this number never goes negative and is zero at the end
of the input the string is in the language.

Let 𝐸 be the set of strings where the difference goes negative at some point. These
have no valid continuation.

If 𝑤 is not in 𝐸 then 𝑤 has at least as many (’s as)’s. Let 𝑆𝑛 be the set of 𝑤 not in 𝐸
for which there are 𝑛 more (’s than)’s.

Every string is in exactly one of 𝐸, 𝑆0, 𝑆1, ….

Within any of those sets, each string has the same set of valid continuations.

So these are the equivalence classes. There are infinitely many of them, so the
language is not regular.

The nice thing about Myhill-Nerode is that you don’t need to know whether your
language is regular in advance.

Example (language of balanced parentheses)
How about the language of balanced parentheses?

Recall, to figure out whether a string belongs to this language we track how many
more (’s we’ve seen than)’s. If this number never goes negative and is zero at the end
of the input the string is in the language.

Let 𝐸 be the set of strings where the difference goes negative at some point. These
have no valid continuation.

If 𝑤 is not in 𝐸 then 𝑤 has at least as many (’s as)’s. Let 𝑆𝑛 be the set of 𝑤 not in 𝐸
for which there are 𝑛 more (’s than)’s.

Every string is in exactly one of 𝐸, 𝑆0, 𝑆1, ….

Within any of those sets, each string has the same set of valid continuations.

So these are the equivalence classes. There are infinitely many of them, so the
language is not regular.

The nice thing about Myhill-Nerode is that you don’t need to know whether your
language is regular in advance.

Example (language of balanced parentheses)
How about the language of balanced parentheses?

Recall, to figure out whether a string belongs to this language we track how many
more (’s we’ve seen than)’s. If this number never goes negative and is zero at the end
of the input the string is in the language.

Let 𝐸 be the set of strings where the difference goes negative at some point. These
have no valid continuation.

If 𝑤 is not in 𝐸 then 𝑤 has at least as many (’s as)’s. Let 𝑆𝑛 be the set of 𝑤 not in 𝐸
for which there are 𝑛 more (’s than)’s.

Every string is in exactly one of 𝐸, 𝑆0, 𝑆1, ….

Within any of those sets, each string has the same set of valid continuations.

So these are the equivalence classes. There are infinitely many of them, so the
language is not regular.

The nice thing about Myhill-Nerode is that you don’t need to know whether your
language is regular in advance.

Bidirectional equivalence

Instead of considering one-sided continuations we can consider two sided ones. Given a
language 𝐿 and a list 𝑤 we can consider the set of pairs of lists (𝑣, 𝑥) such that 𝑣𝑤𝑥 is
in 𝐿.

We’ll say that two lists are bidirectionally equivalent if their sets of such continuations
are equal. This is an equivalence relation on the set of lists.

Suppose 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent.
Suppose also that (𝑣, 𝑥) is a continuation of 𝑞𝑠, i.e. that 𝑣𝑞𝑠𝑥 is in 𝐿.

Then (𝑣, 𝑠𝑥) is a valid continuation of 𝑞. 𝑞 is equivalent to 𝑟, so (𝑣, 𝑠𝑥) is also a valid
continuation of 𝑟. In other words 𝑣𝑟𝑠𝑥 is in 𝐿.

Then (𝑣𝑟, 𝑥) is a valid continuation of 𝑠. 𝑡 is equivalent to 𝑠, so (𝑣𝑟, 𝑥) is also a valid
continuation of 𝑡. In other words 𝑣𝑟𝑡𝑥 is in 𝐿.

This means that (𝑣, 𝑥) is a valid continuation of 𝑟𝑡.

Bidirectional equivalence

Instead of considering one-sided continuations we can consider two sided ones. Given a
language 𝐿 and a list 𝑤 we can consider the set of pairs of lists (𝑣, 𝑥) such that 𝑣𝑤𝑥 is
in 𝐿.

We’ll say that two lists are bidirectionally equivalent if their sets of such continuations
are equal. This is an equivalence relation on the set of lists.

Suppose 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent.
Suppose also that (𝑣, 𝑥) is a continuation of 𝑞𝑠, i.e. that 𝑣𝑞𝑠𝑥 is in 𝐿.

