
MAU22C00 Lecture 26

John Stalker

Trinity College Dublin



Closure properties

Can we construct a right regular grammar which generates every string which is
generated by the tokyo (right regular) grammar or the kansai (right regular) grammar?

Yes, it’s very easy!

%%
tokyo_or_kansai : atamadaka | nakadaka | odaka | heiban

| heishinshiki | teikishiki ;

and then the rules from each grammar, other than the rules for the tokyo or kansai
symbols.

I did something slightly dangerous here, but it’s okay. Both grammars have an error
symbol. The safest procedure is to rename symbols to avoid name clashes.

Here it’s okay because the rules for those symbols are the same in each grammar.

If you’re automating this you’d just rename every symbol automatically, e.g. with a
prefix to identify which grammar it came from.



Closure properties

Can we construct a right regular grammar which generates every string which is
generated by the tokyo (right regular) grammar or the kansai (right regular) grammar?

Yes, it’s very easy!

%%
tokyo_or_kansai : atamadaka | nakadaka | odaka | heiban

| heishinshiki | teikishiki ;

and then the rules from each grammar, other than the rules for the tokyo or kansai
symbols.

I did something slightly dangerous here, but it’s okay. Both grammars have an error
symbol. The safest procedure is to rename symbols to avoid name clashes.

Here it’s okay because the rules for those symbols are the same in each grammar.

If you’re automating this you’d just rename every symbol automatically, e.g. with a
prefix to identify which grammar it came from.



Closure properties

Can we construct a right regular grammar which generates every string which is
generated by the tokyo (right regular) grammar or the kansai (right regular) grammar?

Yes, it’s very easy!

%%
tokyo_or_kansai : atamadaka | nakadaka | odaka | heiban

| heishinshiki | teikishiki ;

and then the rules from each grammar, other than the rules for the tokyo or kansai
symbols.

I did something slightly dangerous here, but it’s okay. Both grammars have an error
symbol. The safest procedure is to rename symbols to avoid name clashes.

Here it’s okay because the rules for those symbols are the same in each grammar.

If you’re automating this you’d just rename every symbol automatically, e.g. with a
prefix to identify which grammar it came from.



Closure properties

Can we construct a right regular grammar which generates every string which is
generated by the tokyo (right regular) grammar or the kansai (right regular) grammar?

Yes, it’s very easy!

%%
tokyo_or_kansai : atamadaka | nakadaka | odaka | heiban

| heishinshiki | teikishiki ;

and then the rules from each grammar, other than the rules for the tokyo or kansai
symbols.

I did something slightly dangerous here, but it’s okay. Both grammars have an error
symbol. The safest procedure is to rename symbols to avoid name clashes.

Here it’s okay because the rules for those symbols are the same in each grammar.

If you’re automating this you’d just rename every symbol automatically, e.g. with a
prefix to identify which grammar it came from.



Closure properties

Can we construct a right regular grammar which generates every string which is
generated by the tokyo (right regular) grammar or the kansai (right regular) grammar?

Yes, it’s very easy!

%%
tokyo_or_kansai : atamadaka | nakadaka | odaka | heiban

| heishinshiki | teikishiki ;

and then the rules from each grammar, other than the rules for the tokyo or kansai
symbols.

I did something slightly dangerous here, but it’s okay. Both grammars have an error
symbol. The safest procedure is to rename symbols to avoid name clashes.

Here it’s okay because the rules for those symbols are the same in each grammar.

If you’re automating this you’d just rename every symbol automatically, e.g. with a
prefix to identify which grammar it came from.



More closure properties

Can we construct a grammar which generates those strings which appear in both
grammars? Or in one but not the other?

Yes, but this is very non-obvious. To understand this we’ll need a different point of
view.

Can we construct a grammar which recognises those strings which are the
concatenation of a string from one language with one from the other?

Yes. It’s trickier than the union of two languages though. See the notes for details.

Can we construct a grammar for the language whose strings are the concatenations of
zero or more strings from a language?

Yes. See the notes for details.

In general, given a language the language of concentations of members of it is called
its Kleene star.



More closure properties

Can we construct a grammar which generates those strings which appear in both
grammars? Or in one but not the other?

