MAU22C00 Assignment 2, Due Friday 4 October 2023

- 1. Write down a tableau to show that the statement $[(p \supset q) \supset (q \supset p)]$ is satisfiable and another to show that it is not a tautology.
- 2. Take the following proof in the natural deduction system and indicate which rule of inference is being used in each line.

The line numbering isn't technically part of the proof; I've just added it to make it easier to refer to individual lines.

3. The following proof of $\{[(p \lor r) \land (\neg(p \lor r))] \supset (r \supset q)\}$ is the same as the one above, except for the last two lines, which use the rule of substitution.

$$\begin{array}{lll} 1 & . & [p \land (\neg p)] \\ 2 & . & p \\ 3 & . & (\neg p) \\ 4 & . & . & (\neg q) \\ 5 & . & [\neg (\neg p)] \\ 6 & . & \{(\neg q) \supset [\neg (\neg p)]\} \\ 7 & . & [(\neg p) \supset q] \\ 8 & . & q \\ 9 & \{[p \land (\neg p)] \supset q\} \\ 10 & \{[p \land (\neg p)] \supset (r \supset q)\} \\ 11 & \{[(p \lor r) \land (\neg (p \lor r))] \supset (r \supset q)\} \end{array}$$

Give an alternate proof without substitution. What property of the natural deduction system makes this possible? Can the same be done with all proofs which use the rule of substitution?

Hint: Instead of substituting at the end you can run the same argument but with all the substitutions done from the start.