MAU22200 2021-2022 Practice Problem Set 3 Solutions

1. For any set X and any $x \in X$ the set

$$\mathcal{F} = \{ A \in \wp(X) \colon x \in A \}$$

is called the principal filter of X at x. Show that it is indeed a filter. *Solution:* We check the four conditions.

- (a) $\mathcal{F} \neq \emptyset$ because $\{x\} \in \mathcal{F}$.
- (b) $\emptyset \notin \mathcal{F}$ because $x \notin \emptyset$.
- (c) If $A \in \mathcal{F}$ and $B \in \mathcal{F}$ then $x \in A$ and $x \in B$ so $x \in C$ where $C = A \cap B$. So $C \in \mathcal{F}$. $A \supseteq C$ and $B \supseteq C$.
- (d) If $A \subseteq B$ and $A \in \mathcal{F}$ then $x \in A$ so $x \in B$ and hence $B \in \mathcal{F}$.
- 2. Show that the neighbourhood filter $\mathcal{N}(x)$ is a subset of the principal filter at x.

Solution: If $U \in \mathcal{N}(x)$ then $x \in U$, by the definition of a neighbourhood, so U is an element of the principal filter. Every element of the neighbourhood filter is an element of the principal filter, so the neighbourhood filter is a subset of the principal filter.

- 3. Suppose X is infinite. The cofinite filter on X is defined to be the set of subsets of A of X such that $X \setminus A$ is finite. Show that it is indeed a filter. Solution: Again, we check the four conditions.
 - (a) $X \in \mathcal{F}$ since $X \setminus X$ is finite.
 - (b) $\emptyset \notin \mathcal{F}$ because $X \setminus \emptyset$ is not finite.
 - (c) If $A, B \in \mathcal{F}$ then $X \setminus A$ and $X \setminus B$ are finite. Let $C = A \cap B$. Then $A \supseteq C$ and $B \supseteq C$. Also

$$X \setminus C = X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$$

is finite so $C \in \mathcal{F}$.

- 4. Show that the cofinite filter is not contained in any principal filter. Solution: For any $x \in X$ the set $\{x\}$ is finite so the set $X \setminus \{x\}$ belongs to the cofinite filter. It does not belong to the principal filter at x.
- 5. List all the filters on the set $\{1, 2, 3\}$.

Solution: Let $X = \{1, 2, 3\}$. There are 3 elements in X, 8 in $\wp(X)$ and 256 in $\wp(\wp(X))$. Since every filter on X is an element of $\wp(\wp(X))$ we could, in theory, list them and check which ones satisfy the four required conditions, but that would be very unpleasant, so it's better to choose a different approach.

Suppose $\{1\} \in \mathcal{F}$. $\emptyset \notin \mathcal{F}$ because \mathcal{F} is a filter. None of the sets $\{2\}$, $\{3\}$ or $\{2,3\}$ belongs to \mathcal{F} because for none of them is there a $C \neq \emptyset$ which

is a subset of it and $\{1\}$. The sets $\{1,2\}$, $\{1,3\}$ and $\{1,2,3\}$ all belong to \mathcal{F} because they are supersets of $\{1\}$. We've now accounted for all the subsets, so the filter could only be

$$\mathcal{F} = \{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}.$$

This is indeed a filter.

Similarly, if $\{2\} \in \mathcal{F}$ then

$$\mathcal{F} = \{\{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$$

and if $\{3\} \in \mathcal{F}$ then

$$\mathcal{F} = \{\{3\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$$

Suppose $\{1,2\} \in \mathcal{F}$. As usual $\emptyset \notin \mathcal{F}$. We've covered the cases where $\{1\} \in \mathcal{F}, \{2\} \in \mathcal{F} \text{ and } \{3\} \in \mathcal{F} \text{ above so only need to consider the case where } \{1\} \notin F, \{2\} \notin F \text{ and } \{3\} \notin F$, The only sets which are subsets of both $\{1,2\}$ and $\{1,3\}$ are \emptyset and $\{1\}$, neither of which is in \mathcal{F} . So $\{1,3\} \notin \mathcal{F}$. Similarly, $\{2,3\} \notin \mathcal{F}$. On the other hand $\{1,2,3\} \in \mathcal{F}$ because it is a superset of $\{1,2\}$. So the only possibility is

$$\mathcal{F} = \{\{1, 2\}, \{1, 2, 3\}\}$$

which is indeed a filter.

Similarly if $\{1,3\} \in \mathcal{F}$ then

$$\mathcal{F} = \{\{1,3\},\{1,2,3\}\}$$

and if $\{2,3\} \in \mathcal{F}$ then

$$\mathcal{F} = \{\{2,3\}, \{1,2,3\}\}.$$

Suppose $\{1, 2, 3\} \in \mathcal{F}$. As always $\emptyset \notin \mathcal{F}$ and we've already considered the cases when any non-empty proper subsets are in \mathcal{F} so the only remaining possibility is

$$\mathcal{F} = \{\{1, 2, 3\}\}.$$

 $\mathcal{F} \neq \emptyset$ and $\emptyset \notin \mathcal{F}$ so \mathcal{F} must contain some non-empty subset and we've enumerated all the possibilities above so the filters listed above are the only filters on $\{1, 2, 3\}$.