Yes, but this is very non-obvious. To understand this we’ll need a different point of
view.

Can we construct a grammar which recognises those strings which are the
concatenation of a string from one language with one from the other?

Yes. It’s trickier than the union of two languages though. See the notes for details.

Can we construct a grammar for the language whose strings are the concatenations of
zero or more strings from a language?

Yes. See the notes for details.

In general, given a language the language of concentations of members of it is called
its Kleene star.



More closure properties

Can we construct a grammar which generates those strings which appear in both
grammars? Or in one but not the other?

Yes, but this is very non-obvious. To understand this we’ll need a different point of
view.

Can we construct a grammar which recognises those strings which are the
concatenation of a string from one language with one from the other?

Yes. It’s trickier than the union of two languages though. See the notes for details.

Can we construct a grammar for the language whose strings are the concatenations of
zero or more strings from a language?

Yes. See the notes for details.

In general, given a language the language of concentations of members of it is called
its Kleene star.



More closure properties

Can we construct a grammar which generates those strings which appear in both
grammars? Or in one but not the other?

Yes, but this is very non-obvious. To understand this we’ll need a different point of
view.

Can we construct a grammar which recognises those strings which are the
concatenation of a string from one language with one from the other?

Yes. It’s trickier than the union of two languages though. See the notes for details.

Can we construct a grammar for the language whose strings are the concatenations of
zero or more strings from a language?

Yes. See the notes for details.

In general, given a language the language of concentations of members of it is called
its Kleene star.



More closure properties

Can we construct a grammar which generates those strings which appear in both
grammars? Or in one but not the other?

Yes, but this is very non-obvious. To understand this we’ll need a different point of
view.

Can we construct a grammar which recognises those strings which are the
concatenation of a string from one language with one from the other?

Yes. It’s trickier than the union of two languages though. See the notes for details.

Can we construct a grammar for the language whose strings are the concatenations of
zero or more strings from a language?

Yes. See the notes for details.

In general, given a language the language of concentations of members of it is called
its Kleene star.



More closure properties

Can we construct a grammar which generates those strings which appear in both
grammars? Or in one but not the other?

Yes, but this is very non-obvious. To understand this we’ll need a different point of
view.

Can we construct a grammar which recognises those strings which are the
concatenation of a string from one language with one from the other?

Yes. It’s trickier than the union of two languages though. See the notes for details.

Can we construct a grammar for the language whose strings are the concatenations of
zero or more strings from a language?

Yes. See the notes for details.

In general, given a language the language of concentations of members of it is called
its Kleene star.



More closure properties

Can we construct a grammar which generates those strings which appear in both
grammars? Or in one but not the other?

Yes, but this is very non-obvious. To understand this we’ll need a different point of
view.

Can we construct a grammar which recognises those strings which are the
concatenation of a string from one language with one from the other?

Yes. It’s trickier than the union of two languages though. See the notes for details.

Can we construct a grammar for the language whose strings are the concatenations of
zero or more strings from a language?

Yes. See the notes for details.

In general, given a language the language of concentations of members of it is called
its Kleene star.



Reversal

What about generating the strings in a reversed language?

It’s easy to get a right regular grammar from a reversed language from a left regular
grammar for the original language and vice versa. It’s hard to get a right regular
grammar from a reversed language from a right regular grammar for the original
language or left from left.

Like intersection or relative complement, this requires a new point of view.



Reversal

What about generating the strings in a reversed language?

It’s easy to get a right regular grammar from a reversed language from a left regular
grammar for the original language and vice versa. It’s hard to get a right regular
grammar from a reversed language from a right regular grammar for the original
language or left from left.

Like intersection or relative complement, this requires a new point of view.



Reversal

What about generating the strings in a reversed language?

It’s easy to get a right regular grammar from a reversed language from a left regular
grammar for the original language and vice versa. It’s hard to get a right regular
grammar from a reversed language from a right regular grammar for the original
language or left from left.

Like intersection or relative complement, this requires a new point of view.