Then (𝑣, 𝑠𝑥) is a valid continuation of 𝑞. 𝑞 is equivalent to 𝑟, so (𝑣, 𝑠𝑥) is also a valid
continuation of 𝑟. In other words 𝑣𝑟𝑠𝑥 is in 𝐿.

Then (𝑣𝑟, 𝑥) is a valid continuation of 𝑠. 𝑡 is equivalent to 𝑠, so (𝑣𝑟, 𝑥) is also a valid
continuation of 𝑡. In other words 𝑣𝑟𝑡𝑥 is in 𝐿.

This means that (𝑣, 𝑥) is a valid continuation of 𝑟𝑡.

Bidirectional equivalence

Instead of considering one-sided continuations we can consider two sided ones. Given a
language 𝐿 and a list 𝑤 we can consider the set of pairs of lists (𝑣, 𝑥) such that 𝑣𝑤𝑥 is
in 𝐿.

We’ll say that two lists are bidirectionally equivalent if their sets of such continuations
are equal. This is an equivalence relation on the set of lists.

Suppose 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent.
Suppose also that (𝑣, 𝑥) is a continuation of 𝑞𝑠, i.e. that 𝑣𝑞𝑠𝑥 is in 𝐿.

Then (𝑣, 𝑠𝑥) is a valid continuation of 𝑞. 𝑞 is equivalent to 𝑟, so (𝑣, 𝑠𝑥) is also a valid
continuation of 𝑟. In other words 𝑣𝑟𝑠𝑥 is in 𝐿.

Then (𝑣𝑟, 𝑥) is a valid continuation of 𝑠. 𝑡 is equivalent to 𝑠, so (𝑣𝑟, 𝑥) is also a valid
continuation of 𝑡. In other words 𝑣𝑟𝑡𝑥 is in 𝐿.

This means that (𝑣, 𝑥) is a valid continuation of 𝑟𝑡.

Bidirectional equivalence

Instead of considering one-sided continuations we can consider two sided ones. Given a
language 𝐿 and a list 𝑤 we can consider the set of pairs of lists (𝑣, 𝑥) such that 𝑣𝑤𝑥 is
in 𝐿.

We’ll say that two lists are bidirectionally equivalent if their sets of such continuations
are equal. This is an equivalence relation on the set of lists.

Suppose 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent.
Suppose also that (𝑣, 𝑥) is a continuation of 𝑞𝑠, i.e. that 𝑣𝑞𝑠𝑥 is in 𝐿.

Then (𝑣, 𝑠𝑥) is a valid continuation of 𝑞. 𝑞 is equivalent to 𝑟, so (𝑣, 𝑠𝑥) is also a valid
continuation of 𝑟. In other words 𝑣𝑟𝑠𝑥 is in 𝐿.

Then (𝑣𝑟, 𝑥) is a valid continuation of 𝑠. 𝑡 is equivalent to 𝑠, so (𝑣𝑟, 𝑥) is also a valid
continuation of 𝑡. In other words 𝑣𝑟𝑡𝑥 is in 𝐿.

This means that (𝑣, 𝑥) is a valid continuation of 𝑟𝑡.

Bidirectional equivalence

Instead of considering one-sided continuations we can consider two sided ones. Given a
language 𝐿 and a list 𝑤 we can consider the set of pairs of lists (𝑣, 𝑥) such that 𝑣𝑤𝑥 is
in 𝐿.

We’ll say that two lists are bidirectionally equivalent if their sets of such continuations
are equal. This is an equivalence relation on the set of lists.

Suppose 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent.
Suppose also that (𝑣, 𝑥) is a continuation of 𝑞𝑠, i.e. that 𝑣𝑞𝑠𝑥 is in 𝐿.

Then (𝑣, 𝑠𝑥) is a valid continuation of 𝑞. 𝑞 is equivalent to 𝑟, so (𝑣, 𝑠𝑥) is also a valid
continuation of 𝑟. In other words 𝑣𝑟𝑠𝑥 is in 𝐿.

