MAU22200 2021-2022 Practice Problem Set 5

- 1. Suppose (X, \mathcal{T}_X) is a topological space, $A \in \wp(X)$ and \mathcal{T}_A is the subspace topology on A.
 - (a) Show that if $U \in \mathcal{T}_X$ and $U \subseteq A$ then $U \in \mathcal{T}_A$.
 - (b) Show that if $X \setminus V \in \mathcal{T}_X$ and $V \subseteq A$ then $A \setminus V \in \mathcal{T}_A$.
 - (c) Show that if $A \in \mathcal{T}_X$, $U \in \mathcal{T}_A$ and $U \subseteq A$ then $U \in \mathcal{T}_X$.
 - (d) Show that if $X \setminus A \in \mathcal{T}_X$, $A \setminus V \in \mathcal{T}_A$ and $V \subseteq A$ so $X \setminus V \in \mathcal{T}_X$ because intersections of open sets are open.
- 2. The cofinite topology on a set X was defined in Practice Problem Set 2, where you proved that it is indeed a topology and that it is a Hausdorff topology if and only if X is finite.

Proposition 3.10.9 says that (X, \mathcal{T}) is Hausdorff if and only if the diagonal Δ_X is closed. If X is infinite then it follows that Δ_X is not closed, so by Proposition 3.2.2 Parts (b) and (g) the closure of Δ_X is strictly larger than Δ_X . What is the closure of Δ_X ?

- 3. (a) Suppose $A \in \wp(\mathbf{R})$ is connected. First show that if x < y < z and $x, z \in A$ then $y \in A$.
 - (b) Show that if A is connected then A is an interval.