Finite state automata

We discussed finite state automata informally a long time ago. Formally a finite state
automaton is defined by the following:

• A set 𝐴 of tokens,

• A set 𝑆 of states,
• A subset 𝐼 of 𝑆, the initial states,
• A subset 𝐹 of 𝑆, the accepting states, and
• A subset 𝑇 of 𝑆 × 𝐴 × 𝑆, the transition relation.

The automaton must start in one of the states in 𝐼.

(𝑟, 𝑎, 𝑠) ∈ 𝑇 if the automaton can jump to the state 𝑠 on reading an 𝑎 while in state 𝑟.

There might be more than one member of 𝐼 and for a given 𝑟 and 𝑎 there might be
more than one 𝑠 with (𝑟, 𝑎, 𝑠) ∈ 𝑇, so this automaton may be non-deterministic.

The automaton is said to accept the input if it can end up in a member of 𝐹 at the end
of the input. The set of inputs it accepts is the language it recognises.



Finite state automata

We discussed finite state automata informally a long time ago. Formally a finite state
automaton is defined by the following:

• A set 𝐴 of tokens,
• A set 𝑆 of states,

• A subset 𝐼 of 𝑆, the initial states,
• A subset 𝐹 of 𝑆, the accepting states, and
• A subset 𝑇 of 𝑆 × 𝐴 × 𝑆, the transition relation.

The automaton must start in one of the states in 𝐼.

(𝑟, 𝑎, 𝑠) ∈ 𝑇 if the automaton can jump to the state 𝑠 on reading an 𝑎 while in state 𝑟.

There might be more than one member of 𝐼 and for a given 𝑟 and 𝑎 there might be
more than one 𝑠 with (𝑟, 𝑎, 𝑠) ∈ 𝑇, so this automaton may be non-deterministic.

The automaton is said to accept the input if it can end up in a member of 𝐹 at the end
of the input. The set of inputs it accepts is the language it recognises.



Finite state automata

We discussed finite state automata informally a long time ago. Formally a finite state
automaton is defined by the following:

• A set 𝐴 of tokens,
• A set 𝑆 of states,
• A subset 𝐼 of 𝑆, the initial states,

• A subset 𝐹 of 𝑆, the accepting states, and
• A subset 𝑇 of 𝑆 × 𝐴 × 𝑆, the transition relation.

The automaton must start in one of the states in 𝐼.

(𝑟, 𝑎, 𝑠) ∈ 𝑇 if the automaton can jump to the state 𝑠 on reading an 𝑎 while in state 𝑟.

There might be more than one member of 𝐼 and for a given 𝑟 and 𝑎 there might be
more than one 𝑠 with (𝑟, 𝑎, 𝑠) ∈ 𝑇, so this automaton may be non-deterministic.

The automaton is said to accept the input if it can end up in a member of 𝐹 at the end
of the input. The set of inputs it accepts is the language it recognises.



Finite state automata

We discussed finite state automata informally a long time ago. Formally a finite state
automaton is defined by the following:

• A set 𝐴 of tokens,
• A set 𝑆 of states,
• A subset 𝐼 of 𝑆, the initial states,
• A subset 𝐹 of 𝑆, the accepting states, and

• A subset 𝑇 of 𝑆 × 𝐴 × 𝑆, the transition relation.

The automaton must start in one of the states in 𝐼.

(𝑟, 𝑎, 𝑠) ∈ 𝑇 if the automaton can jump to the state 𝑠 on reading an 𝑎 while in state 𝑟.

There might be more than one member of 𝐼 and for a given 𝑟 and 𝑎 there might be
more than one 𝑠 with (𝑟, 𝑎, 𝑠) ∈ 𝑇, so this automaton may be non-deterministic.

The automaton is said to accept the input if it can end up in a member of 𝐹 at the end
of the input. The set of inputs it accepts is the language it recognises.



Finite state automata

We discussed finite state automata informally a long time ago. Formally a finite state
automaton is defined by the following:

• A set 𝐴 of tokens,
• A set 𝑆 of states,
• A subset 𝐼 of 𝑆, the initial states,
• A subset 𝐹 of 𝑆, the accepting states, and
• A subset 𝑇 of 𝑆 × 𝐴 × 𝑆, the transition relation.