Then (𝑣𝑟, 𝑥) is a valid continuation of 𝑠. 𝑡 is equivalent to 𝑠, so (𝑣𝑟, 𝑥) is also a valid
continuation of 𝑡. In other words 𝑣𝑟𝑡𝑥 is in 𝐿.

This means that (𝑣, 𝑥) is a valid continuation of 𝑟𝑡.

Bidirectional equivalence

Instead of considering one-sided continuations we can consider two sided ones. Given a
language 𝐿 and a list 𝑤 we can consider the set of pairs of lists (𝑣, 𝑥) such that 𝑣𝑤𝑥 is
in 𝐿.

We’ll say that two lists are bidirectionally equivalent if their sets of such continuations
are equal. This is an equivalence relation on the set of lists.

Suppose 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent.
Suppose also that (𝑣, 𝑥) is a continuation of 𝑞𝑠, i.e. that 𝑣𝑞𝑠𝑥 is in 𝐿.

Then (𝑣, 𝑠𝑥) is a valid continuation of 𝑞. 𝑞 is equivalent to 𝑟, so (𝑣, 𝑠𝑥) is also a valid
continuation of 𝑟. In other words 𝑣𝑟𝑠𝑥 is in 𝐿.

Then (𝑣𝑟, 𝑥) is a valid continuation of 𝑠. 𝑡 is equivalent to 𝑠, so (𝑣𝑟, 𝑥) is also a valid
continuation of 𝑡. In other words 𝑣𝑟𝑡𝑥 is in 𝐿.

This means that (𝑣, 𝑥) is a valid continuation of 𝑟𝑡.

The syntactic monoid

Suppose 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent.
We’ve just shown that if (𝑣, 𝑥) is a continuation of 𝑞𝑠 then it’s a continuation of 𝑟𝑡.

The same argument, but swapping 𝑞 and 𝑟 and 𝑠 and 𝑡, shows that if (𝑣, 𝑥) is a
continuation of 𝑟𝑡 then it’s a continuation of 𝑞𝑠.

In other words, 𝑞𝑠 and 𝑟𝑡 have the same set of continuations, so they are bidirectionally
equivalent.

If 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent then
𝑞𝑠 and 𝑟𝑡 are bidirectionally equivalent.

So bidirectional equivalence is compatible with the monoid structure on lists given by
concatenation.

We can therefore apply the quotient construction to get a monoid. This monoid is
called the syntactic monoid.

The syntactic monoid

Suppose 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent.
We’ve just shown that if (𝑣, 𝑥) is a continuation of 𝑞𝑠 then it’s a continuation of 𝑟𝑡.

The same argument, but swapping 𝑞 and 𝑟 and 𝑠 and 𝑡, shows that if (𝑣, 𝑥) is a
continuation of 𝑟𝑡 then it’s a continuation of 𝑞𝑠.

In other words, 𝑞𝑠 and 𝑟𝑡 have the same set of continuations, so they are bidirectionally
equivalent.

If 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent then
𝑞𝑠 and 𝑟𝑡 are bidirectionally equivalent.

So bidirectional equivalence is compatible with the monoid structure on lists given by
concatenation.

We can therefore apply the quotient construction to get a monoid. This monoid is
called the syntactic monoid.

The syntactic monoid

Suppose 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent.
We’ve just shown that if (𝑣, 𝑥) is a continuation of 𝑞𝑠 then it’s a continuation of 𝑟𝑡.

The same argument, but swapping 𝑞 and 𝑟 and 𝑠 and 𝑡, shows that if (𝑣, 𝑥) is a
continuation of 𝑟𝑡 then it’s a continuation of 𝑞𝑠.

In other words, 𝑞𝑠 and 𝑟𝑡 have the same set of continuations, so they are bidirectionally
equivalent.

If 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent then
𝑞𝑠 and 𝑟𝑡 are bidirectionally equivalent.

So bidirectional equivalence is compatible with the monoid structure on lists given by
concatenation.

We can therefore apply the quotient construction to get a monoid. This monoid is
called the syntactic monoid.

