
MAU22C00 Lecture 19

John Stalker

Trinity College Dublin



Strong extensionality

What is wrong with the strong version of Extensionality?

Pick a set.

If it’s non-empty, pick a member.

In the strong version of Extensionality this member must be a set.

If it’s non-empty, pick a member.

Continue as long as you can.

No matter what choices you make, either this never stops or you end up with the
empty set.

If you assume Foundation then in fact it always stops with the empty set.

Really, there’s only the empty set and sets constructed from it, e.g. {∅, {∅}, {∅, {∅}}}.



Zermelo-Fraenkel

The usual version of set theory is called Zermelo-Fraenkel, after Zermelo, who had a
somewhat reasonable axiomatic system, and Fraenkel, who vandalised it.

• Extensionality (strong version)
• Elementary sets
• Selection
• Union
• Power sets
• Infinity
• Replacement
• Foundation
• Choice?

The version without Choice is called ZF while the version with it is called ZFC.



Banach-Tarski
This version of set theory has some unfortunate consequences.

There are sets 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐵1, 𝐵2, 𝐵3, 𝐶1, 𝐶2, 𝐶3, 𝐶4 and 𝐶5 in three
dimensional Euclidean space with the following properties.

• 𝐵1, 𝐵2 and 𝐵3 are disjoint balls of radius 1.
• 𝐴1 is congruent to 𝐶1, 𝐴2 is congruent to 𝐶2, 𝐴3 is congruent to 𝐶3, 𝐴4 is

congruent to 𝐶4, and 𝐴5 is congruent to 𝐶5.
• 𝐴1, 𝐴2, 𝐴3, 𝐴4 and 𝐴5 are disjoint and their union is 𝐵1 ⋃ 𝐵2.
• 𝐶1, 𝐶2, 𝐶3, 𝐶4 and 𝐶5 are disjoint and their union is 𝐵3.

In other words, we can take a ball, split it into five pieces, move those pieces via a rigid
motion, i.e. a combination of translations, reflections and rotations, and reassemble
them to form two balls of the same radius as the original one.

The principal culprit here is the (unrestricted) Axiom of Choice. This doesn’t happen
with weaker versions like Dependent Choice.



Graph Theory
Graphs in this module are not what they are in other maths modules. They’re things
like this directed graph:

interval

interval.iter

sum

sum.iter

prepend-all

prepend-one

product

element?

element?.iter

distinct?

distinct?.iter

copies

copies.iter

permutations

apply-or

apply-and transpose

okay?

distinct plus-minus

queens

Figure 1: Call graph of a program



Call graphs

The preceding was the call graph of a Scheme program to list all solutions of the 8
queens problem in chess.

There’s a “vertex” for each defined function (excluding ones provided by the language)
and an “edge” from each function to each function that it calls.

Some functions call themselves, leading to edges from a vertex to itself, called
self-loops.

Scheme allows mutual recursion as well, which would give more complicated loops.

A program without recursion would have a call graph which is a tree.

This is actually a fairly simple program, just 61 lines. For comparison LLVM had
23,852,309 lines of code when I last checked. LLVM has a call graph but not one a
human could expect to understand.



Other graphs

Graphs are ubiquitous in programming, not just for code but for data. Objects typically
have pointers to other objects. There’s a graph with a vertex for each object in
memory and an edge between any pair of objects where one points to another.

One approach to garbage collection is to traverse this graph, marking all reachable
objects, and then free anything left unmarked.

Module dependencies at a university also give a graph. I kept such a graph handy
when I was the school undergraduate director.



Directed and undirected graphs

All the graph examples so far were directed graphs. There was a direction to all the
edges.

Sometimes there is no preferred direction, in which case we have an undirected graph.
Network connectivity graphs are often, but not always, undirected.

One of the early computer games, Hunt the Wumpus (1973), had a cave with twenty
rooms, each connected to three other rooms by passageways. The passageways were
bidirectional, so this is an undirected graph, shown below.

1

2

5

8

3

10

6

9

4

12

11

14

13

15

7 17

16

18

19

20

Figure 2: The Wumpus graph



Graph theories

Graph theory isn’t really one subject but several, depending on the following choices:
• Are our graphs directed or undirected?
• How many vertices and edges do we allow? Finitely many? Countably many,

uncountably many?
• Are self-loops, i.e. edges connecting a vertex to itself, allowed?
• Can there be more than one edge between a pair of vertices?

We’ll consider directed and undirected graphs, with undirected graphs as a special case
of directed graphs. Our graphs will be finite. Self-loops are generally allowed, but will
be excluded in some theorems. There will be at most one edge from one vertex to
another.



Definitions

A graph is a finite set together with a relation on that set.

We interpret the members of the set as vertices and interpret the pairs in the relation
as edges, with the first element as the initial vertex and the last element as the final
vertex.

With this definition an undirected graph corresponds to a symmetric relation.

A graph is called complete if it has no self-loops but otherwise has edges between any
two distinct vertices.

A graph is called bipartite if there are two disjoint sets of vertices such that every edge
runs from a vertex in one set to a vertex in the other.

A graph isomorphism is a bijective function from the vertices of one graph to another
which preserves edges.

An automorphism is an isomorphism from a graph to itself.



A complete graph

A

B

C

D

E

F

G

Figure 3: A complete graph



A bipartite graph

A

B

C

D

E

F

G

Figure 4: A bipartite graph



Isomorphisms, automorphisms

Two complete graphs are isomorphic if and only if they have the same number of
vertices.

A (the?) complete graph with 𝑛 vertices is called 𝐾𝑛, so the one given a moment ago
is 𝐾7.

𝐾𝑛 has 𝑛! automorphisms, since any permutation of the vertices is an automorphism.

7! = 5040.

The bipartite graph example has 4! ⋅ 3! = 144 automorphisms, since we can permute
the vertices A, B, C, D and E, F, G separately.

This bipartite graph has an edge between each vertex in one subset and each in the
other, but that’s not required.

A bipartite graph with vertices divided into a set of 𝑝 and a set of 𝑞 and edges between
each possible pair of vertices is called a 𝐾𝑝,𝑞, so that example is a 𝐾4,3.



Subgraphs

A subgraph is a subset of the vertices together with a subset of the restriction of the
edge relation to that set.

Our bipartite graph example is a subgraph of the complete graph example.

The complete graph example is also a subgraph of itself.

The graph with vertices A, B, C, D, E, F, G and no edges is a subgraph of each.

So is the graph with no vertices and no edges.