The automaton must start in one of the states in 𝐼.

(𝑟, 𝑎, 𝑠) ∈ 𝑇 if the automaton can jump to the state 𝑠 on reading an 𝑎 while in state 𝑟.

There might be more than one member of 𝐼 and for a given 𝑟 and 𝑎 there might be
more than one 𝑠 with (𝑟, 𝑎, 𝑠) ∈ 𝑇, so this automaton may be non-deterministic.

The automaton is said to accept the input if it can end up in a member of 𝐹 at the end
of the input. The set of inputs it accepts is the language it recognises.



Finite state automata

We discussed finite state automata informally a long time ago. Formally a finite state
automaton is defined by the following:

• A set 𝐴 of tokens,
• A set 𝑆 of states,
• A subset 𝐼 of 𝑆, the initial states,
• A subset 𝐹 of 𝑆, the accepting states, and
• A subset 𝑇 of 𝑆 × 𝐴 × 𝑆, the transition relation.

The automaton must start in one of the states in 𝐼.

(𝑟, 𝑎, 𝑠) ∈ 𝑇 if the automaton can jump to the state 𝑠 on reading an 𝑎 while in state 𝑟.

There might be more than one member of 𝐼 and for a given 𝑟 and 𝑎 there might be
more than one 𝑠 with (𝑟, 𝑎, 𝑠) ∈ 𝑇, so this automaton may be non-deterministic.

The automaton is said to accept the input if it can end up in a member of 𝐹 at the end
of the input. The set of inputs it accepts is the language it recognises.



Finite state automata

We discussed finite state automata informally a long time ago. Formally a finite state
automaton is defined by the following:

• A set 𝐴 of tokens,
• A set 𝑆 of states,
• A subset 𝐼 of 𝑆, the initial states,
• A subset 𝐹 of 𝑆, the accepting states, and
• A subset 𝑇 of 𝑆 × 𝐴 × 𝑆, the transition relation.

The automaton must start in one of the states in 𝐼.

(𝑟, 𝑎, 𝑠) ∈ 𝑇 if the automaton can jump to the state 𝑠 on reading an 𝑎 while in state 𝑟.

There might be more than one member of 𝐼 and for a given 𝑟 and 𝑎 there might be
more than one 𝑠 with (𝑟, 𝑎, 𝑠) ∈ 𝑇, so this automaton may be non-deterministic.

The automaton is said to accept the input if it can end up in a member of 𝐹 at the end
of the input. The set of inputs it accepts is the language it recognises.



Finite state automata

We discussed finite state automata informally a long time ago. Formally a finite state
automaton is defined by the following:

• A set 𝐴 of tokens,
• A set 𝑆 of states,
• A subset 𝐼 of 𝑆, the initial states,
• A subset 𝐹 of 𝑆, the accepting states, and
• A subset 𝑇 of 𝑆 × 𝐴 × 𝑆, the transition relation.

The automaton must start in one of the states in 𝐼.

(𝑟, 𝑎, 𝑠) ∈ 𝑇 if the automaton can jump to the state 𝑠 on reading an 𝑎 while in state 𝑟.

There might be more than one member of 𝐼 and for a given 𝑟 and 𝑎 there might be
more than one 𝑠 with (𝑟, 𝑎, 𝑠) ∈ 𝑇, so this automaton may be non-deterministic.

The automaton is said to accept the input if it can end up in a member of 𝐹 at the end
of the input. The set of inputs it accepts is the language it recognises.



Finite state automata

We discussed finite state automata informally a long time ago. Formally a finite state
automaton is defined by the following:

• A set 𝐴 of tokens,
• A set 𝑆 of states,
• A subset 𝐼 of 𝑆, the initial states,
• A subset 𝐹 of 𝑆, the accepting states, and
• A subset 𝑇 of 𝑆 × 𝐴 × 𝑆, the transition relation.

The automaton must start in one of the states in 𝐼.

(𝑟, 𝑎, 𝑠) ∈ 𝑇 if the automaton can jump to the state 𝑠 on reading an 𝑎 while in state 𝑟.

