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Quotients

Remember from last time: given a semigroup (𝐴, 𝑓 ) and a relation 𝑅 on 𝐴 such that if
(𝑢, 𝑥) ∈ 𝑅 and (𝑣, 𝑦) ∈ 𝑅 then (𝑓 (𝑢, 𝑣), 𝑓 (𝑥, 𝑦)) ∈ 𝑅 there is a semigroup (𝐵, 𝑔) and a
homomorpism ℎ from (𝐴, 𝑓 ) to (𝐵, 𝑔) such that ℎ is surjective and (𝑥, 𝑦) ∈ 𝑅 if and only
if ℎ(𝑥) = ℎ(𝑦).

This (𝐵, 𝑔) is called the quotient of (𝐴, 𝑓 ) by 𝑅.

If (𝐴, 𝑓 ) is a monoid then so is (𝐵, 𝑔). If (𝐴, 𝑓 ) is a group then so is (𝐵, 𝑔).



Example
Define 𝑅 to be the set of ordered pairs (𝑎, 𝑏) of natural numbers such that there is a
natural number 𝑑 such that 𝑎 = 𝑏 + 17 · 𝑑 or 𝑏 = 𝑎 + 17 · 𝑑.

This relation is reflexive and symmetric. Is it transitive?

Suppose (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈ 𝑅, i.e that there’s a 𝑑 such that 𝑎 = 𝑏 + 17 · 𝑑 or
𝑏 = 𝑎 + 17 · 𝑑 and an 𝑒 such that 𝑏 = 𝑐 + 17 · 𝑒 or 𝑐 = 𝑏 + 17 · 𝑒.

If 𝑎 = 𝑏 + 17 · 𝑑 and 𝑏 = 𝑐 + 17 · 𝑒 then 𝑎 = 𝑐 + 17 · 𝑓 , where 𝑓 = 𝑑 + 𝑒, so (𝑎, 𝑐) ∈ 𝑅.

A similar argument works if 𝑏 = 𝑎 + 17 · 𝑑 and 𝑐 = 𝑏 + 17 · 𝑒, but the other two cases
are more complicated.

Suppose 𝑎 = 𝑏 + 17 · 𝑑 and 𝑐 = 𝑏 + 17 · 𝑒.

Either 𝑑 ≤ 𝑒 or 𝑒 ≤ 𝑑. In other words, there is an 𝑓 such that 𝑑 + 𝑓 = 𝑒 or 𝑒 + 𝑓 = 𝑑.

If 𝑑 + 𝑓 = 𝑒 then 𝑐 = 𝑏 + 17 · 𝑒 = 𝑏 + 17 · 𝑑 + 17 · 𝑓 = 𝑎 + 17 · 𝑓 .

If 𝑒 + 𝑓 = 𝑑 then 𝑎 = 𝑏 + 17 · 𝑑 = 𝑏 + 17 · 𝑒 + 17 · 𝑓 = 𝑐 + 17 · 𝑓 .



Example, continued

We’ve just seen that there is an 𝑓 such that 𝑎 = 𝑐 + 17 · 𝑓 or 𝑐 = 𝑎 + 17 · 𝑓 , so (𝑎, 𝑐) ∈ 𝑅.

So 𝑅 is reflexive, transitive and symmetric, i.e. is an equivalence relation.

If (𝑢, 𝑥) ∈ 𝑅 and (𝑣, 𝑦) ∈ 𝑅 then (𝑢 + 𝑣, 𝑥 + 𝑦) ∈ 𝑅.

The proof is similar to the proof of transitivity above.

So we can quotient (𝑁, +) by the relation 𝑅 to get a monoid.

That monoid is actually a group. Any 𝐶 ∈ 𝐵 is the equivalence class of some natural
number 𝑎. There is then a natural number 𝑏 such that 𝑎 + 𝑏 is a multiple of 17. The
equivalence class of 𝑏 is an inverse to 𝐶.

The group constructed in this way is called the cyclic group of order 17.

There’s nothing special about 17. I could have used any non-zero natural number.

It’s also possible to use (𝑁, ·) rather than (𝑁, +), but then you just get a monoid, not
a group.



Integers

The standard construction of the integers from the natural numbers is via a quotient.

We start from the monoid 𝑁2 with the operation 𝑓 ((𝑎, 𝑏), (𝑐, 𝑑)) = (𝑎 + 𝑐, 𝑏 + 𝑑) and
identity (0, 0).

We define an equivalence relation by ((𝑎, 𝑏), (𝑐, 𝑑)) ∈ 𝑅 if and only if 𝑎 + 𝑑 = 𝑏 + 𝑐.