The syntactic monoid

Suppose 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent.
We’ve just shown that if (𝑣, 𝑥) is a continuation of 𝑞𝑠 then it’s a continuation of 𝑟𝑡.

The same argument, but swapping 𝑞 and 𝑟 and 𝑠 and 𝑡, shows that if (𝑣, 𝑥) is a
continuation of 𝑟𝑡 then it’s a continuation of 𝑞𝑠.

In other words, 𝑞𝑠 and 𝑟𝑡 have the same set of continuations, so they are bidirectionally
equivalent.

If 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent then
𝑞𝑠 and 𝑟𝑡 are bidirectionally equivalent.

So bidirectional equivalence is compatible with the monoid structure on lists given by
concatenation.

We can therefore apply the quotient construction to get a monoid. This monoid is
called the syntactic monoid.

The syntactic monoid

Suppose 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent.
We’ve just shown that if (𝑣, 𝑥) is a continuation of 𝑞𝑠 then it’s a continuation of 𝑟𝑡.

The same argument, but swapping 𝑞 and 𝑟 and 𝑠 and 𝑡, shows that if (𝑣, 𝑥) is a
continuation of 𝑟𝑡 then it’s a continuation of 𝑞𝑠.

In other words, 𝑞𝑠 and 𝑟𝑡 have the same set of continuations, so they are bidirectionally
equivalent.

If 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent then
𝑞𝑠 and 𝑟𝑡 are bidirectionally equivalent.

So bidirectional equivalence is compatible with the monoid structure on lists given by
concatenation.

We can therefore apply the quotient construction to get a monoid. This monoid is
called the syntactic monoid.

The syntactic monoid

Suppose 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent.
We’ve just shown that if (𝑣, 𝑥) is a continuation of 𝑞𝑠 then it’s a continuation of 𝑟𝑡.

The same argument, but swapping 𝑞 and 𝑟 and 𝑠 and 𝑡, shows that if (𝑣, 𝑥) is a
continuation of 𝑟𝑡 then it’s a continuation of 𝑞𝑠.

In other words, 𝑞𝑠 and 𝑟𝑡 have the same set of continuations, so they are bidirectionally
equivalent.

If 𝑞 and 𝑟 are bidirectionally equivalent and 𝑠 and 𝑡 are bidirectionally equivalent then
𝑞𝑠 and 𝑟𝑡 are bidirectionally equivalent.

So bidirectional equivalence is compatible with the monoid structure on lists given by
concatenation.

We can therefore apply the quotient construction to get a monoid. This monoid is
called the syntactic monoid.

Uses of the syntactic monoid

There’s a version of the Myhill-Nerode Theorem which says that the language is
regular if and only if its set of bidirectional equivalence classes is finite, i.e. if and only
if its syntactic monoid is finite.

As with the earlier version, this one effectively constructs a finite state automaton in
the regular case. This automaton isn’t minimal, but has some nice properties.

Defining properties of a language in terms of its syntactic monoid rather than its
grammar, finite state automaton or regular expression means you don’t have to show
that your definition is independent of which grammar, finite state automaton or regular
expression is chosen.

Uses of the syntactic monoid

There’s a version of the Myhill-Nerode Theorem which says that the language is
regular if and only if its set of bidirectional equivalence classes is finite, i.e. if and only
if its syntactic monoid is finite.

As with the earlier version, this one effectively constructs a finite state automaton in
the regular case. This automaton isn’t minimal, but has some nice properties.

Defining properties of a language in terms of its syntactic monoid rather than its
grammar, finite state automaton or regular expression means you don’t have to show
that your definition is independent of which grammar, finite state automaton or regular
expression is chosen.

Uses of the syntactic monoid

There’s a version of the Myhill-Nerode Theorem which says that the language is
regular if and only if its set of bidirectional equivalence classes is finite, i.e. if and only
if its syntactic monoid is finite.

As with the earlier version, this one effectively constructs a finite state automaton in
the regular case. This automaton isn’t minimal, but has some nice properties.

Defining properties of a language in terms of its syntactic monoid rather than its
grammar, finite state automaton or regular expression means you don’t have to show
that your definition is independent of which grammar, finite state automaton or regular
expression is chosen.