There might be more than one member of 𝐼 and for a given 𝑟 and 𝑎 there might be
more than one 𝑠 with (𝑟, 𝑎, 𝑠) ∈ 𝑇, so this automaton may be non-deterministic.

The automaton is said to accept the input if it can end up in a member of 𝐹 at the end
of the input. The set of inputs it accepts is the language it recognises.



Finite state automata

We discussed finite state automata informally a long time ago. Formally a finite state
automaton is defined by the following:

• A set 𝐴 of tokens,
• A set 𝑆 of states,
• A subset 𝐼 of 𝑆, the initial states,
• A subset 𝐹 of 𝑆, the accepting states, and
• A subset 𝑇 of 𝑆 × 𝐴 × 𝑆, the transition relation.

The automaton must start in one of the states in 𝐼.

(𝑟, 𝑎, 𝑠) ∈ 𝑇 if the automaton can jump to the state 𝑠 on reading an 𝑎 while in state 𝑟.

There might be more than one member of 𝐼 and for a given 𝑟 and 𝑎 there might be
more than one 𝑠 with (𝑟, 𝑎, 𝑠) ∈ 𝑇, so this automaton may be non-deterministic.

The automaton is said to accept the input if it can end up in a member of 𝐹 at the end
of the input. The set of inputs it accepts is the language it recognises.



Example
Last time we considered a language generated by the following right regular grammar:

%%
tokyo : atamadaka | nakadaka | odaka | heiban ;

atamadaka : H t0 | L error ;
nakadaka : H error | L t1 ;
odaka : H error | L t2 ;
heiban : H error | L t2 ;
t0 : H error | L t3 ;
t1 : H t4 | L error ;
t2 : H t5 | L error ;
t3 : | H error | L t3 ;
t4 : H t4 | L t3 ;
t5 : | H t5 | L error ;
error : H error : L error ;

Can we construct a finite automaton which recognises it?



Example
Last time we considered a language generated by the following right regular grammar:

%%
tokyo : atamadaka | nakadaka | odaka | heiban ;

atamadaka : H t0 | L error ;
nakadaka : H error | L t1 ;
odaka : H error | L t2 ;
heiban : H error | L t2 ;
t0 : H error | L t3 ;
t1 : H t4 | L error ;
t2 : H t5 | L error ;
t3 : | H error | L t3 ;
t4 : H t4 | L t3 ;
t5 : | H t5 | L error ;
error : H error : L error ;

Can we construct a finite automaton which recognises it?



Example, continued

atamadaka

nakadaka

odaka

heiban

t3

L

error

H

t5

H
L

t0
H

L

H

t1
L

H

t2

L

H

L

L

H

H,L

L

t4H

H

L

L

H

Figure 1: A finite state automaton for the tokyo language



Example, continued

atamadaka

nakadaka

odaka

heiban

t3

L

error

H

t5

H
L

t0
H

L

H

t1
L

H

t2

L

H

L

L

H

H,L

L

t4H

H

L

L

H

Figure 2: The same finite state automaton

Let’s see how this responds to the input LHLL.

It could start in atamadaka. Then it would go to error on the first L and stay there.
error is not an accepting state.

It could start in nakadaka. Then it would go to t1, t4, t3 and t3, in that order, and
would finish in the accepting state t3.



Example, continued

atamadaka

nakadaka

odaka

heiban

t3

L

error

H

t5

H
L

t0
H

L

H

t1
L

H

t2

L

H

L

L

H

H,L

L

t4H

H

L

L

H

Figure 2: The same finite state automaton

Let’s see how this responds to the input LHLL.

It could start in atamadaka. Then it would go to error on the first L and stay there.
error is not an accepting state.

It could start in nakadaka. Then it would go to t1, t4, t3 and t3, in that order, and
would finish in the accepting state t3.



Example, continued

atamadaka

nakadaka

odaka

heiban

t3

L

error

H

t5

H
L

t0
H

L

H

t1
L

H

t2

L

H

L

L

H

H,L

L

t4H

H

L

L

H

Figure 2: The same finite state automaton

Let’s see how this responds to the input LHLL.

It could start in atamadaka. Then it would go to error on the first L and stay there.
error is not an accepting state.

