MAU22200 2021-2022 Practice Problem Set 8
Solutions

1. Define f: [—7/2,7/2] = [—00, +00] by
—00 ife=—-m/2,
flxz) = qtan(x) if —7/2 <z <7/2,
+oo if x =m/2.
Show that f is continuous and has a continuous inverse.

Hint: You can save yourself some time by using Proposition 3.6.3 from
the notes and proving the following lemmas:

Suppose (X, Tx) and (Y, Ty) are topological spaces and f: X —
Y is a function. If z € X, U € O(x) and the restriction of f to
U is continuous then f is continuous at x.

Solution: First of all, f has an inverse because

—m/2 if y = —o0,
g(y) = { arctan(y) if —oo <y < +oo
/2 if y = 400,

satisfies f(g(y)) = y for all y € [—o0,+o0] and g(f(x)) = x for all z €
[—7/2,7/2].
Next we prove the lemma from the hint. If the restriction of f to U is
continuous then it is continuous at x so for every V- € O(f(x)) there is a
W € Oy (x) such that

W C f*(V).

The subscript U on Oy () is there to indicate that this is an open subset
of U in the subspace topology, i.e. the intersection of U with an open
set in the topology 7Tx. But the intersection of two open sets is open so
W is in fact in Ox(z). In other words, for each V' € O(f(x)) there is a
W € Ox(x) such that

W C (V).

So f is continuous at x.

For any x € (—7/2,7/2) we take U = (—7/2,7/2) and note the this is an
open neighbourhood of z and that the restriction of f to U is the tangent
function, which is already known to be continuous. So f is continuous
at every point in (—n/2,7/2). If we can show that it’s continuous at
—m/2 and 7/2 then it follows from Proposition 3.6.3 that it is continuous.
To show that f is continuous at m/2 we need to show that if V is a
neighbourhood of f(7/2) = 400 then f*(V) is a neighbourhood of /2.
The neighbourhoods of +o00 in [—o0,+00] are precisely the sets which
contain an interval (a,4o00] where —oo < a < 400. The preimage of such



a set contains an interval (arctan a,7/2] and so is a neighbourhood of 7 /2
in [—m/2,7/2]. The proof of continuity at —7 /2 is similar.

Similarly, for any y € (—o0, +00) we take U = (—o00, +00) and note that
this is an open neighbourhood of y and that the restriction of g to U is the
arctangent function, which is known to be continuous. It therefore suffices
to show that g is continuous at —oo and +o00. To show that ¢ is continuous
at +o0o we need to show that if V is a neighbourhood of g(4+o00) = 7/2
then f*(V) is a neighbourhood of 4+00. The neighbourhoods of 7/2 in
[—7/2,7/2] are precisely the sets which contain an interval (a, 7 /2] where
—m/2 < a < +m/2. The preimage of such a set contains an interval
(tan a, +00] and so is a neighbourhood of +00 in [—c0, +00]. The proof of
continuity at —oo is similar.

. Suppose that S is a set, f: S — [0, +00] is a function and
Zf(s) < +o0.
ses

Show that for every § > 0 the set
Gs={seS: f(s) >}
is finite.
Solution: Choose an n € N with
> ses f(s)
=
If G is infinite then it has a subset with n elements. Call this subset F.

Then
SO ) =Y 6=n5> Y f(s).

seS sEF SEF sES

Therefore ) ¢ f(s) > > .cq f(s), which is impossible, so G5 cannot be
infinite.

n >

. Suppose that S is a set, f: S — [0,400] is a function and
D f(s) < +oo.
seS
Show that the set
P={seS: f(s)>0}
is countable.

Hint: Use the result of the previous problem.
Solution: If f(s) > 0 then f(s) > 1/2" for some n € N so

P={J Gipn.
neN

By the preceding problem G /3 is finite and hence countable. So P is a
countable union of countable sets and is therefore countable.



4. Suppose that S is a set, f: S — R is a function and that

> f(s)

seS

converges (in R). Show that the set

{s € S f(s) # 0}

is countable.
Hint: Use the result of the previous problem.
Solution: As shown in the notes, if ) .5 f(s) converges then

> 1£(5)] < +oc.

SES
It then follows from the previous problem that
{se€S:|f(s)] >0}

is countable. But this is the same as

{s € S: f(s) #0}.



