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Another example
Let’s construct an FSA to recognise the language generated by the grammar

%%
kansai : heishinshiki | teikishiki ;

heishinshiki : H k0 | L error ;
teikishiki : H error | L k1 ;
k0 : H k2 | L k3 ;
k1 : H k3 | L k1 ;
k2 : | H k2 | L k3 ;
k3 : | H error | L k3 ;
error : H error : L error ;

There will be 7 states, heishinshiki, teikishiki, k0, k1, k2, k3 and error.

heishinshiki and teikishiki will be start states. k2 and k3 will be accepting states.

Each state has two arrows coming out, one labelled H and one labelled L, although we
can combine these for the error state.
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Figure 1: A finite state automaton for the kansai language

Does this finite state automaton accept the string LHLL?

What about LLHL?



Questions about FSAs

• What if someone gave us a left regular grammar rather than a right regular
grammar?

• These finite state automata may be non-deterministic. Can we get deterministic
ones?

• Can we implement set operations on languages, i.e. union, intersection, relative
complement, at the level of finite state automata?

• Can we implement reversal?
• What about concatenation and Kleene star?

I’ll answer some of these and defer others until we have more points of view.



Eliminating non-determinism

There are two sources of non-determinism: multiple initial states and multiple possible
transitions on reading a single token in a single state.

We say a finite state automaton is deterministic if there is at most one start state and
at most one allowed transition from any given state on any given input token.

We say it’s strongly deterministic if there’s also at least one start state and at least one
allowed transition from any given state on any given input token.

There is at most one state a deterministic finite state automata could be in after
reading any particular list of tokens.

It might not be in any state though. The computation may have failed before getting
to this point. That can’t happen for strongly deterministic FSAs though.

Given a non-deterministic finite state automaton can we find a deterministic one which
recognises the same language? Can we find a strongly deterministic one?



The Tokyo FSA revisited
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Figure 2: Yes, we’re still looking at this graph

After reading 0 tokens there is a set of four states we could be in.

After reading 1 token, if it’s an H we could be in t0 or error. If it’s an L we could be
in error, t1 or t2.

What about two tokens in? After HH or LL we could only be in error. After HL we
could be in t3 or error. After LH we could be in error, t4 or t5.



The Tokyo FSA revisited
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Figure 3: Yes, we’re still looking at this graph

After HH or LL we could only be in error. After HL we could be in t3 or error. After
LH we could be in error, t4 or t5.

After HHH, HHL, LLH or LLL we must be in error. Also after HLH.

After HLL we could be in t3 or error. After LHH we could be in error, t4 or t5. After
LHL we could be in error or t3.

These sets of states are all ones we’ve seen before, so no matter how many more
tokens we read we won’t see any new ones.



The Tokyo FSA revisited.

The sets of states possible states are different depending on what we’ve read, but they
are limited to

• A0: atamadaka, nakadaka, odaka, heiban
• A1: t0, error
• A2: error, t1, t2
• A3: error
• A4: t3, error
• A5: error, t4, t5

Initially we’re in one of the members of A0. If we’re a member of A4 or A5 at the end
the we could be in the state t3 or t5 and so the input should be accepted.

For each of the six sets of states above there’s one we transition to on reading an H
and another one we transition to on reading an L.

From this information we can construct a strongly deterministic finite state automaton
which recognises the same language.



A strongly deterministic finite state automaton
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Figure 4: Finally, a simple graph!

The key idea is to construct a new finite state automaton whose states represent sets
of states in the original one. There are two variants of this procedure.

• Identify those sets which are actually reachable with some input. In the example
there are 6 of these. This is what you want to do in practical problems.

• Just use all sets of states. In the example there are 2048 of these. Some won’t be
reachable, but who cares? This is what we usually do in theoretical problems.



Another strongly deterministic finite state automaton

Of course we can do the same thing for the Kansai language
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Figure 5: Another simple graph



FSAs for tokyo and kansai languages
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Figure 6: FSA for tokyo
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Figure 7: FSA for Kansai

Can we build an FSA which accepts only those strings accepted by both of these?



Intersection

“Can we build an FSA which accepts only those strings accepted by both of these?” is
the same question as “can we construct a recogniser for the intersection of the two
languages?”

How would you manually check that a string is recognised by both?
• For each FSA check go through the input token by token and check where you

end up.
• For each input token look at each FSA and see what state it moves to.

The second of these is something we can turn into a finite state automaton. Its states
will correspond to pairs of states for the two original automata.



An FSA for the intersection
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Figure 8: Both FSAs

We start in A0B0. If the first character is H we move to A1B1. If it’s L we move to A2B2.

If the first two characters are HH we move to A3B3. If they’re HL we move to A4B4. If
they’re LH we move to A5B4. If they’re LL we move to A3B2.

The possibilities after three characters are A3B3, A3B4, A3B5, A4B4, A5B5, A4B4, A3B4
and A3B2. Only six of those are distinct though.

The only new possibility after four characters is A4B5. After that there’s nothing new.



An FSA for the intersection, continued

Out of the 36 state combinations we might have seen only 11 are reachable. We can
form a finite state automaton with those combinations as its states.
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Figure 9: An FSA for the intersection

The accepting states are the ones where both automata are accepting.


