MAU22200 2021-2022 Practice Problem Set 2 Solutions

- 1. Lemma 1.9.4 in the notes gives the following two inclusions of sets. Give an example in each case to show that the inclusion cannot be replaced by equality in general.
 - (a) $\varphi_*(A \cap B) \subseteq \varphi_*(A) \cap \varphi_*(B)$. Solution: Suppose $\varphi: \{a, b\} \to \{c\}$ is defined by $\varphi(a) = \varphi(b) = c$. Let $A = \{a\}$ and $B = \{b\}$ Then $\varphi_*(A) = \{c\}$ and $\varphi_*(B) = \{c\}$ so $\varphi_*(A) \cap \varphi_*(B) = \{c\} \cap \{c\} = \{c\}$ but $A \cap B = \emptyset$ so $\varphi_*(A \cap B) = \emptyset$.
 - (b) φ_{*}(A \ B) ⊇ φ_{*}(A) \ φ_{*}(B).
 Solution: With the same φ, A and B as above, φ_{*}(A) \ φ_{*}(B) = {c} \ {c} = Ø but A \ B = {a} \ {b} = {a} so φ_{*}(A \ B) = {a}.
- 2. Suppose (X, \mathcal{T}) is a topological space. Show that \mathcal{T} is Hausdorff if and only if for all distinct $x, y \in X$ there are $P \in \mathcal{N}(x)$ and $Q \in \mathcal{N}(y)$ such that $P \cap Q = \emptyset$.

Solution: Suppose \mathcal{T} is Hausdorff. This means, by Definition 1.11.2 of the notes, that for all distinct $x, y \in X$ there are $V, W \in \mathcal{T}$ such that $x \in V$, $y \in W$ and $V \cap W = \emptyset$. By Lemma 1.13.2 V is an open neighbourhood of x and W is an open neighbourhood of y. Open neighbourhoods are neighbourhoods so $V \in \mathcal{N}(x)$ and $W \in \mathcal{N}(y)$. $V \cap W = \emptyset$. So there are $P \in \mathcal{N}(x)$ and $Q \in \mathcal{N}(y)$ such that $P \cap Q = \emptyset$, namely P = V and Q = W.

Suppose, conversely, that for all distinct $x, y \in X$ there are $P \in \mathcal{N}(x)$ and $Q \in \mathcal{N}(y)$ such that $P \cap Q = \emptyset$. P is a neighbourhood of x so by Definition 1.13.1 there is a $V \in \mathcal{T}$ such that $x \in V$ and $V \subseteq P$. Similarly Q is a neighbourhood of y so there is a $W \in \mathcal{T}$ such that $y \in W$ and $W \subseteq Q$. From $V \subseteq P$ and $W \subseteq Q$ it follows that $V \cap W \subseteq P \cap Q$. But $P \cap Q = \emptyset$ so $V \cap W = \emptyset$. So we've just seen that for all distinct $x, y \in X$ there are $V, W \in \mathcal{T}$ such that $x \in V, y \in W$ and $V \cap W = \emptyset$. In other words \mathcal{T} is Hausdorff.

- 3. If X is a set then the *cofinite* topology on X is the set \mathcal{T} consisting of those $U \in \wp(X)$ such that $U = \varnothing$ or $X \setminus U$ is finite.
 - (a) Show that \mathcal{T} is indeed a topology on X.

Solution: The three conditions we need to check are listed in Definition 1.11.1.

 $\emptyset \in \mathcal{T}$. $X = X \setminus \emptyset$ and \emptyset is finite so $X \in \mathcal{T}$. This establishes 1.11.1a.

Suppose $V \in \mathcal{T}$ and $W \in \mathcal{T}$. If either $V = \emptyset$ or $W = \emptyset$ then $V \cap W = \emptyset$ and so $V \cap W \in \mathcal{T}$. The only remaining case is that $X \setminus V$ and $X \setminus W$ are both finite. But

$$= X \setminus (V \cap W)(X \setminus V) \cup (X \setminus W)$$

and the union of two finite sets is finite so $V \cap W \in \mathcal{T}$. This establishes 1.11.1b.

Suppose $\mathcal{E} \subseteq T$. If $\mathcal{E} = \emptyset$ or $\mathcal{E} = \{\emptyset\}$ then $\bigcup_{V \in \mathcal{E}} V = \emptyset$ and so $\bigcup_{V \in \mathcal{E}} V \in \mathcal{T}$. Otherwise \mathcal{E} must contain a non-empty element of T. Call this element W. Then $X \setminus W$ is finite because of how \mathcal{T} was defined. Now $W \in \mathcal{E}$ so

$$W \subseteq \bigcup_{V \in \mathcal{E}} V$$

and hence

$$X \setminus \bigcup_{V \in \mathcal{E}} V \subseteq X \setminus W.$$

Subsets of finite sets are finite so $X \setminus \bigcup_{V \in \mathcal{E}} V$ is finite and hence $\bigcup_{V \in \mathcal{E}} V \in \mathcal{T}$. This establishes 1.11.1c.

(b) Show that \mathcal{T} is Hausdorff if and only if X is finite.

Solution: Suppose X is finite. If $A \in \wp(X)$ then $X \setminus A$ is finite, since subsets of finite sets are finite, so $A \in \mathcal{T}$. So $\wp(X) \subseteq \mathcal{T}$. But $\mathcal{T} \subseteq \wp(X)$. Therefore $\mathcal{T} = \wp(X)$. In other words, τ is the discrete topology, which we already know to be Hausdorff.

Suppose, conversely, that \mathcal{T} is Hausdorff. If X has at most one element then it's certainly finite. If it has at least two elements then we choose distinct $x, y \in X$. Because X is Hausdorff there are $V, W \in \mathcal{T}$ such that $x \in V, y \in W$ and $V \cap W = \emptyset$. $x \in V$ so $V \neq \emptyset$ and hence $X \setminus V$ is finite. Similarly, $X \setminus W$ must be finite. Then

 $X = X \setminus \emptyset = X \setminus (V \cap W)(X \setminus V) \cup (X \setminus W)$

and the union of two finite sets is finite so X is finite.