
MAU22200 2021-2022 Practice Problem Set 9
Solutions

1. Suppose that X and Y are sets, f : X → Y is a function, B is a Boolean
algebra on X and µ : B → [0,+∞] is a content on (X,B). It was shown
in the notes that f∗∗(B) is a Boolean algebra on Y . Define ν : f∗∗(B) →
[0,+∞] by

ν(E) = µ(f∗(E)).

Show that ν is a content on (Y, f∗∗(B)).
Solution: We need to check that ν(∅) = 0 and that if E,F ∈ f∗∗(B) and
E ∩ F = ∅ then

ν(E ∩ F ) = ν(E) + ν(F ).

The first of these is easy because

ν(∅) = µ(f∗(∅)) = µ(∅) = 0.

The second requires a bit more work.

f∗(E) ∩ f∗(F ) = f∗(E ∩ F ) = f∗(∅) = ∅

so
µ(f∗(E) ∪ f∗(F )) = µ(f∗(E)) + µ(f∗(F ).

But
µ(f∗(E)) = ν(E),

µ(f∗(F )) = ν(F ),

and
µ(f∗(E) ∪ f∗(F )) = µ(f∗(E ∪ F )) = ν(E ∪ F )

so
ν(E ∩ F ) = ν(E) + ν(F ).

2. (a) Suppose X is an uncountable set. Show that if E ∈ ℘(X) then at
most one of E or X \ E is countable.
Solution: If E and X \E were both countable then X = E ∪ (X \E
would be countable by Proposition 2.9.3e from the notes.

(b) Define B to be the set of those E ∈ ℘(X) such that E or X \ E is
countable. Show that B is a σ-algebra.
Solution: We need to show that ∅ ∈ B, that X \ E ∈ B if E ∈ B,
and that

⋃
E∈AE ∈ B if A is a countable subset of B.

∅ is countable so ∅ ∈ B.

If E ∈ B then E is countable or X \ E is countable. In the former
case X \ (X \E) is countable. In the latter case X \E is countable.
So if E ∈ B then either X \ E or its complement is countable, so
X \ E ∈ B.
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Suppose A is a countable subset of B. If every E ∈ A is count-
able then

⋃
E∈AE is countable by Proposition 2.9.3e. In this case⋃

E∈AE ∈ B. If not then there is an F ∈ A such that F is uncount-
able. But F ∈ A and A ⊆ B so F ∈ B. F is not countable and F ∈ B
so X \ F is countable. But then

F ⊆
⋃
E∈A

E

so
X \

⋃
E∈A

E ⊆ X \ F.

Subsets of countable sets are countable by Proposition 2.9.3.b so⋃
E∈AE is countable and therefore

⋃
E∈AE ∈ B.

(c) Define µ : B → [0,+∞] by µ(E) = 0 if E is countable and µ(E) =
+∞ if X \ E is countable. Show that µ is a content on (X,B).
Solution: We need to show that µ(∅) = 0 and that if E ∩ F = ∅
then µ(E ∪ F ) = µ(E) + µ(F ).

∅ is countable, µ(∅ = 0). If E and F are countable then E ∪ F is
countable so

µ(E ∪ F ) = 0 = 0 + 0 = µ(E) + µ(F ).

If either E or F is uncountable then it was shown in the answer to
the previous part that X \ (E ∪ F ) is countable so µ(E ∪ F ) = +∞
and µ(E) = +∞ or µ(F ) = +∞. In either case

µ(E ∪ F ) = µ(E) + µ(F ).

3. Show that every interval in R is a Borel set.
Hint: This is one of those rare instances where case by case analysis of
the ten types of intervals is not a terrible idea.
Solution: The open sets generate the Borel σ-algebra so every open set is
a Borel set. The complement of any Borel set is a Borel set, so closed sets
are also Borel sets. R = (−∞,+∞), ∅, (a,+∞), (−∞, b) and (a, b) for
any a, b ∈ R are open. [a, b], [a,+∞) and (−∞, b] are closed. So all of the
sets above are Borel sets. The intersection of countably many Borel sets
is a Borel set, so the intersection of any two Borel sets is a Borel set. In
particular

(a, b] = (a,+∞) ∩ (−∞, b]

and
[a, b) = [a,+∞) ∩ (−∞, b)

are Borel sets. By Proposition 7.1.7 every interval is of one of the forms
considered above, so all intervals are Borel sets.
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