These satisfy the compatibility condition needed for the quotient construction.

The quotient is the group of integers, with addition as the operation.

It’s a group because every element is invertible. The inverse of the equivalence class of
(𝑎, 𝑏) is the equivalence class of (𝑏, 𝑎).

The interpretation is that the equivalence class of (𝑎, 𝑏) is the integer 𝑎 − 𝑏. Different
representatives of the same equivalence class give the same integer.

We can do the same thing with the operation 𝑓 ((𝑎, 𝑏), (𝑐, 𝑑)) = (𝑎 · 𝑐, 𝑏 · 𝑑) to get the
multiplicative structure on the integers.



Rationals, reals

The rationals are constructed from the integers by a similar construction. The monoid
we start from is 𝑍 × 𝑃 with the operation 𝑓 ((𝑎, 𝑏), (𝑐, 𝑑)) = (𝑎 · 𝑑 + 𝑏 · 𝑐, 𝑐 · 𝑑) and the
relation ((𝑎, 𝑏), (𝑐, 𝑑)) ∈ 𝑅 if and only if 𝑎 · 𝑑 = 𝑏 · 𝑐.

This time (𝑎, 𝑏) is to be interpreted as the rational number 𝑎/𝑏.

There are a number of constructions of the real numbers from the rational numbers.
The usual one is again a quotient construction.



Regular languages

Remember that a language is just a set of lists of tokens, chosen from some set of
tokens.

In applications tokens may be characters, strings, etc. For simplicity I’ll consider only
characters as tokens in examples. Lists of characters are then strings, so our example
languages are sets of strings. That’s a self-imposed limitation on the examples, not a
limitation on the theory.

Also, I’ll conflate terminal symbols and tokens.

The notes have different examples from lecture, but the same comment applies.



What is a regular language?

I’m not going to define regular languages yet, but they are describable in many
different ways:

• in terms of the types of phrase structure grammars that can generate them
• in terms of the types of automata which can recognise them
• in terms of regular expressions, to be defined later
• in terms of they syntactic monoids, to be defined later

You need to understand all of these descriptions, because some problems are much
easier when viewed from one point view than from another.



Left and right regular grammars

We’ve discussed phrase structure grammars, rules, alternates, terminal and
non-terminal symbols, etc.

A left regular grammar is one where
• each alternate in the rule for the start symbol is a single non-terminal symbol,
• the start symbol never appears on the right hand side of a rule, and
• each alternate in the rule for any other non-terminal symbol is either empty or is a

single non-terminal symbol followed by a single terminal symbol.

A right regular grammar is the same, except the last condition becomes
• each alternate in the rule for any other non-terminal symbol is either empty or is a

single terminal symbol followed by a single non-terminal symbol.

Other people use slightly different definitions, depending on what exactly they want to
do. Usually it’s easy to convert between different conventions.



Example
%%
tokyo : atamadaka | nakadaka | odaka | heiban ;

atamadaka : H t0 | L error ;
nakadaka : H error | L t1 ;
odaka : H error | L t2 ;
heiban : H error | L t2 ;
t0 : H error | L t3 ;
t1 : H t4 | L error ;
t2 : H t5 | L error ;
t3 : | H error | L t3 ;
t4 : H t4 | L t3 ;
t5 : | H t5 | L error ;
error : H error : L error ;

This is a right regular grammar, since the non-terminal symbols are to the right of the
terminal symbols in the alternates.

t3 and t5 can generate the empty string. error can’t generate any string!



Another example

%%
tokyo : atamadaka | nakadaka | odaka | heiban ;

atamadaka : error H | t6 L ;
nakadaka : error H | t7 L ;
odaka : t8 H | error L ;
heiban : t8 H | error L ;
t6 : empty H | t6 L ;
t7 : t8 H | t7 L ;
t8 : t8 H | empty L ;
empty : ;
error : H error : L error ;

This is a left regular grammar. The empty symbol can generate only the empty string
and is the only symbol which can generate the empty string.

These two grammars generate the same language. That’s not obvious.



Yet another example

%%
kansai : heishinshiki | teikishiki ;

heishinshiki : H k0 | L error ;
teikishiki : H error | L k1 ;
k0 : H k2 | L k3 ;
k1 : H k3 | L k1 ;
k2 : | H k2 | L k3 ;
k3 : | L k3 ;
error : H error | L error ;

This is a right regular grammar. It generates a different language.

The error symbols in these grammars are somewhat optional, you could remove the
rule for them, and any alternates where they appear in rules for other symbols.


