
MAU22C00 Lecture 8

John Stalker

Trinity College Dublin



Lessons for writing informal proofs

Try to make things easy on your reader. If it’s not obvious why you’re introducing a
hypothesis then add some words to indicated what you’re doing, e.g. “𝐴 is either finite
or infinite. Suppose 𝐴 is finite. Then … Suppose 𝐴 is infinite. Then … In either case we
see that …” is better than just jumping to “Suppose 𝐴 is finite”, which could be setting
up a proof by contradiction.

Try to prove things in the broadest scope in which they are true, not the scope where
you first need them, where some unnecessary hypotheses may have been introduced.
Usually this means going back and inserting a proof before those hypotheses were
introduced. Proofs are sometimes easier to write out of sequence!

Substitution is dangerous! The rules governing it are not obvious. You need to learn
them.



First order logic

First order logic “extends” zeroeth order logic.

It introduces quantifiers: the universal quantifier ∀, read “for all”, and the existential
quantifier ∃, read “for some”.

It also introduces predicates, variables and parameters, which we’ll discuss next.

It’s not a true extension because we also remove something: Boolean variables.

First order logic is meant as a base for more interesting systems, e.g. elementary
arithmetic, set theory, etc.



Predicates, variables and parameters
Variables in first order logic are stand-ins for variables in whatever system we’ll be
using first order logic as a base for, e.g. natural number variables in elementary
arithmetic, set variables in set theory, etc.

Parameters are stand-ins for expressions of the same type as the variables, e.g. natural
number expressions in elementary arithmetic, set expressions in set theory, etc.

Predicates are stand-ins for Boolean expressions. These can depend on variables or
parameters.

For example in elementary arithmetic we might replace a variable from first order logic
with a numerical variable like 𝑥, replace a parameter by a numerical expression like
𝑦 + 𝑧 and replace a predicate by something like “is prime”, or rather by its translation
into the language of elementary arithmetic.

For example in set theory we might replace a variable from first order logic with a set
variable like 𝐴, replace a parameter by a set expression like 𝐵 ⋂ 𝐶 and replace a
predicate by something like “is finite”, or rather by its translation into the language of
set theory.



The language of first order logic
statement : expression ;
expression : atomic_expression | ( expression binop expression )

| [ expression binop expression ]
| { expression binop expression } | ( ¬ expression )
| [ ¬ expression ] | { ¬ expression }
| ( quantifier variable . expression )
| [ quantifier variable . expression ]
| { quantifier variable . expression } ;

atomic_expression : ( atom ) | [ atom ] | { atom } ;
atom : predicate | atom variable | atom paramater ;
binop : ∧ | ∨ | ⊃ | ⊼ | ⊻ | ≡ | ≢ | ⊂ ;
quantifier : ∀ | ∃ ;
predicate : pred_letter | predicate ! ;
pred_letter : f | g | h | i | j ;
parameter : param_letter | parameter ! ;
param_letter : a | b | c | d | e ;
variable : var_letter | variable ! ;
var_letter : v | w | x | y | z ;



Comments on the language
This grammar is unambiguous.

I’m still keeping three sets of brackets for readability

We still have the option of using !’s to generate an unlimited number of variables, and
still won’t use it in examples.

Letters from the start of the alphabet are parameters, letters from the middle are
predicates and letters from the end are variables.

The syntax for quantifiers is

( quantifier variable . expression )

Predicates go before their arguments, like 𝑓 𝑥 or 𝑔𝑎 or ℎ𝑦𝑒, even though in applications
they would often go after or in the midst of them, as in “𝑥 is prime”, or “𝐴 is finite” or
“𝐴 is a subset of 𝐵 ⋃ 𝐶”.

You can think of predicates as standing for Boolean functions of one or more
arguments. This is technically wrong, but not very wrong.



Free and bound (occurences of) variables

An annoying, but vital, part of first order logic is the distinction between free and
bound variables.

Consider the following statement from the arithmetic of natural numbers: “For all 𝑙
there is an 𝑛 such that 𝑙 = 𝑚 + 𝑛”.

The role of 𝑚 is different from the roles of 𝑙 and 𝑛. It makes sense to pick a natural
number 𝑚 and ask whether the statement above is true or false.

Indeed we need to pick an 𝑚 to ask that question, unless we’re implicitly considering it
as a statement about all 𝑚.

It does not make sense to pick an 𝑙 or an 𝑛 and ask whether the statement is true, since
the equation 𝑙 = 𝑚 + 𝑛 needs to hold for all 𝑙 and for some 𝑛, possibly depending on 𝑙.