It could start in nakadaka. Then it would go to t1, t4, t3 and t3, in that order, and
would finish in the accepting state t3.



Example, continued

atamadaka

nakadaka

odaka

heiban

t3

L

error

H

t5

H
L

t0
H

L

H

t1
L

H

t2

L

H

L

L

H

H,L

L

t4H

H

L

L

H

Figure 3: The same finite state automaton, yet again

It could start in odaka. Then it would go to t2, then t5, and then get stuck in error.
The same would happen if we started in heiban.

This is not a democracy! The input is accepted because some computational path
succeeds, even though the majority don’t. The string LHLL is in the language.



Example, continued

atamadaka

nakadaka

odaka

heiban

t3

L

error

H

t5

H
L

t0
H

L

H

t1
L

H

t2

L

H

L

L

H

H,L

L

t4H

H

L

L

H

Figure 3: The same finite state automaton, yet again

It could start in odaka. Then it would go to t2, then t5, and then get stuck in error.
The same would happen if we started in heiban.

This is not a democracy! The input is accepted because some computational path
succeeds, even though the majority don’t. The string LHLL is in the language.



Example, continued

atamadaka

nakadaka

odaka

heiban

t3

L

error

H

t5

H
L

t0
H

L

H

t1
L

H

t2

L

H

L

L

H

H,L

L

t4H

H

L

L

H

Figure 3: The same finite state automaton, yet again

It could start in odaka. Then it would go to t2, then t5, and then get stuck in error.
The same would happen if we started in heiban.

This is not a democracy! The input is accepted because some computational path
succeeds, even though the majority don’t. The string LHLL is in the language.



Example, continued

atamadaka

nakadaka

odaka

heiban

t3

L

error

H

t5

H
L

t0
H

L

H

t1
L

H

t2

L

H

L

L

H

H,L

L

t4H

H

L

L

H

Figure 4: Are you sick of this finite state automaton yet?

How about the input LLHL?

If it starts in atamadaka then it gets stuck in error immediately. If it starts in
nakadaka then it goes to t1 before getting stuck in error. If it starts in odaka or
heiban then it goes to t2 before getting stuck in error.

It can’t finish in an accepting state so the string LLHL is not in the language.



Example, continued

atamadaka

nakadaka

odaka

heiban

t3

L

error

H

t5

H
L

t0
H

L

H

t1
L

H

t2

L

H

L

L

H

H,L

L

t4H

H

L

L

H

Figure 4: Are you sick of this finite state automaton yet?

How about the input LLHL?

If it starts in atamadaka then it gets stuck in error immediately. If it starts in
nakadaka then it goes to t1 before getting stuck in error. If it starts in odaka or
heiban then it goes to t2 before getting stuck in error.

It can’t finish in an accepting state so the string LLHL is not in the language.



Example, continued

atamadaka

nakadaka

odaka

heiban

t3

L

error

H

t5

H
L

t0
H

L

H

t1
L

H

t2

L

H

L

L

H

H,L

L

t4H

H

L

L

H

Figure 4: Are you sick of this finite state automaton yet?

How about the input LLHL?

If it starts in atamadaka then it gets stuck in error immediately. If it starts in
nakadaka then it goes to t1 before getting stuck in error. If it starts in odaka or
heiban then it goes to t2 before getting stuck in error.

It can’t finish in an accepting state so the string LLHL is not in the language.



Example, continued

atamadaka

nakadaka

odaka

heiban

t3

L

error

H

t5

H
L

t0
H

L

H

t1
L

H

t2

L

H

L

L

H

H,L

L

t4H

H

L

L

H

Figure 4: Are you sick of this finite state automaton yet?

How about the input LLHL?

If it starts in atamadaka then it gets stuck in error immediately. If it starts in
nakadaka then it goes to t1 before getting stuck in error. If it starts in odaka or
heiban then it goes to t2 before getting stuck in error.

It can’t finish in an accepting state so the string LLHL is not in the language.



From the grammar to the automaton

Maybe you noticed a connection between the automaton and the FSA?

To construct a finite state automaton from a right regular grammar we do the
following:

• Draw in a state for each non-terminal symbol, i.e. write down its name somewhere
and circle it.

