1. Suppose that X and Y are sets, $f: X \to Y$ is a function, \mathcal{B} is a Boolean algebra on X and $\mu: \mathcal{B} \to [0, +\infty]$ is a content on (X, \mathcal{B}) . It was shown in the notes that $f^{**}(\mathcal{B})$ is a Boolean algebra on Y. Define $\nu: f^{**}(\mathcal{B}) \to [0, +\infty]$ by

$$\nu(E) = \mu(f^*(E)).$$

Show that ν is a content on $(Y, f^{**}(\mathcal{B}))$.

- 2. (a) Suppose X is an uncountable set. Show that if $E \in \wp(X)$ then at most one of E or $X \setminus E$ is countable.
 - (b) Define \mathcal{B} to be the set of those $E \in \wp(X)$ such that E or $X \setminus E$ is countable. Show that \mathcal{B} is a σ -algebra.
 - (c) Define $\mu: \mathcal{B} \to [0, +\infty]$ by $\mu(E) = 0$ if E is countable and $\mu(E) = +\infty$ if $X \setminus E$ is countable. Show that μ is a content on (X, \mathcal{B}) .

Show that every interval in R is a Borel set. *Hint:* This is one of those rare instances where case by case analysis of the ten types of intervals is not a terrible idea.