- 1. Lemma 1.9.4 in the notes gives the following two inclusions of sets. Give an example in each case to show that the inclusion cannot be replaced by equality in general.
 - (a) $\varphi_*(A \cap B) \subseteq \varphi_*(A) \cap \varphi_*(B).$
 - (b) $\varphi_*(A \setminus B) \supseteq \varphi_*(A) \setminus \varphi_*(B).$
- 2. Suppose (X, \mathcal{T}) is a topological space. Show that \mathcal{T} is Hausdorff if and only if for all distinct $x, y \in X$ there are $P \in \mathcal{N}(x)$ and $Q \in \mathcal{N}(y)$ such that $P \cap Q = \emptyset$.
- 3. If X is a set then the *cofinite* topology on X is the set \mathcal{T} consisting of those $U \in \wp(X)$ such that $U = \varnothing$ or $X \setminus U$ is finite.
 - (a) Show that \mathcal{T} is indeed a topology on X.
 - (b) Show that \mathcal{T} is Hausdorff if and only if X is finite.