• If the empty list is an alternate for a symbol then it will be an accepting state, so
circle it again.

• Every other alternate is in the rule for some non-terminal and refers to some
non-terminal. Draw an arrow from the first to the second.

• If it’s not the rule for the start symbol then there’s also a non-terminal symbol in
that alternate. Label the arrow with it. If there would be multiple arrows between
those states with different labels you can amalgamate them.

• Erase the state for the start symbol, but keep the arrows leading out from it.



From the grammar to the automaton

Maybe you noticed a connection between the automaton and the FSA?

To construct a finite state automaton from a right regular grammar we do the
following:

• Draw in a state for each non-terminal symbol, i.e. write down its name somewhere
and circle it.

• If the empty list is an alternate for a symbol then it will be an accepting state, so
circle it again.

• Every other alternate is in the rule for some non-terminal and refers to some
non-terminal. Draw an arrow from the first to the second.

• If it’s not the rule for the start symbol then there’s also a non-terminal symbol in
that alternate. Label the arrow with it. If there would be multiple arrows between
those states with different labels you can amalgamate them.

• Erase the state for the start symbol, but keep the arrows leading out from it.



From the grammar to the automaton

Maybe you noticed a connection between the automaton and the FSA?

To construct a finite state automaton from a right regular grammar we do the
following:

• Draw in a state for each non-terminal symbol, i.e. write down its name somewhere
and circle it.

• If the empty list is an alternate for a symbol then it will be an accepting state, so
circle it again.

• Every other alternate is in the rule for some non-terminal and refers to some
non-terminal. Draw an arrow from the first to the second.

• If it’s not the rule for the start symbol then there’s also a non-terminal symbol in
that alternate. Label the arrow with it. If there would be multiple arrows between
those states with different labels you can amalgamate them.

• Erase the state for the start symbol, but keep the arrows leading out from it.



From the grammar to the automaton

Maybe you noticed a connection between the automaton and the FSA?

To construct a finite state automaton from a right regular grammar we do the
following:

• Draw in a state for each non-terminal symbol, i.e. write down its name somewhere
and circle it.

• If the empty list is an alternate for a symbol then it will be an accepting state, so
circle it again.

• Every other alternate is in the rule for some non-terminal and refers to some
non-terminal. Draw an arrow from the first to the second.

• If it’s not the rule for the start symbol then there’s also a non-terminal symbol in
that alternate. Label the arrow with it. If there would be multiple arrows between
those states with different labels you can amalgamate them.

• Erase the state for the start symbol, but keep the arrows leading out from it.



From the grammar to the automaton

Maybe you noticed a connection between the automaton and the FSA?

To construct a finite state automaton from a right regular grammar we do the
following:

• Draw in a state for each non-terminal symbol, i.e. write down its name somewhere
and circle it.

• If the empty list is an alternate for a symbol then it will be an accepting state, so
circle it again.

• Every other alternate is in the rule for some non-terminal and refers to some
non-terminal. Draw an arrow from the first to the second.

• If it’s not the rule for the start symbol then there’s also a non-terminal symbol in
that alternate. Label the arrow with it. If there would be multiple arrows between
those states with different labels you can amalgamate them.

• Erase the state for the start symbol, but keep the arrows leading out from it.



From the grammar to the automaton

Maybe you noticed a connection between the automaton and the FSA?

To construct a finite state automaton from a right regular grammar we do the
following:

• Draw in a state for each non-terminal symbol, i.e. write down its name somewhere
and circle it.

• If the empty list is an alternate for a symbol then it will be an accepting state, so
circle it again.

• Every other alternate is in the rule for some non-terminal and refers to some
non-terminal. Draw an arrow from the first to the second.

• If it’s not the rule for the start symbol then there’s also a non-terminal symbol in
that alternate. Label the arrow with it. If there would be multiple arrows between
those states with different labels you can amalgamate them.

• Erase the state for the start symbol, but keep the arrows leading out from it.



Why?

Why does this work?

The label on each state identifies the symbol which generates those strings which are
valid (right) continuations of the input seen so far.

