MAU22200 2021-2022 Practice Problem Set 6

- 1. Show that each of the following spaces is compact.
 - (a) The set $\{z, \alpha_0, \alpha_1, \ldots\} \subseteq X$ where (X, \mathcal{T}) is a topological space, $z \in X$ and $\alpha \colon \mathbf{N} \to X$ such that $\lim_{n \to \infty} \alpha_n = z$.
 - (b) (X, \mathcal{T}) where X is a set and \mathcal{T} is the cofinite topology on X.
 - (c) The Cantor set. *Hint:* This can be done using the description of the Cantor set from the notes, but it's easier to use the description in terms of intervals from Lecture 12.
- 2. The version of the Tietze Extension Theorem in the notes applies only to bounded functions. Prove the following related theorem, which has no boundedness assumption.

Suppose (X, \mathcal{T}) is a normal topological space, $A \in \wp(X)$ is closed and $f: A \to \mathbf{R}$ is continuous. Then there is a continuous $g: X \to \mathbf{R}$ such that g(x) = f(x) for all $x \in A$.

Hint: Use the version of the Tietze Extension Theorem you already have, Urysohn's Lemma and the arctangent function.

3. Suppose $f : \mathbf{R} \to \mathbf{R}$ is differentiable. Show that f is Lipschitz continuous if and only if f' is bounded.