MAU22200 2021-2022 Practice Problem Set 5
Solutions

1. Suppose (X, Tx) is a topological space, A € p(X) and T4 is the subspace
topology on A.

(a) Show that if U € Tx and U C A then U € Ty.
Solution: U =ANU since A CU. So U € T4 by Proposition 3.8.2.

(b) Show that if X\ V € Tx and V C A then A\V € T4.
Solution: ANX =Aand ANV =V so

A\V =ANX)\(ANV)=AN(X\V).

Therefore A\ V € T4 by Proposition 3.8.2.

(c) Show that if A€ Tx, U € Ty and U C A then U € Tx.
Solution: By Proposition 3.8.2 there is a W € Tx such that U =
ANW. But then U € Tx because A € Tx and W € Tx.

(d) Show that if X\ A€ Tx, A\VeTasand V C Aso X\V € Tx
because intersections of open sets are open.
Solution: By Proposition 3.8.2 there is a W € Tx such that ANW =
A\V.

X\V=X\AUUA\V)X\NADAUANT)=(X\A)UW
This is in Tx because intersections of open sets are open.

2. The cofinite topology on a set X was defined in Practice Problem Set 2,
where you proved that it is indeed a topology and that it is a Hausdorff
topology if and only if X is finite.

Proposition 3.10.9 says that (X, 7') is Hausdorff if and only if the diagonal
Ax is closed. If X is infinite then it follows that Ax is not closed, so by
Proposition 3.2.2 Parts (b) and (g) the closure of Ax is strictly larger
than Ax. What is the closure of Ax?

Solution: The closure is all of X x X. Suppose (a,b) € X x X and U is a
neighbourhood of (a,b) in X x X. By Proposition 3.10.4 U is a union of
sets of the form V' x W, where V and W are open sets in X. (a,b) must
therefore be contained in such a set. V and W are non-empty since a € V
and b € W so by the definition of the cofinite topology X \ V and X \ W
are both finite. So

XAN(VNWw)=(X\V)u(X\W)

is finite and therefore VN W is non-empty. If ¢ € V. N W then (¢, c) €
V x W so (¢,c) € U. But (¢,c) € Ax so Ax NU # @. It follows from
Proposition 3.2.2 Part (1) that (a,b) € Ax. But (a,b) was an arbitrary
element of X x X, s0 Ay = X x X.



3.

()

Suppose A € p(R) is connected. First show that if 2 < y < z and
x,z € Athen y € A.
Solution: If x,z € Aand z <y < z but y ¢ A then

A=AnR\{y}) = AN ((=o0,y) U (y, +0))
= (AN (=00,y)) U (AN (y, +0))

and

(AN (=00,9)) N (AN (y,+00)) = AN ((—00,y) N (y, +00))
=ANg=0.

Also z € AN (—o0,y) and z € AN (y,+00) so AN (—o0,y) # & and
AN (y,+00) # @. Both AN (—o0,y) and AN (y,+o0) are elements
of T4 by Proposition 3.8.2, so A is disconnected. In other words,
assuming z,z € A and < y < z, if y ¢ A then A is disconnected.
Equivalently, if z,2 € A, x < y < z and A is connected then y € A.

Show that if A is connected then A is an interval.
Solution: If A is empty then it’s an an interval. Suppose A is non-
empty and bounded. Let

a=inf A, b= sup A.

If a < y < b then y is neither an upper bound nor a lower bound for
A so there are x < y and z > y such that z,z € A. It follows from
the previous part that y € A. If z < a then © ¢ A because a is a
lower bound for A. If z > b then z ¢ A because b is an upper bound
for A. So

(a,b) C A C [a,b]

The only remaining question is whether a € A and whether b € A, so
the only sets with this property are the intervals (a,b), (a,b], [a,b)
and |[a, b].

Suppose A is bounded neither from above nor below. If y € R then
y is neither an upper nor a lower bound for A, so there are x < y
and z > y such that z,z € A. It follows from the previous part that
ye€ A So A=R. R=(—00,+00) is an interval.

Suppose A is bounded from below but not from above. Let

a = inf A.

If y > a then y is neither an upper nor a lower bound for A so y € A.
If £ < a then x ¢ A since a is a lower bound for A. So

(a,400) C A C [a,+00).

The only sets with this property are the intervals (a, +00) and [a, +00).



Suppose A is bounded from below but not from above. Let
b =sup A.

If y < b then y is neither an upper nor a lower bound for A so y € A.
If 2 > b then z ¢ A since b is an upper bound for A. So

(—o00,b) C AC (—00,b].

The only sets with this property are the intervals (—oo, b) and (—o0, b].

The various cases considered above exhaust all the possibilities, so in
every case A is an interval.