The start states are valid (right) continuations when you’ve seen no input.

The accepting states are the ones where no further input is needed to get a valid string.

Suppose the rule for symbol 𝐴 has as an alternate 𝑐𝐵, where 𝑐 is a terminal symbol and
𝐵 is non-terminal symbol. Then when we’re in state 𝐴 all the strings generated by 𝐵
will be valid continuations after reading a 𝑐, so on the input 𝑐 we can jump from 𝐴 to 𝐵.

The restrictions I imposed on the phrase structure grammar in the definition of “right
regular” were precisely the ones needed to make this construction work.



Why?

Why does this work?

The label on each state identifies the symbol which generates those strings which are
valid (right) continuations of the input seen so far.

The start states are valid (right) continuations when you’ve seen no input.

The accepting states are the ones where no further input is needed to get a valid string.

Suppose the rule for symbol 𝐴 has as an alternate 𝑐𝐵, where 𝑐 is a terminal symbol and
𝐵 is non-terminal symbol. Then when we’re in state 𝐴 all the strings generated by 𝐵
will be valid continuations after reading a 𝑐, so on the input 𝑐 we can jump from 𝐴 to 𝐵.

The restrictions I imposed on the phrase structure grammar in the definition of “right
regular” were precisely the ones needed to make this construction work.



Why?

Why does this work?

The label on each state identifies the symbol which generates those strings which are
valid (right) continuations of the input seen so far.

The start states are valid (right) continuations when you’ve seen no input.

The accepting states are the ones where no further input is needed to get a valid string.

Suppose the rule for symbol 𝐴 has as an alternate 𝑐𝐵, where 𝑐 is a terminal symbol and
𝐵 is non-terminal symbol. Then when we’re in state 𝐴 all the strings generated by 𝐵
will be valid continuations after reading a 𝑐, so on the input 𝑐 we can jump from 𝐴 to 𝐵.

The restrictions I imposed on the phrase structure grammar in the definition of “right
regular” were precisely the ones needed to make this construction work.



Why?

Why does this work?

The label on each state identifies the symbol which generates those strings which are
valid (right) continuations of the input seen so far.

The start states are valid (right) continuations when you’ve seen no input.

The accepting states are the ones where no further input is needed to get a valid string.

Suppose the rule for symbol 𝐴 has as an alternate 𝑐𝐵, where 𝑐 is a terminal symbol and
𝐵 is non-terminal symbol. Then when we’re in state 𝐴 all the strings generated by 𝐵
will be valid continuations after reading a 𝑐, so on the input 𝑐 we can jump from 𝐴 to 𝐵.

The restrictions I imposed on the phrase structure grammar in the definition of “right
regular” were precisely the ones needed to make this construction work.



Why?

Why does this work?

The label on each state identifies the symbol which generates those strings which are
valid (right) continuations of the input seen so far.

The start states are valid (right) continuations when you’ve seen no input.

The accepting states are the ones where no further input is needed to get a valid string.

Suppose the rule for symbol 𝐴 has as an alternate 𝑐𝐵, where 𝑐 is a terminal symbol and
𝐵 is non-terminal symbol. Then when we’re in state 𝐴 all the strings generated by 𝐵
will be valid continuations after reading a 𝑐, so on the input 𝑐 we can jump from 𝐴 to 𝐵.

The restrictions I imposed on the phrase structure grammar in the definition of “right
regular” were precisely the ones needed to make this construction work.



Why?

Why does this work?

The label on each state identifies the symbol which generates those strings which are
valid (right) continuations of the input seen so far.

The start states are valid (right) continuations when you’ve seen no input.

The accepting states are the ones where no further input is needed to get a valid string.

Suppose the rule for symbol 𝐴 has as an alternate 𝑐𝐵, where 𝑐 is a terminal symbol and
𝐵 is non-terminal symbol. Then when we’re in state 𝐴 all the strings generated by 𝐵
will be valid continuations after reading a 𝑐, so on the input 𝑐 we can jump from 𝐴 to 𝐵.

The restrictions I imposed on the phrase structure grammar in the definition of “right
regular” were precisely the ones needed to make this construction work.


