
MAU22C00 Lecture 1

John Stalker

Trinity College Dublin

Unfinished business

Languages, logic, graphs, and idealised machines are all related.

Numbers, sets, monoids, etc. are also related, although I didn’t have time for them in
this lecture.

The first chapter of the notes goes through the module enrollment example in much
more detail, introducing a lot of ideas which I also didn’t have time for here.

Most of those ideas will put in an appearance later in the module so reading that
chapter will help you understand how the module fits together.

It’s not necessary to understand everything on the first pass.

What is a language?

Formal languages are built from tokens, which are partitioned into symbols.

We might have a symbol animal, with tokens cat, dog, rabbit, wombat, etc. or a
symbol digit with tokens 0, 1, 2, …, 9.

There could be infinitely many tokens in a symbol. We could have a symbol integer,
for example, and every integer is an integer. There could be just one. We could have
a symbol whose only token is ¬.

There should be only finitely many symbols though, and there should be algorithms for
determining which symbol a token belongs to and for generating all the tokens for a
given symbol.

A language is a set of lists of tokens such that if a list is a member then so is any other
list where we replace one token with another belonging to the same symbol.

Example language: linear equations

A language for linear equations might contain the following symbols:
• integers, e.g. 17, 42, −5, 0

• variables, e.g. 𝑥, 𝑦, 𝑧

• the operators + and −

• the equals sign =

• separators, to tell us where one equation stops and then next begins

Not all lists of these tokens are grammatical though, e.g. +− =.

Grammar

By a grammar for a language we mean something like this:

%token INTEGER VARIABLE OPERATOR
%token EQUALS SEPARATOR
%start equations
%%
equations : equation

| equations SEPARATOR equation ;
equation : side EQUALS side ;
side : term | side OPERATOR term ;
term : INTEGER | VARIABLE | INTEGER VARIABLE ;

This is a yacc grammar specification. yacc is a parser generator. It takes a description
of a formal language in its own formal language and produces a parser.

Finiteness

Various things need to be finite:
• Lists are finite. That’s part of what I mean by “list”.
• The set of symbols is finite.
• The grammar is finite, i.e. has finitely many rules of finite length.
• The algorithm which assigns symbols to tokens is finite and terminates in finite

time.
• The algorithm which generates the tokens for a symbol is finite and will generate

any token in finite time, but may not terminate.

The langage itself need not be finite though, and typically isn’t. Even the set of tokens
doesn’t have to be finite.

Generative grammar

This approach to grammar is called “generative grammar”. It describes a language by
telling how you could generate any list of tokens in the language.

In our linear equations example, starting from the start symbol

equations

we could expand it to equation or to equations SEPARATOR equation. We’ll choose
the second option, so we now have

equations SEPARATOR equation

SEPARATOR is what’s called a terminal symbol, it can’t be expanded, just replace by a
token. Let’s say our separator is a comma. Now we have

equations , equation

Generative grammar, continued

We now have

equations , equation

We can expand equations again, either to equation or to equations SEPARATOR
equation. This time we’ll choose the first first option, so we have

equation , equation

equation has only one expansion, to side = side. In theory we should expand symbols
one at a time but I’ll start batching the expansions to save time. So now we have

side EQUALS side , side EQUALS side

Generative grammar, continued

EQUALS is a terminal symbol with only one token associated with it, namely =, so
now we have

side = side , side = side

side has two possible expansions, term or side OPERATOR term. We’ll choose different
expansions for the different occurences:

side OPERATOR term = term , term = term

OPERATOR is another terminal, expanding to + or −. We’ll choose − and also
expand the side and the various terms

term - INTEGER = VARIABLE , INTEGER VARIABLE = INTEGER

Generative grammar, continued

We’re currently at

term - INTEGER = VARIABLE , INTEGER VARIABLE = INTEGER

We can expand our only remaining nonterminal symbol, term, to INTEGER VARIABLE
and replace the various terminals with tokens associated with them.

INTEGER VARIABLE - 1 = x , 2 y = 1

Now we have only terminals, which can replace with appropriate tokens

3 z - 1 = x , 2 y = 1

Generative grammar, continued

The preceding shows that 3 z - 1 = x , 2 y = 1 is an element of our language.

We had to make a lot of choices and making different choices would have given us
different elements of the language.

Any list of tokens we can get by making some set of choices is an element of the
language and only those lists of tokens are elements of the language.

The process didn’t have to terminate. I could have kept expanding equations to
equations SEPARATOR equation forever, generating longer and longer lists of symbols,
never seeing a token or even a terminal symbol, for example.

Parsing

From a computer science point of view generative grammar is a weird way to describe
languages.

We’d like to be able to parse languages. Starting from a list of tokens we’d like to
assign them their terminal symbols and then combine sublists into other symbols,
continuing until we reach the start symbol.

It’s not obvious how you take a grammar like the one above, what’s called a phrase
structure grammar and generate a parser.

Fortunately there are tools like yacc.

Parsers are closely related to recognisers, a.k.a validators. A recogniser for a language
is a machine (think program) which reads a list of tokens and tells you whether or not
it belongs to the language.

It’s like a parser, except that it doesn’t parse.

Example language: balanced parentheses

The language of balanced parentheses is a language whose tokens are “(” and “)”. It
consists of those lists of tokens where we can match open and close parentheses in
such a way that they are nested and occur in the correct order.

Every element of this language has the same number of (’s and)’s, but that’s not
sufficient. “)(”, for example, does not belong to the language.

We could also allow pairs of “[” and ”]” or “{” and “}”, but won’t.

A grammar for the language of balanced parentheses is

%start S1
%%
S1 : /* empty */ | S2 ;
S2 : () | (S2) | () S2 | (S2) S2 ;

Balanced parentheses, continued

%start S1
%%
S1 : /* empty */ | S2 ;
S2 : () | (S2) | () S2 | (S2) S2 ;

Every list generated by these rules has balanced parentheses.

Less obviously, every element of the language can be generated by these rules.

Still less obviously, it can be generated in only one way.

Key idea: Every non-empty element of the language starts with a (. This (must have
a matching). The list of tokens in between has matching parentheses, as does the list
after. Either or both of those lists could be empty.

