
MAU22200 2021-2022 Practice Problem Set 8
Solutions

1. Define f : [−π/2, π/2]→ [−∞,+∞] by

f(x) =


−∞ if x = −π/2,
tan(x) if − π/2 < x < π/2,

+∞ if x = π/2.

Show that f is continuous and has a continuous inverse.
Hint: You can save yourself some time by using Proposition 3.6.3 from
the notes and proving the following lemma:

Suppose (X, TX) and (Y, TY ) are topological spaces and f : X →
Y is a function. If x ∈ X, U ∈ O(x) and the restriction of f to
U is continuous then f is continuous at x.

Solution: First of all, f has an inverse because

g(y) =


−π/2 if y = −∞,
arctan(y) if −∞ < y < +∞
π/2 if y = +∞,

satisfies f(g(y)) = y for all y ∈ [−∞,+∞] and g(f(x)) = x for all x ∈
[−π/2, π/2].

Next we prove the lemma from the hint. If the restriction of f to U is
continuous then it is continuous at x so for every V ∈ O(f(x)) there is a
W ∈ OU (x) such that

W ⊆ f∗(V ).

The subscript U on OU (x) is there to indicate that this is an open subset
of U in the subspace topology, i.e. the intersection of U with an open
set in the topology TX . But the intersection of two open sets is open so
W is in fact in OX(x). In other words, for each V ∈ O(f(x)) there is a
W ∈ OX(x) such that

W ⊆ f∗(V ).

So f is continuous at x.

For any x ∈ (−π/2, π/2) we take U = (−π/2, π/2) and note the this is an
open neighbourhood of x and that the restriction of f to U is the tangent
function, which is already known to be continuous. So f is continuous
at every point in (−π/2, π/2). If we can show that it’s continuous at
−π/2 and π/2 then it follows from Proposition 3.6.3 that it is continuous.
To show that f is continuous at π/2 we need to show that if V is a
neighbourhood of f(π/2) = +∞ then f∗(V ) is a neighbourhood of π/2.
The neighbourhoods of +∞ in [−∞,+∞] are precisely the sets which
contain an interval (a,+∞] where −∞ < a < +∞. The preimage of such
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a set contains an interval (arctan a, π/2] and so is a neighbourhood of π/2
in [−π/2, π/2]. The proof of continuity at −π/2 is similar.

Similarly, for any y ∈ (−∞,+∞) we take U = (−∞,+∞) and note that
this is an open neighbourhood of y and that the restriction of g to U is the
arctangent function, which is known to be continuous. It therefore suffices
to show that g is continuous at −∞ and +∞. To show that g is continuous
at +∞ we need to show that if V is a neighbourhood of g(+∞) = π/2
then f∗(V ) is a neighbourhood of +∞. The neighbourhoods of π/2 in
[−π/2, π/2] are precisely the sets which contain an interval (a, π/2] where
−π/2 < a < +π/2. The preimage of such a set contains an interval
(tan a,+∞] and so is a neighbourhood of +∞ in [−∞,+∞]. The proof of
continuity at −∞ is similar.

2. Suppose that S is a set, f : S → [0,+∞] is a function and∑
s∈S

f(s) < +∞.

Show that for every δ > 0 the set

Gδ = {s ∈ S : f(s) > δ}

is finite.
Solution: Choose an n ∈ N with

n >

∑
s∈S f(s)

δ
.

If Gδ is infinite then it has a subset with n elements. Call this subset F .
Then ∑

s∈S
f(s) ≥

∑
s∈F

f(s) ≥
∑
s∈F

δ = nδ >
∑
s∈S

f(s).

Therefore
∑
s∈S f(s) >

∑
s∈S f(s), which is impossible, so Gδ cannot be

infinite.

3. Suppose that S is a set, f : S → [0,+∞] is a function and∑
s∈S

f(s) < +∞.

Show that the set
P = {s ∈ S : f(s) > 0}

is countable.
Hint: Use the result of the previous problem.
Solution: If f(s) > 0 then f(s) > 1/2n for some n ∈ N so

P =
⋃
n∈N

G1/2n .

By the preceding problem G1/2n is finite and hence countable. So P is a
countable union of countable sets and is therefore countable.
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4. Suppose that S is a set, f : S → R is a function and that∑
s∈S

f(s)

converges (in R). Show that the set

{s ∈ S : f(s) 6= 0}

is countable.
Hint: Use the result of the previous problem.
Solution: As shown in the notes, if

∑
s∈S f(s) converges then∑

s∈S
|f(s)| < +∞.

It then follows from the previous problem that

{s ∈ S : |f(s)| > 0}

is countable. But this is the same as

{s ∈ S : f(s) 6= 0}.
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