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Example language: positive integers

Consider the language of positive integers, written in the usual decimal notation,
without separating commas.

That is, “2023” is an element of the language but “2,023” and “002023” are not.

We can write a phrase structure grammar for this language:

%start pos_integer
%%
pos_integer : pos_digit | pos_integer digit ;
digit : 0 | pos_digit ;
pos_digit : 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ;



Positive integers, continued

Other grammars are possible, e.g.

%start pos_integer
%%
pos_integer : pos_digit | pos_digit digits ;
digits : digit | digit digits ;
digit : 0 | pos_digit ;
pos_digit : 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ;

The rule

pos_integer : pos_digit | pos_integer digit ;

from the first grammar is left recursive while the following rule from this grammar is
right recursive:

digits : digit | digit digits ;



Ambiguity

The grammars we’ve seen so far are unambiguous. For any element of the language
there’s only one way to generate it, except for performing the same expansions in a
different order.

Other grammars are ambiguous, like

%start statement
%%
statement : expression terminator ;
expression : animal

| expression 'and' expression ;
animal : 'lions' | 'tigers' | 'bears' | 'quokkas' ;
terminator : 'oh' 'my' '!' ;

The things in quotes are tokens.



Example language: The Wizard of Oz

The statement “lions and tigers and bears oh my !” is an element of this language.

There are two different ways to generate it.

Both start by expanding statement to expression terminator, expanding the
terminator in the only way allowed, and expanding the expression to expression
and expression.

At that point we can expand the first expression to animal and then to lions and we
can expand the second expression to expression 'and' expression again.

We then expand one expression to animal and tigers and the other to animal and
then to bears.



The Wizard of Oz, continued

The other way to generate “lions and tigers and bears oh my !” expands the second
expression to bears and the first one, via a few steps, to lions and tigers.

These are genuinely different parsings. In the first one “tigers and bears” occurs as a
phrase by “lions and tigers” is not a phrase. In the second it’s the opposite.

One way to exhibit which lists are phrases is with parentheses, e.g. ((lions and (tigers
and bears)) (oh my !)) versus (((lions and tigers) and bears) (oh my !)).

Another way to describe parsings is with trees.



A parse tree

Figure 1: Parsing, first option



An alternate parse tree

Figure 2: Parsing, first option



Ambiguity, continued

Some language are inherently ambiguous. It is impossible to construct an unambiguous
grammar for them.

Sometimes an ambiguity is harmless. There’s no difference in interpretation in the two
parsings above.

Disambiguation, where possible, can seem unnatural. Which of these is clearest?

expression : animal | expression 'and' animal ;

expression : animal | animal 'and' expression ;

expression : animal | expression 'and' expression ;

I tend to write unambiguous grammars by habit.



Example language: palindromes

Palindromes are words or sentences which are the unchanged by reversing the letters.

Usually we ignore capitalisation, spaces and punctuation, so “Anna”, “Bob” and
“Otto” are palindromes, as are “Madam, I’m Adam” and “ΝΙΨΟΝ ΑΝΟΜΗΜΑΤΑ ΜΗ
ΜΟΝΑΝ ΟΨΙΝ”.

A grammar for palindromes is

%start S1
%%
S1 : /* empty */ | S2 ;
S2 : a S2 a | b S2 b | ... | z S2 z

| a a | b b | ... | z z
| a | b | ... | z ;



Example languages: zeroeth order logic

Our next topic is zeroeth order logic, a.k.a. the propositional calculus. There is a
language which, with variations, is traditionally used for statements in ZOL.

The tokens are single characters, at least in unicode. We have
• variables 𝑝, 𝑞, 𝑟, etc.
• the unary “not” operator ¬.
• some subset of the binary operators ∧, ∨, ⊃, ⊼, ⊻, ≡, ≢, and ⊂. The first three

represent “and”, “or” and “implies”.
• parentheses, square brackets and braces for grouping.

A grammar for this language is on the next slide.



Zeroeth order logic, continued

%start statement
%%
statement : expression ;
expression : variable

| ( expression binop expression )
| [ expression binop expression ]
| { expression binop expression }
| ( ¬ expression )
| [ ¬ expression ]
| { ¬ expression } ;

variable : p | q | r | s | u ;
binop : ∧ | ∨ | ⊃ | ⊼ | ⊻ | ≡ | ≢ | ⊂ ;



Syntax versus semantics

Formal languages have only syntax, not semantics.

In other words, we can ask whether a list of tokens belongs to the language and, if it
has a grammar, how it can be parsed, but not what it means.

Languages often have one or more intended interpretations, and additional, unintended
interpretations.

Our language for linear equations has an interpretation where the variables are
understood to be rational numbers, one where they’re understood to be real, and one
where they’re understood to be complex. Being able to use the same language with
these three interpretations is useful.

The language of positive integers has an alternate interpretation as positive
hexadecimal integers which don’t contain the digits A, B, C, D, E or F.

The Wizard of Oz language and palindrome language don’t have any obvious
interpretation.



Syntax versus semantics, continued

The language of balanced parentheses has a (surprising?) interpretation in terms of
stack operations. ( corresponds to push and ) corresponds to pop. Elements of the
language are permitted sequences of operations which leave an empty stack if you
started with an empty stack.

A stack is a data structure which allows us to push items onto it, pop items onto it,
and query whether it’s empty.

The stack always has a finite number of elements, but there is no upper bound for this
number.

The language for zeroeth order logic has an intended interpretation, where the Boolean
operators mean what you think they mean.

Strictly, this is a class of interpretations, where the different ways to assign values to
the variables are each a different interpretation.

There are other interpretations though.



More interpretations of the ZOL language

We could consider the variables 𝑝, 𝑞, … as taking the values 0 or 1, interpret (𝑝 ∧ 𝑞) as
the maximum of 𝑝 and 𝑞, (𝑝 ∨ 𝑞) as their minimum, and (¬𝑝) as 1 − 𝑝.

In some sense this is the same interpretation, if we identify 0 with true statements and
1 with false statements.

This is a slightly repackaged version of Boole’s insight that you can arithmeticise logic.

We could also have interpreted (𝑝 ∧ 𝑞) as the minimum of 𝑝 and 𝑞, (𝑝 ∨ 𝑞) as their
maximum, and identified 0 with false statements and 1 with true statements.

Different interpretations can make true statements false and vice versa!

There’s also an interpretation in terms of voltage levels in digital circuits. That’s why
computers exist.


