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Solutions

1. Show that each of the following spaces is compact.

(a) The set {z, α0, α1, . . .} ⊆ X where (X, T ) is a topological space,
z ∈ X and α : N→ X such that limn→∞ αn = z.
Solution: Let S = {z, α0, α1, . . .} ⊆ X. Suppose G is an open cover
of S. z ∈ S so there is a U ∈ G such that z ∈ U . limn→∞ αn = z
and U is open so there is an m ∈ N such that αn ∈ U for all n ≥ m.
For each j < m we have αj ∈ Vj for some Vj ∈ G. If x ∈ S then
x = z, x = αn for some n ≥ m or x = αj for some j < m. In
either of the first two cases x ∈ U . In the last case x ∈ Vj . So
{U, V0, V1, . . . , Vm−1} is a finite subcover.

(b) (X, T ) where X is a set and T is the cofinite topology on X.
Solution: Suppose G is an open cover of (X, T ). If X is empty then
∅ is a finite subcover. If X is non-empty choose some x ∈ X. There
is a U ∈ G such that x ∈ U . U is not empty so X \ U is finite by
the definition of the cofinite topology. For each y ∈ X \ U there is a
Vy ∈ G such that y ∈ Vy. Then every point in X is in U or in one of
the Vy’s for y ∈ X \ U so U and these Vy’s form a finite subcover.

(c) The Cantor set.
Hint: This can be done using the description of the Cantor set from
the notes, but it’s easier to use the description in terms of intervals
from Lecture 12.
Solution: As described in Lecture 12, the Cantor set is the intersec-
tion of the sets

C0 = [0, 1],

C1 = [0, 1/3] ∪ [2/3, 1],

C2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1],

...

It was shown in the notes that intervals of the form [a, b] are compact
(Proposition 3.12.3) and that unions of finitely many compact sets
are compact (Proposition 3.12.7), so each Cj is compact. We also
have

C0 ⊇ C1 ⊇ C2 ⊇ · · ·

so the intersection of all of them is compact by the remark after
Proposition 3.12.4 of the notes.

2. The version of the Tietze Extension Theorem in the notes applies only
to bounded functions. Prove the following related theorem, which has no
boundedness assumption.
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Suppose (X, T ) is a normal topological space, A ∈ ℘(X) is
closed and f : A→ R is continuous. Then there is a continuous
g : X → R such that g(x) = f(x) for all x ∈ A.

Hint: Use the version of the Tietze Extension Theorem you already have,
Urysohn’s Lemma and the arctangent function.
Solution: Define f̃ : A→ [−π/2, π/2] by

f̃(x) = arctan(f(x)).

The composition of continuous functions is continuous so f̃ is continuous.
By the Tietze Extension Theorem it has a continuous extension g̃ : X →
[−π/2, π/2]. We would like to define

g(x) = tan(g̃(x)),

which certainly satisfies g(x) = f(x) for x ∈ A but this doesn’t quite work
since g̃ could take the values ±π/2 at other points in x and the tangent
is not defined at ±π/2.

To avoid the problem above, let

B = g̃∗({−π/2, π/2}).

B is closed because g̃ is continuous. A∩B = ∅ because f̃(x) ∈ (−π/2, π/2)
for all x ∈ A. By Urysohn’s Lemma there is a continuous function h : X →
[0, 1] such that h(x) = 0 if x ∈ B and h(x) = 1 if x ∈ A. Then g̃h
is continuous since it is the product of two continuous functions. Also
g̃(x)h(x) ∈ (−π/2, π/2) for all x ∈ X. For x ∈ B this is true because
h(x) = 0. For x /∈ B it’s true because |g̃(x)| < π/2 and |h(x)| ≤ 1. Note
also that if x ∈ A then

g̃(x)h(x) = f̃(x)1 = arctan(f(x)).

We can then define
g(x) = tan(g̃(x)h(x)).

This is well defined because g̃(x)h(x) is in the domain of tan, continuous
since it’s the composition of continuous functions, and g(x) = f(x) when
x ∈ A because tan(arctan(y)) = y for all y ∈ R.

3. Suppose f : R→ R is differentiable. Show that f is Lipschitz continuous
if and only if f ′ is bounded.
Solution: Suppose f ′ is bounded, i.e. that there is a K such that

|f ′(x)| ≤ K

for all x. K ≥ 0 because absolute values cannot be negative. Suppose
s, t ∈ R. Let a = min(s, t) and b = max(s, t). If s 6= t then a < b and the
Mean Value Theorem shows that there is an x ∈ (a, b) such that

f ′(x) =
f(b)− f(a)

b− a
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and hence

|f ′(x)| = |f(b)− f(a)|
|b− a|

=
|f(s)− f(t)|
|s− t|

.

So
|f(s)− f(t)| ≤ K|s− t|.

This inequality also holds trivially if s = t so

|f(s)− f(t)| ≤ K|s− t|

for all s, t ∈ R. In terms of the usual metric on R this is

d(f(s), f(t)) ≤ Kd(s, t),

so f is Lipschitz continuous.

Suppose, conversely, that f is Lipschitz continuous, i.e. that there is a
K ≥ 0 such that

d(f(s), f(t)) ≤ Kd(s, t).

Then ∣∣∣∣f(s)− f(t)

s− t

∣∣∣∣ ≤ K
if s 6= t. It follows that

|f ′(t)| =
∣∣∣∣lims→t

f(s)− f(t)

s− t

∣∣∣∣ ≤ K.
So f ′ is bounded.
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