We say that 𝑙 and 𝑛 are bound, while 𝑚 is free.



Free and bound variables, continued.

In first order logic we have quantifiers but the role of expressions like 𝑙 = 𝑚 + 𝑛 is
played by predicates. The analogue of the example before is that in

{∀𝑥.[∃𝑧.(𝑓 𝑥𝑦𝑧)]}

the variable 𝑦 is free but the variables 𝑥 and 𝑧 are bound.

A variable could be bound in one expression but free in a subexpression. 𝑥 is free in
[∃𝑧.(𝑓 𝑥𝑦𝑧)] but bound in {∀𝑥.[∃𝑧.(𝑓 𝑥𝑦𝑧)]}.

Even in the same expression one occurence of a variable could be free while another is
bound. This is considered bad style, but isn’t forbidden.

The rules for which occurences of which variables are bound in which expressions aren’t
part of the grammar but are defined in terms of it.



Rules for free and bound variables

• In an atomic expression all occurences of all variables are free.
• Combining expressions with Boolean operators doesn’t change the status of any

variables.
• Quantifiers convert all free occurences of the variable following the quantifier to

bound occurences, but leave the status of other variables unchanged.

Example: (𝑓 𝑥𝑦𝑧) is atomic, so 𝑥, 𝑦 and 𝑧 are all free in it. [∃𝑧.(𝑓 𝑥𝑦𝑧)] has a quantifier
in front of a 𝑧 so 𝑧 is bound in this larger expression but 𝑥 and 𝑦 remain free.
{∀𝑥.[∃𝑧.(𝑓 𝑥𝑦𝑧)]} has a quantifier in front of 𝑥 so 𝑥 is bound in it. 𝑧 remains bound and
𝑦 remains free.



Order of quantifiers
Order matters.

For which 𝑚 is the statement “For all 𝑙 there is an 𝑛 such that 𝑙 = 𝑚 + 𝑛” true?

Start from the inside and work your way out. For which 𝑙 and 𝑚 is “there is an 𝑛 such
that 𝑙 = 𝑚 + 𝑛” true?

I said we’re working with natural numbers, so this 𝑙 must be non-negative. We need,
𝑚 ≤ 𝑙, and that’s also sufficient.

So “for all 𝑙 there is an 𝑛 such that 𝑙 = 𝑚 + 𝑛” is the same as “for all 𝑙 we have 𝑚 ≤ 𝑙”,
i.e. 𝑚 is less than or equal to every natural number. This is true for exactly natural
number 𝑚, namely 0.

What about “there is an 𝑛 such that for all 𝑙 we have 𝑙 = 𝑚 + 𝑛”?

Start from inside again. For which 𝑚 and 𝑛 is it true that “for all 𝑙 we have 𝑙 = 𝑚 + 𝑛”?

None! There is at most one 𝑙 such that 𝑙 = 𝑚 + 𝑛.

So “there is an 𝑛 such that for all 𝑙 we have 𝑙 = 𝑚 + 𝑛” is not true for any 𝑚.



Order of quantifiers, continued.

“For all 𝑙 there is an 𝑛 such that 𝑙 = 𝑚 + 𝑛” is true for 𝑚 = 0.

“There is an 𝑛 such that for all 𝑙 we have 𝑙 = 𝑚 + 𝑛” is not true for any 𝑚.

These are definitely not the same statement.

What about “there is an 𝑛 such that 𝑙 = 𝑚 + 𝑛 for all 𝑙”?

This could mean “(there is an 𝑛 such that 𝑙 = 𝑚 + 𝑛) for all 𝑙” or “there is an 𝑛 such
that (𝑙 = 𝑚 + 𝑛 for all 𝑙)”.

If you put some quantifiers at the start and some at the end people will have to guess
what you mean. If you put them all at the start (or all at the end) then the meaning is
unambiguous.

Exceptions: If you have only one quantifier it doesn’t matter where it goes. The order
of quantifiers of the same type doesn’t matter.



Interpretation

Variables and parameters are thought of as belonging to a “domain”, which may be a
set.

If it is a set then predicates can be thought of as Boolean functions (of some number
of arguments) on that set.

∀ followed by a variable and an expression means the expression evaluates to true
whenever any element of the domain is substituted for all free occurences of that
variable in that expression.

∃ followed by a variable and an expression means the expression evaluates to true when
some element of the domain is substituted for all free occurences of that variable in
that expression.

This is one of many contexts where free and bound occurences behave differently.

Classical first order logic assumes the domain is non-empty!


